
HCL OneTest Performance
10.2.3 Documentation

May 2022

ii

Special notice

Before using this information and the product it supports, read the information in Notices on page mcdl.

Contents
Special notice...ii
Chapter 1. Release Notes..13

Product description... 13
What's new... 13
Installing the product...16
Known issues... 17
Contacting HCL support..17

Chapter 2. System Requirements.............................. 18
Hardware.. 19
Operating systems...21
Host prerequisites... 23
Recording support... 25
Supported software... 26

Chapter 3. Getting Started...31
Task flows for performance testing....................... 31

Task flow: HTTP record................................... 31
Task flow: Generating workload......................33
Task flow: Recording a SAP test..................... 35
Task flow: Recording a service test to test an
SOA application..37
Task flow: Recording a SAP batch input
test...39
Task flow Integrating HCL OneTest™
Performance and HCL OneTest™ API............. 41
Task flow: Response time breakdown............ 43
Task flow: Rate Scheduler............................... 43

Product overview... 46
HTTP performance testing overview.............. 46
SAP performance testing overview.................46
Citrix performance testing overview............... 47
Service testing overview.................................. 49
Generic service client overview.......................50
Socket API performance testing overview......52
TN3270 performance testing overview.......... 53
IBM® Engineering Test Management
overview.. 53

Streamlined Eclipse and full Eclipse overview....... 55
Starting the product in full Eclipse mode........56
Starting the product in streamlined Eclipse
mode... 56

Chapter 4. Tutorials...58
Performance test a Web application......................58

Introduction: Test a Web application.............. 58
Module 1: Creating projects and recording user
actions...59
Module 2: Editing a test...................................60
Module 3: Validating a test with a single
user..61

Module 4: Representing workloads.................62
Module 5: Running the test............................. 63
Module 6: Evaluating results........................... 64
Summary...65

Performance test an SAP application.................... 66
Introduction: Performance test SAP
solutions..66
Module 1: Creating projects and recording user
actions...67
Module 2: Editing an SAP test.........................68
Module 3: Running tests..................................69
Summary...71

Performance test a Citrix application.....................72
Introduction: Performance test Citrix
applications.. 72
Module 1: Creating projects and recording user
actions...72
Module 2: Editing a Citrix performance
test...74
Module 3: Representing workloads.................75
Summary...77

Chapter 5. Samples...78
Installation tuning tests for WebSphere®
Application Server..78

Installing the assets for tuning tests.............. 79
Testing with the Snoop test.............................79
Testing the PlantsByWebSphere
application.. 79
Testing the Daytrader application................... 80

Chapter 6. Administrator Guide................................. 81
Installation of HCL OneTest™ Performance........... 81

Installation requirements.................................81
Installation conventions and terminology.......82
Installation Manager overview........................ 82
Installation locations..83
Offering coexistence considerations.............. 84
Eclipse instance overview................................84
Increasing the number of file handles on
Linux™ workstations...84
Installation of the product by using IBM®
Installation Manager.. 86
Uninstalling the product by using IBM®
Installation Manager.. 94
Installation of the product by using the stand-
alone installer... 95
Uninstallation of the product by using the
stand-alone installer.......................................142

License management.. 150
License descriptions......................................151

iii

Contents | iv

iv

License configuration.................................... 152
Collecting usage metrics data...................... 156

Product upgrade and migration............................157
Migrating test assets to new version of the
product..157

Configuration of the product.................................158
Configuring the environment for SAP
tests...158
Configuring the data collection
infrastructure.. 160
Configuring Docker containers......................167

Integration with other products............................ 168
Integration plugin compatibility matrix......... 168
Running tests by using Ant............................169
Integration with Azure DevOps......................182
Integration with Apache JMeter....................198
EGit integration...204
Integration with Engineering Test
Management...214
Integration with IBM® Engineering Workflow
Management...226
Integration with HCL® Launch......................229
Integration with HCL OneTest™ API.............. 250
Integration with IBM® UrbanCode™
Deploy... 263
Integration of Jaeger with the product......... 284
Integration with Jenkins................................ 286
Testing with Maven..314
Integration with Micro Focus ALM................317

Chapter 7. Test Author Guide.................................. 333
Creating tests...333

Performance testing tips...............................333
Creating a project...334
Recording HTTP tests....................................335
Recording SAP tests...................................... 362
Recording Citrix tests.................................... 378
Recording service tests................................. 394
Recording socket and TN3270 tests............ 418
Digital certificates overview.......................... 429
Kerberos overview..438
Annotating a test during recording............... 441
Recording sensitive session data................. 442
Splitting a test during recording....................443
Generating a new test from a recorded
session..444
Organizing test assets by type......................444

Editing tests... 445
Editing HTTP tests... 445
Editing SAP tests... 484
Editing Citrix tests..497

Editing service tests.......................................511
Editing Socket tests....................................... 545
Editing Kerberos tests....................................556
Adding test elements.....................................557
Searching within tests................................... 567
Exporting a test..570
Copying test assets with dependencies....... 570
Disabling portions of a test...........................573
Running test elements in random order........574
Renaming test assets.................................... 576
Deleting test assets....................................... 577
Debugging custom code for tests and
compound tests... 579
Providing tests with variable data
(datasets)..579
Test variables... 602
Correlating response and request data........ 609
Data transformation.......................................645

Compound tests.. 655
Creating a compound test.............................656
Viewing compound tests...............................657
Adding tests into a compound test...............657
Modifying a compound test.......................... 658
Running compound tests.............................. 658
Generating compound test result reports.....659
Adding a compound test to a Test Workbench
project... 661
Adding compound tests to schedule............ 662

Simulating services with stubs.............................662
Service stub overview.................................... 662
Creating a service stub..................................663
Editing a service stub.................................... 664
Deploying service stubs.................................665
Recording service stub activity in a log
file..666
Setting log level for service stubs.................667

Sending service requests with the generic service
client... 667

Creating transport protocol
configurations...667
Sending service requests with WSDL files....680
Sending HTTP endpoint requests................. 682
Sending a JMS endpoint request..................683
Sending a WebSphere® MQ endpoint
request.. 684
Sending OData endpoint batch requests...... 686
Sending WebSphere Java MQ endpoint
requests.. 687
Testing all operations in a WSDL file............ 690
Viewing message content............................. 691

Contents | v

Synchronizing a remote WSDL file................692
Synchronizing a local WSDL file with GSC....693
Adding static XML headers to a service
request.. 693
Opening file attachments.............................. 694

Emulating workloads...694
Schedule overview... 695
Creating a VU Schedule.................................696
Creating a Rate Schedule.............................. 713
Using Application Performance Management in
a schedule.. 721
Think time overview.......................................723
Working with agents...................................... 725
Adding a test to a schedule.......................... 729
Adding must run tests................................... 730
Assigning variables..730
Defining performance requirements in
schedules..731
Repeating tests in a schedule....................... 733
Creating rate generators in user groups....... 735
Running tests at a set rate............................ 737
Running tests in random order......................738
Adding a transaction to a schedule.............. 740
Emulating network traffic from multiple
hosts..740
Monitoring resource data.............................. 743
Resource Monitoring Service........................ 766
Monitoring response time breakdown.......... 767
Setting log and statistic levels...................... 772

Chapter 8. Test Execution Specialist Guide..............783
Running schedules with performance testing..... 783

Running a local schedule or test...................783
Running a long run mode SAP GUI test........ 784
Running long duration Citrix tests.................785
Testing with Docker images..........................786
Adjusting delays in HTTP tests.....................792
Setting a launch configuration...................... 795
Running a configured schedule.....................797
Configuring multiple host names for a
location... 797
Automating tests from command line..........798
Controlling caches size................................. 826
Increasing memory allocation.......................827
Controlling execution of web analytic
reports...828
Debugging HTTP tests.................................. 833
Debugging Citrix tests................................... 843

Extending test execution with custom code........ 847
Creating custom Java™ code........................ 847

Test execution services interfaces and
classes.. 849
Reducing the performance impact of custom
code...852
Custom code examples.................................853
Migrating custom code from previous
versions...881

Extending HCL OneTest™ Performance to support
other protocols...881

Protocol extension structure......................... 882
Extending the test recorder........................... 883
Extending the test generation framework.....895
Contributing annotations...............................902
Extending the load test behavior model....... 905
Extending data correlation 917
Extending the test editor............................... 921
Contributing error handlers........................... 934
Extending the schedule component............. 940
Extending code generation............................943
Extending the run-time environment.............949
Extending the test log viewer........................ 956
Extending evaluation results......................... 957

Chapter 9. Test Manager Guide............................... 966
Evaluating results in web analytic reports............966

Comparing results among runs.....................966
Comparing schedule stages..........................966
Comparing results from various regions or
agent locations...967
Generating functional reports....................... 968
Publishing functional reports to the
server...970
Publishing test results to the server............. 971
Publishing specific results to the server.......973
Customizing reports...................................... 975
Export test results..990
Viewing response time breakdown...............998

Logs overview.. 1000
Viewing test logs... 1001
Viewing errors while running tests..............1002
Viewing reports after a run..........................1002
Accessing reports remotely........................ 1003
Exporting test logs.......................................1004
Exporting event log...................................... 1004
Exporting event console output.................. 1005
Viewing adjustments to page response
times... 1005
Viewing resource monitoring data..............1006

Reports and counters..1007
Requirements report.................................... 1007
Synchronization Point report.......................1009

v

Contents | vi

vi

Loops report...1009
Agents Health Report.................................. 1009
Rate Runner report.......................................1010
Transaction report..1011
Transaction Percentile report......................1013
Transaction Net Server Time Percentile
report...1014
Rate Generator report.................................. 1015
HTTP performance test reports..................1017
SAP performance test reports.................... 1033
Citrix performance test reports...................1036
Web service performance test reports....... 1041
Socket performance test reports................1050
HTTP counters... 1052
SAP counters..1070
Citrix counters.. 1078
Service counters.. 1087
Socket counters... 1108

Chapter 10. Troubleshooting Guide....................... 1112
Troubleshooting performance testing................1112
Performance testing error messages................ 1116

PRXE0101W..1117
PRXE4943W..1117
PRXE4951I.. 1117
RMSE0003W...1117
RMSE0004W...1118
RMSE0005W...1118
RMSE0006W...1119
RPAC0001W... 1119
RPHD1032E.. 1120
RPHD1034E.. 1122
RPHE0001E...1123
RPHE0010W... 1123
RPHE0011W... 1123
RPHE0012W... 1124
RPHE0013W... 1124
RPHE0014W... 1125
RPHE0100W... 1125
RPHE0101W... 1126
RPHE0102W... 1127
RPHE0103W... 1128
RPHE0104W... 1128
RPHE0105W... 1129
RPHE0106W... 1130
RPHE0107W... 1132
RPHE0108W... 1134
RPHE0109W... 1135
RPHE0110W... 1136

RPHE0111W... 1137
RPHE0112W... 1138
RPHE0113E...1139
RPHE0113W... 1140
RPHE0114E...1140
RPHE0114W... 1141
RPHE0115E...1141
RPHE0115W... 1142
RPHE0117W... 1143
RPHE0118W... 1144
RPHE0119E...1145
RPHE0120E...1146
RPHE0121E...1147
RPHE0122W... 1148
RPHE0123W... 1149
RPHE0124W... 1150
RPHE0125W... 1150
RPIB0007E.. 1150
RPKG0090E.. 1151
RPKG0100E.. 1151
RPKG0101E.. 1151
RPKG0110E.. 1152
RPSE0014W..1152
RPSF0114E... 1153
RPSF0172E... 1153
RPSF0195E... 1154
RPTA0000W..1154
RPTA0001I..1154
RPTA0002E...1155
RPTA0003E...1155
RPTA0004E...1156
RPTA0009E...1157
RPTA0010E...1158
RPTA0011E...1159
RPTA0012E...1160
RPTA0013E...1161
RPTA0014E...1162
RPTA0015E...1163
RPTA0016E...1164
RPTA0017E...1165
RPTA0018E...1165
RPTA0019E...1165
RPTA0020E...1166
RPTA0021E...1166
RPTA0023E...1167
RPTA0024E...1168
RPTA0025E...1169

Contents | vii

RPTA0026E...1170
RPTA0025I..1171
RPTA0026I..1171
RPTA0027I..1171
RPTA0031E...1171
RPTA0032I..1172
RPTA0033I..1172
RPTA0034E...1172
RPTA0035E...1173
RPTA0036E...1173
RPTA0037E...1173
RPTA0038E...1174
RPTA0039E...1174
RPTA0040E...1174
RPTA0041E...1175
RPTA0042E...1175
RPTA0043E...1175
RPTA0100W..1176
RPTA0518E...1176
RPTC0003E...1177
RPTC0004E...1177
RPTC0005E...1178
RPTC0006E...1178
RPTC0008I..1179
RPTC00020E...1179
RPTC1001W... 1179
RPTC1002W... 1180
RPTC1009I..1180
RPTC1011I..1180
RPTC1012I..1180
RPTC1013I..1180
RPTC1014I..1181
RPTC1015I..1181
RPTC1016I..1181
RPTC1017I..1181
RPTC1018I..1181
RPTC1019I..1181
RPTC1020I..1182
RPTC1021I..1182
RPTC1030E...1182
RPTC1031E...1183
RPTC1032E...1183
RPTD0011W... 1184
RPTE0005W..1185
RPTE0011W..1186
RPTE0147E...1187
RPTE0150E...1188

RPTH0130I..1188
RPTH049E...1189
RPTI0069E.. 1189
RPTI0070E.. 1189
RPTI0071I... 1190
RPTI0072E.. 1190
RPTI0072I... 1190
RPTI0073E.. 1190
RPTI0074E.. 1191
RPTI0075E.. 1191
RPTI0110I... 1191
RPTI0111I... 1191
RPTI0112I... 1192
RPTI0113I... 1192
RPTI0141E.. 1192
RPTI0142E.. 1193
RPTI0143E.. 1193
RPTI0144W...1194
RPTI0145E.. 1195
RPTI0146E.. 1196
RPTJ0063E... 1196
RPTJ0075E... 1197
RPTJ1002E... 1197
RPTJ1003E... 1198
RPTJ1004E... 1198
RPTJ1005E... 1199
RPTJ1006E... 1200
RPTJ1007E... 1201
RPTJ1008E... 1203
RPTJ1009E... 1204
RPTJ1010E... 1204
RPTJ1011E... 1205
RPTJ1012E... 1206
RPTJ1013E... 1207
RPTJ1015E... 1208
RPTJ1016E... 1209
RPTJ1017E... 1210
RPTJ1018E... 1211
RPTJ1019E... 1212
RPTJ1020E... 1213
RPTJ1021E... 1214
RPTJ0121I...1215
RPTJ1022E... 1215
RPTJ1023E... 1216
RPTJ1024E... 1217
RPTJ1025I...1217
RPTJ1026I...1217

vii

Contents | viii

viii

RPTJ1030E... 1217
RPTJ1041E... 1218
RPTJ1042E... 1218
RPTJ1043E... 1219
RPTJ1044E... 1220
RPTJ1100I...1221
RPTJ1101E... 1221
RPTJ1102W.. 1222
RPTJ1103W.. 1223
RPTJ1104E... 1223
RPTJ1141E... 1224
RPTJ1142E... 1224
RPTJ1200W.. 1224
RPTJ1220E... 1225
RPTJ1221E... 1225
RPTJ1240E... 1226
RPTJ1241E... 1227
RPTJ1242E... 1227
RPTJ1244E... 1228
RPTJ1245E... 1229
RPTJ1261E... 1230
RPTJ1270E... 1230
RPTJ1271E... 1230
RPTJ1280E... 1231
RPTJ1400I...1231
RPTK0000I..1231
RPTK1001E...1232
RPTK1016E...1233
RPTK1019E...1233
RPTK1020E...1234
RPTK1021E...1234
RPTK1022E...1234
RPTK1023E...1235
RPTL0001W..1235
RPTL0002W..1235
RPTL0003W..1236
RPTL0004W..1236
RPTL0005W..1236
RPTL0006W..1237
RPTL0007W..1237
RPTL0008E... 1237
RPTL0009I.. 1238
RPTL0010E... 1238
RPTL0011E... 1238
RPTR0000W..1238
RPTR0001W..1238
RPTR0002W..1239

RPTR0003W..1239
RPTR0004W..1239
RPTR2001E...1239
RPTR2003W..1240
RPTS1000E...1240
RPTS1002E...1241
RPTS1510E...1242
RPTS1001I.. 1242
RPTS1004I.. 1243
RPTX0001E...1244
RPTX0002E...1245
RPTX0003E...1245
RPTX0004E...1246
RPTX0005E...1246
RPTX0006E...1247
RPTX0007E...1247
RPTX0008E...1248
RPTX0009E...1248
RPTX0010E...1248
RPXD0022W... 1249
RPXE0061I.. 1249
RPXE5502E...1250
RPTX1010I..1250
RPTX1011I..1250
RPTX1012I..1251
RPTX1017I..1251
RPTX1018I..1251
RPTX1019I..1252
RPTX1081E...1252
RPTX1082E...1252
RPTX2001E...1253
RPTX2002E...1254
RPTX2003E...1254
RPTX2004E...1255
RPTX2005E...1255
RPTX2006W..1256
RPTX2007I..1256
RPTX2008I..1257
RPTX2009I..1257
RPTX2010I..1257
RPTX2011E...1258
RPTX2012E...1259
RPTX2013E...1259
RPTX2014E...1260
RPTX2015E...1260
RPTX2016I..1261
RPTX2017E...1261

Contents | ix

RPTX2018W..1261
RPTX2019I..1261
RPTX2020I..1261
RPTX2021E...1261
RPTX2022E...1262
RPTX2023W..1262
RPTX2024E...1263
RPTX2025E...1263
RPTX2026E...1264
RPTX2027W..1264
RPTX2029W..1265
RPTX2030I..1265
RPTX2031I..1266
RPTX2032I..1266
RPTX2033E...1267
RPTX2034E...1267
RPTX2035E...1268
RPTX2036E...1268
RPTX2037E...1269
RPTX2050E...1269
RPTX2051E...1270
RPTX2055E...1270
RPTX2056E...1271
RPTX2057E...1271
RPTX2058E...1272
RPTX2060E...1273
RPTX2061W..1274
RPTX2062W..1275
RPTX2063W..1276
RPTX2070E...1277
RPTX2071E...1278
RPTX2072E...1278
RPTX2073E...1279
RPTX2074E...1280
RPTX2075E...1281
RPTX2077E...1282
RPWF0011E..1283
RPWF0012E..1284
RPWF0021E..1284
RPWF0032E..1284
RPWF0051E..1284
RPWF0052E..1285
RPWF0056E..1285
RPWF0066E..1285
RPWF0071E..1286
RPWF0072E..1286
RPWF0074E..1286

RPWF0075E..1286
RPWF0076W...1287
RPWF0081W...1287
RPWF0082W...1287
RPWF0083E..1288
RPWF0084E..1288
RPWF0085E..1288
RPWF0101E..1288
RPWF0102E..1289
RPWF0103E..1289
RPWF0104E..1289
RPWF0111E..1289
RPWF0112E..1290
RPWF0121W...1290
RPWF0122W...1290
RPWF0123W...1290
RPWF0124W...1291
RPWF0130W...1291
RPWF0131W...1291
RPWF0132E..1291
RPWF0140E..1292
RPWH0007W.. 1292
RPWH0009W.. 1292
RPWH0010W.. 1292
RPWH0012E... 1292
RPWH0014E... 1292
RPWH0015E... 1293
RPWH0016E... 1293
RPWH0017E... 1293
RPWS0001E..1294
RPWS0002E..1294
RPWS0003E..1294
RPWS0004E..1295
RPWS0005E..1295
RPWS0006E..1295
RPWS0007E..1296
RPWS0008E..1296
RPWY0002E..1296
RPWY0003I...1297
RPWY0004W...1297
RPWY0005E..1297
RPWY0006E..1297
RPWY0007E..1297
RPWZI0002E...1298
RPXD0001E...1298
RPXD0002E...1298
RPXD0003E...1298

ix

Contents | x

x

RPXD0004E...1299
RPXD0005E...1299
RPXD0006E...1299
RPXD0007F...1299
RPXD0017W... 1300
RPXD0018E...1300
RPXD0019E...1301
RPXD0020E...1303
RPXD0021E...1304
RPXD0021W... 1304
RPXE0001W..1304
RPXE0010W..1305
RPXE0011W..1305
RPXE0012W..1305
RPXE0013W..1305
RPXE0014W..1305
RPXE0015W..1306
RPXE0016W..1306
RPXE0017W..1306
RPXE0018W..1307
RPXE0019W..1307
RPXE0021W..1307
RPXE0023W..1307
RPXE0024W..1307
RPXE0025W..1308
RPXE0027W..1308
RPXE0028W..1308
RPXE0029W..1308
RPXE0030W..1308
RPXE0031W..1308
RPXE0033W..1309
RPXE0035W..1309
RPXE0036W..1309
RPXE0037W..1309
RPXE0038W..1310
RPXE0039W..1310
RPXE0040W..1310
RPXE0041W..1310
RPXE0042I.. 1311
RPXE0043I.. 1311
RPXE0044W..1311
RPXE0045W..1311
RPXE0046W..1312
RPXE0047E...1312
RPXE0048W..1312
RPXE0049W..1313
RPXE0050W..1313

RPXE0051W..1313
RPXE0052W..1314
RPXE0053W..1314
RPXE0054W..1314
RPXE0055W..1314
RPXE0056W..1315
RPXE0057E...1315
RPXE0058E...1315
RPXE0059E...1315
RPXE0060E...1316
RPXE0100W..1316
RPXE0102W..1316
RPXE0103W..1317
RPXE0104W..1317
RPXE2501E...1318
RPXE2550E...1319
RPXE2552I.. 1319
RPXE2900E...1319
RPXE2901W..1320
RPXE4000W..1321
RPXE4001E...1321
RPXE4002E...1321
RPXE4003E...1321
RPXE4004E...1322
RPXE4005E...1322
RPXE4006E...1322
RPXE4007E...1323
RPXE4008E...1323
RPXE4008I.. 1324
RPXE4009I.. 1324
RPXE4010I.. 1325
RPXE4011E...1325
RPXE4013I.. 1325
RPXE4014E...1326
RPXE4015E...1326
RPXE4016E...1326
RPXE4017I.. 1327
RPXE4018E...1328
RPXE4019E...1328
RPXE4020E...1328
RPXE4021E...1329
RPXE4022E...1329
RPXE4023E...1329
RPXE4024E...1330
RPXE4025E...1330
RPXE4026E...1330
RPXE4027E...1330

Contents | xi

RPXE4028E...1331
RPXE4029E...1331
RPXE4050I.. 1332
RPXE4100W..1332
RPXE4101E...1332
RPXE4102E...1333
RPXE4103E...1333
RPXE4104E...1333
RPXE4105E...1334
RPXE4106E...1334
RPXE4107E...1334
RPXE4108E...1335
RPXE4109E...1335
RPXE4110E...1335
RPXE4111W..1336
RPXE4112W..1336
RPXE4120E...1337
RPXE4150E...1337
RPXE4151E...1337
RPXE4152E...1337
RPXE4153E...1338
RPXE4200W..1338
RPXE4201W..1338
RPXE4202E...1339
RPXE4203E...1339
RPXE4204W..1339
RPXE4205E...1340
RPXE4208E...1340
RPXE4209I.. 1340
RPXE4210E...1341
RPXE4211E...1341
RPXE4212E...1341
RPXE4213E...1342
RPXE4214W..1342
RPXE4215E...1342
RPXE4215I.. 1343
RPXE4216E...1343
RPXE4217E...1344
RPXE4218E...1345
RPXE4219E...1345
RPXE4220E...1346
RPXE4221E...1346
RPXE4900I.. 1347
RPXE4901I.. 1347
RPXE4902I.. 1347
RPXE4903I.. 1347
RPXE4904I.. 1347

RPXE4905I.. 1348
RPXE4906I.. 1348
RPXE4907I.. 1348
RPXE4908I.. 1348
RPXE4909I.. 1348
RPXE4910I.. 1348
RPXE4911I.. 1349
RPXE4912I.. 1349
RPXE4913I.. 1349
RPXE4914I.. 1349
RPXE4915I.. 1350
RPXE4916I.. 1350
RPXE4917I.. 1350
RPXE4918I.. 1350
RPXE4920I.. 1351
RPXE4921I.. 1352
RPXE4930I.. 1353
RPXE4931I.. 1353
RPXE4932I.. 1353
RPXE4940I.. 1354
RPXE4941I.. 1354
RPXE4942I.. 1354
RPXE4944W..1354
RPXE4945W..1355
RPXE4948W..1355
RPXE4950I.. 1355
RPXE4952E...1355
RPXE5301E...1356
RPXE5305E...1356
RPXE5330E...1356
RPXE5500W..1357
RPXE5501W..1358
RRIT0001E.. 1359
RRIT0002E.. 1359
RRIT0003E.. 1360
RRIT0004E.. 1360
RRIT0005E.. 1360
RRITUI1002W... 1361
DCRC0001E.. 1361
DCRC0002E.. 1361
DCRC0003E.. 1362
DCRC0008W... 1362
DCRC0009W... 1362
DCRC0010E.. 1363
DCUI0001E..1363
DCUI0003E..1363
DCUI0004E..1363

xi

Contents | xii

xii

DCUI0006E..1363
DCUI0007W.. 1364
DCUI0008W.. 1364
DCUI0009E..1364
DCUI0010E..1364
DCUI0011E..1365
DCUI0012E..1365
DCUI0013E..1365
DCUI0014E..1366
DCUI0015E..1366
DCUI0016E..1366
DCUI0017E..1366
DCUI0998E..1366

Additional error messages..................................1366
Address already in use................................ 1367
Browser profile in use..................................1368
Cannot open test... 1369
Connection closed....................................... 1370
Dataset accessed using different modes...1370
Error binding to port.....................................1371
Error connecting to license server.............. 1371
No local agent controller............................. 1372
Performance Test Errors were found in the
project... 1372
Test run aborted...1373
Test run aborted due to error...................... 1374
Testgen completed with warnings..............1375
Variable not initialized................................. 1375

Chapter 11. Reference Guide.................................1376
Accessibility features.. 1376

Keyboard shortcuts for performance and
service testing.. 1376

General reference for performance testing........1378
Data correlation rules.................................. 1378
Error conditions..1379
Resource monitoring data sources.............1381
Response time breakdown data sources... 1382

UI preferences..1383
HTTP preferences.. 1383
SAP test preferences................................... 1389
Citrix recorder preferences..........................1392
Socket Test Generation preferences...........1397
Citrix monitoring panel reference................1399
Proxy recording preferences....................... 1400
Test editor preferences................................1400
Report preferences...................................... 1402
Test editor references..................................1404
VU Schedule editor reference......................1436

WSDL security editor reference.......................... 1443
Security Considerations... mcdxlix
Notices... mcdl
Index...1454

Chapter 1. Release notes for HCL OneTest™ Performance
This document contains information about what's new, installation instructions, known issues in HCL OneTest™

Performance, and contact information of HCL Customer Support.

Contents

• Product description on page 13

• What's new on page 13

• Installing the product on page 16

• Known issues on page 17

• Contacting HCL support on page 17

Product description
You can find the description of HCL OneTest™ Performance.

HCL OneTest™ Performance is a scripting-free environment for automating load and scalability testing of web, ERP,

and server-based software applications. HCL OneTest™ Performance provides rich and customizable reporting to

help you identify the presence and cause of system bottlenecks. It captures the network traffic that is rendered when

the application under test interacts with a server. This network traffic is then emulated on multiple virtual users while

you play back the test. See Product overview on page 46.

What's new
You can find information about the features introduced in this release of HCL OneTest™ Performance.

• Enhancements to integration plugins

The integration plugins are enhanced to provide additional parameters that you can use when you run tests

from the integrated product.

The following table lists the parameters added in HCL OneTest™ Performance 10.2.3 with the checkmark

icon for each of the integration plugins:

Integration plugins

Parameters
Azure DevOps

UrbanCode™

Deploy and

HCL® Launch

MicroFocus

ALM
Ant Jenkins

Duration

13

HCL OneTest Performance

14

Integration plugins

Parameters
Azure DevOps

UrbanCode™

Deploy and

HCL® Launch

MicroFocus

ALM
Ant Jenkins

Exportlog

Publish

Publish_for

Publishreports

Rate

History

Exportstatsfor­

mat

Labels

Exportstatshtml

Exportstatre­

portlist

Exportstats

Overwrite

Configfile

Results

Usercomments

Chapter 1. Release notes for HCL OneTest™ Performance

Integration plugins

Parameters
Azure DevOps

UrbanCode™

Deploy and

HCL® Launch

MicroFocus

ALM
Ant Jenkins

Users

The following topics provide more information about parameters for each of the integration plugins:

◦ Running tests from Azure DevOps as a Pipeline job on page 184

◦ Configuring the process in UrbanCode Deploy on page 267

◦ Configuring the process in HCL Launch on page 233

◦ Configuring test scripts in Micro Focus ALM on page 319

◦ Running tests by using Ant on page 169

◦ Configuring the Freestyle project in Jenkins on page 289

• Viewing test run results on the Azure Test Plans dashboard

When you use the HCL OneTest Studio extension in Azure DevOps pipelines to run performance test assets,

you can now view the results of the test runs on the Test Plans dashboard of Azure DevOps. See Running

tests from Azure DevOps as a Pipeline job on page 184.

• Support to auto-save the load test profile details of test assets

HCL OneTest™ Performance now automatically saves the load test profile details of tests, compound tests, vu

schedules, and rate schedules.

• Bug fixes

Fixed the customer-reported and internally found defects.

Deprecated capabilities

You can find information about the capabilities that are deprecated in this release and are planned for a removal in a

future release.

You can contact the HCL Client Support team if you have any concerns.

• Support for Ubuntu 18.04 LTS is deprecated:

• Support for the following virtualization management is deprecated:

15

HCL OneTest Performance

16

◦ Docker Community Edition (CE) 19.3

◦ Docker Compose 1.25

◦ Docker Compose 1.26

• Support for the following browsers (for recording and playback tests) is deprecated:

◦ Google Chrome 84 to 90

◦ Microsoft Edge 89 to 90

◦ Mozilla Firefox 78 to 88

• Support for the following software is deprecated:

◦ JMeter 5.3

◦ Eclipse Runtime Environment 4.7.3.1

Capabilities removed

The following features that were announced in previous releases as deprecated are now removed in this release:

• Support for the following operating systems is removed:

◦ Red Hat Enterprise Linux (RHEL) 8.3

◦ Red Hat Enterprise Linux (RHEL) 8.2

◦ Red Hat Enterprise Linux (RHEL) 8.1

◦ Red Hat Enterprise Linux (RHEL) 8

• Support for the following browsers (for recording and playback tests) is removed:

◦ Google Chrome 78 to 83

◦ Mozilla Firefox 60 to 77

◦ Mozilla Firefox ESR 68

• Support for Microsoft Internet Explorer 11 (for viewing of performance reports and datasets) is removed.

• Support for IBM® Rational® Clear Case 8.0.1 or later is removed.

Installing the product
You can find information about the installation instructions for HCL OneTest™ Performance.

For installation instructions, see Installation of the product by using the stand-alone installer on page 95.

Chapter 1. Release notes for HCL OneTest™ Performance

Remember: You cannot upgrade the product to the latest version. You must uninstall the existing version of

the product before you install the latest version of the product.

Known issues
You can find information about the known issues identified in this release of HCL OneTest™ Performance.

Table 1. Release documents - Fix list and known issues

Product Download document Knowledge Base

HCL OneTest™ Performance Release document Knowledge articles

The knowledge base is continually updated as problems are discovered and resolved. By searching the knowledge

base, you can quickly find workarounds or solutions to problems.

Contacting HCL support
You can find information about HCL technical support assistance for HCL OneTest™ Performance.

• For technical assistance, contact HCL Customer Support.

• Before you contact HCL support, you must gather the background information that you might need to describe

your problem. When you describe a problem to the HCL support specialist, be as specific as possible and

include all relevant background information so that the specialist can help you solve the problem efficiently.

To save time, know the answers to these questions:

◦ What software versions were you running when the problem occurred?

◦ Do you have logs, traces, or messages that are related to the problem?

◦ Can you reproduce the problem? If so, what steps do you take to reproduce it?

◦ Is there a workaround for the problem? If so, be prepared to describe the workaround.

17

https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0098290
https://support.hcltechsw.com/csm?id=kb_search
https://support.hcltechsw.com/csm

18

Chapter 2. System Requirements
This document includes information about hardware and software requirements for HCL OneTest™ Performance.

Contents

• Hardware on page 19

◦ Linux on page 19

◦ Mac on page 20

◦ Windows on page 20

• Operating Systems on page 21

◦ Linux on page 22

◦ Mac on page 22

◦ Windows on page 22

• Host prerequisites on page 23

◦ Terminal services on page 24

◦ Virtualization Management on page 24

◦ Web Browsers on page 24

• Recording support on page 25

• Supported software on page 26

◦ Application servers on page 26

◦ Business process management on page 27

◦ Development tools on page 27

◦ DevOps tools on page 28

◦ Eclipse Runtime Environment on page 30

◦ Message Oriented Middleware on page 30

Disclaimers

This report is subject to the Terms of Use and the following disclaimers:

The information contained in this report is provided for informational purposes only. While efforts were made to

verify the completeness and accuracy of the information contained in this publication, it is provided AS IS without

warranty of any kind, express or implied, including but not limited to the implied warranties of merchantability, non-

infringement, and fitness for a particular purpose. In addition, this information is based on HCL's current product

plans and strategy, which are subject to change by HCL without notice. HCL shall not be responsible for any direct,

indirect, incidental, consequential, special or other damages arising out of the use of, or otherwise related to, this

report or any other materials. Nothing contained in this publication is intended to, nor shall have the effect of, creating

any warranties or representations from HCL or its suppliers or licensors, or altering the terms and conditions of the

applicable license agreement governing the use of HCL software.

References in this report to HCL products, programs, or services do not imply that they will be available in all

countries in which HCL operates. Product release dates and/or capabilities referenced in this presentation may

change at any time at HCL's sole discretion based on market opportunities or other factors, and are not intended to

Chapter 2. System Requirements

be a commitment to future product or feature availability in any way. Discrepancies found between reports and other

HCL documentation sources may or may not be attributed to different publish and refresh cycles for this tool and

other sources. Nothing contained in this report is intended to, nor shall have the effect of, stating or implying that any

activities undertaken by you will result in any specific sales, revenue growth, savings or other results. You assume

sole responsibility for any results you obtain or decisions you make as a result of this report.

Notwithstanding the Terms of Use users of this site are permitted to copy and save the reports generated from this

tool for such users own internal business purpose. No other use shall be permitted.

Hardware
You can find information about the hardware requirements for HCL OneTest™ Performance.

Contents

• Linux on page 19

• Mac on page 20

• Windows on page 20

Linux

Hardware Components Requirement Notes

HCL OneTest™ Perfor­

mance

Disk space

HCL OneTest™ Perfor­

mance Agent

10 GB • Disk space requirements can be

reduced or increased depending

on the features that you install.

• An additional 500 MB of disk

space is required in the /tmp direc­

tory.

HCL OneTest™ Perfor­

mance

Memory

HCL OneTest™ Perfor­

mance Agent

8 GB • For best results with large test

runs, use 16 GB of RAM.

19

HCL OneTest Performance

20

Mac

Hardware Components Requirement Notes

HCL OneTest™ Perfor­

mance

Disk space

HCL OneTest™ Perfor­

mance Agent

10 GB • Disk space requirements can be

reduced or increased depending

on the features that you install.

• Large test runs can store several

gigabytes of data. Make sure that

you have adequate disk space be­

fore attempting a large test run.

HCL OneTest™ Perfor­

mance

Memory

HCL OneTest™ Perfor­

mance Agent

8 GB • For best results with large test

runs, use 16 GB of RAM.

Windows

Hardware Components Requirement Notes

HCL OneTest™ Perfor­

mance

Disk space

HCL OneTest™ Perfor­

mance Agent

10 GB • Disk space requirements can be

reduced or increased depending

on the features that you install.

• Large test runs can store several

gigabytes of data. Make sure that

you have adequate disk space be­

fore attempting a large test run.

• Additional disk space is required

if you use FAT32 instead of NT­

FS. An additional 500 MB of disk

space is required in the directo­

ry that you specify in the environ­

ment variable TEMP.

Chapter 2. System Requirements

Hardware Components Requirement Notes

HCL OneTest™ Perfor­

mance

Memory

HCL OneTest™ Perfor­

mance Agent

8 GB • For best results with large test

runs, use 16 GB of RAM.

Operating systems
You can find the operating systems that are supported, organized by operating system family for HCL OneTest™

Performance.

Contents

• Linux on page 22

• Mac on page 22

• Windows on page 22

Bit version support

Different parts of a product might run on the same operating system but support different application bitness. For

example, one part of the product might run only in 32-bit mode, whereas another might support 64-bit tolerate mode.

Bitness Description

32 The product or part of the product runs as a 32-bit application in the 32-bit platforms listed as support­

ed.

64-Toler­

ate

The product or part of the product runs as a 32-bit application in the 64-bit platforms listed as support­

ed.

64-Exploit The product or part of the product runs as a 64-bit application in the 64-bit platforms listed as support­

ed.

21

HCL OneTest Performance

22

Linux

ComponentsOperating system

Hardware Bitness

Desktop Agent

Red Hat Enterprise Linux (RHEL) 8.5 x86-64 64-Exploit

Red Hat Enterprise Linux (RHEL) 8.4 x86-64 64-Exploit

Red Hat Enterprise Linux (RHEL) 7.9 x86-64 64-Exploit

Ubuntu 20.04.1 LTS x86-64 64-Exploit

Ubuntu 18.04 LTS x86-64 64-Exploit

Mac

ComponentsOperating system

Hardware Bitness

Desktop Agent

macOS BigSur 11.6 x86-64 64-Exploit

macOS Catalina 10.15 x86-64 64-Exploit

Windows

ComponentsOperating system

Hardware Bitness

Desktop Agent

Windows 11 Pro x86-64 32, 64-Exploit

Windows 10 Enterprise x86-64 32, 64-Exploit

Chapter 2. System Requirements

ComponentsOperating system

Hardware Bitness

Desktop Agent

Windows 10 Pro x86-64 32, 64-Exploit

Windows Server 2019 x86-64 32, 64-Exploit

Windows Server 2016 x86-64 32, 64-Exploit

Host prerequisites
You can find the host prerequisites that support the operating capabilities for HCL OneTest™ Performance.

Contents

• Licensing on page 23

• Terminal services on page 24

• Virtualization Management on page 24

• Web Browsers on page 24

Licensing

Components

License Server Version
Desk­

top
Agent

2021.05 Not applicableFlexNet Operations

LLS

2017.02 Not applicable

23

HCL OneTest Performance

24

Terminal services

Components

Supported software
Ver­

sion Desk­

top
Agent

Notes

Citrix Receiver 4.9 Not applicable

Citrix XenApp
6.5

Not applicable

For remote terminal ac­

cess

Virtualization Management

Components

Containers
Ver­

sion Desk­

top
Agent

20.1Docker Community Edition

(CE)

19.3

1.29

1.27

Docker Compose

1.25

Web Browsers

The following versions of web browsers support the viewing of performance reports and datasets. See Recording

support on page 25 to know the browsers that are supported to record the HTTP tests.

Chapter 2. System Requirements

Components

Browsers Version
Desk­

top
Agent

Apple Safari 12 or later Not applicable

Google Chrome 78 or later Not applicable

Microsoft Edge 80 or later Not applicable

Microsoft Internet Explorer (For Reports only) 11 Not applicable

Mozilla Firefox (includes Mozilla Firefox ESR) 68 or later Not applicable

Recording support
You can find information about the web browsers that support recording capability of HTTP tests for HCL OneTest™

Performance.

Web browsers

The following versions of web browsers support the recording of HTTP tests. See Web Browsers on page 24 to

know the browsers that are supported to view the performance reports.

Supported Browsers Version
Desk­

top

Recording

capability
Notes

Apple Safari 12 to 15

Google Chrome 84 to 101

Microsoft Edge 89 to 101

Mozilla Firefox 78 to 100

To record HTTP tests

25

HCL OneTest Performance

26

Supported Browsers Version
Desk­

top

Recording

capability
Notes

91
Mozilla Firefox ESR

78

Supported software
You can find the additional software that is supported for HCL OneTest™ Performance.

Contents

• Application servers on page 26

• Business process management on page 27

• Development tools on page 27

• DevOps tools on page 28

• Eclipse Runtime Environment on page 30

• Message Oriented Middleware on page 30

Application servers

Support for the following application servers is in reference only to the HTTP Response Time Break Down capability:

Components

Supported software Version
Desk­

top
Agent

Notes

9.0 Not applicableIBM® WebSphere Application

Server

8.5.5 Not applicable

IBM® WebSphere Liberty 17.0.0.1 Not applicable

To collect response time breakdown da­

ta

Chapter 2. System Requirements

Business process management

Components

Supported soft­

ware

Ver­

sion Desk­

top
Agent

Notes

7.7SAP GUI

7.6

To record and playback tests of SAP applications built with the SAP

GUI client

Development tools

Components

Supported software
Ver­

sion Desk­

top
Agent

Note

HCL OneTest™ API 10.2.3 Not applic­

able

To integrate and run HCL OneTest™ API tests

HCL OneTest™ UI 10.2.3 Not applic­

able

Eclipse shell sharing and to run WebUI integrations

IBM® Engineering Test Man­

agement

7.0.2 Not applic­

able

To initiate the test runs from Engineering Test Man­

agement

IBM® Engineering Workflow

Management

7.0.2 Not applic­

able

To perform integrations with Engineering Workflow

Management

IBM® Rational® Quality Man­

ager

6.0.6 Not applic­

able

To initiate the test runs from Rational Quality Manager

IBM® Rational® Team Con­

cert

6.0.6 Not applic­

able

To perform integrations with Rational Team Concert

27

HCL OneTest Performance

28

Components

Supported software
Ver­

sion Desk­

top
Agent

Note

5.4.3 Not applic­

able

JMeter

5.4.1 Not applic­

able

To integrate and run JMeter tests

DevOps tools

Components

Supported software Version
Desk­

top
Agent

Notes

Apache Ant 1.9 or later Not applica­

ble

To initiate the test runs from ANT

Azure DevOps Latest re­

lease

Not applica­

ble

To initiate the test runs from Azure DevOps

pipeline

7.2.1.0 Not applica­

ble

7.1.2.1 Not applica­

ble

7.1.1.1 Not applica­

ble

HCL Launch

7.1.0.1 Not applica­

ble

To initiate the test runs from HCL Launch

Chapter 2. System Requirements

Components

Supported software Version
Desk­

top
Agent

Notes

7.2.1.0 Not applica­

ble

7.1.2.1 Not applica­

ble

7.1.1.1 Not applica­

ble

IBM® UrbanCode De­

ploy

7.0.2 Not applica­

ble

To initiate the test runs from UrbanCode Deploy

2.339 Not applica­

ble

2.303.3 Not applica­

ble

2.289.3 Not applica­

ble

2.277.4 Not applica­

ble

2.263.3 Not applica­

ble

Jenkins

2.235.1 Not applica­

ble

To initiate the test runs from Jenkins

Maven 3.5 or later Not applica­

ble

To initiate the test runs from Maven

29

HCL OneTest Performance

30

Components

Supported software Version
Desk­

top
Agent

Notes

Microfocus ALM
12.6

Not applica­

ble

To initiate the test runs from Microfocus ALM

Eclipse Runtime Environment

Components

Supported software
Ver­

sion Desk­

top
Agent

Eclipse Runtime Environ­

ment

4.8 Not applicable

Message Oriented Middleware

Components

Supported software
Ver­

sion Desk­

top
Agent

9.2.1IBM® MQ

9.0.5

Chapter 3. Getting Started
This guide provides an overview and describes the task flows to get you to start with HCL OneTest™ Performance.

This guide is intended for new users.

Task flows for performance testing
The task flows are designed to help you understand the end-to-end process of some of the capabilities of

performance testing. For some of the technologies, there are specific task flows that you can follow to gain a clear

understanding of the process.

Task flow: HTTP record
The diagram shows the task flow of HTTP recording to test the performance of an application using HCL OneTest™

Performance.

To test the performance of an application, you must first record the HTTP traffic that traverses between the client and

the server.

Once you complete the basic HTTP recording, play it back and fix the errors, if any. You can then customize your test

by adding other elements such as datasets, loops, and transaction.

31

HCL OneTest Performance

32

1. Recording HTTP tests on page 335

2. Running a local schedule or test on page 783

3. Debugging HTTP tests on page 833

4. Creating a dataset in a workspace on page 584

5. Adding a loop to a test on page 561

6. Adding a transaction to a test on page 557

7. Running a local schedule or test on page 783

8. Evaluating results in web analytic reports on page 966

9. Agents Health Report on page 1009

10. Specifying error-handling behavior on page 466

11. Performance report on page 1017

12. Loops report on page 1009

13. Transaction report on page 1011

Chapter 3. Getting Started

Task flow: Generating workload
The diagram shows the task flow of generating workload by creating user groups and dividing the load across

different remote agents.

The agents generate load on the application under test. The number of agents required depends on various factors

including the size of the load you want to put on the application under test, hardware capacity of systems that install

the agents, and the application under test itself.

33

HCL OneTest Performance

34

1. Installing HCL OneTest Performance on page 86

2. Creating a VU Schedule on page 696

3. Defining requirements in schedules on page 731

4. Enablement of Resource Monitoring services for a schedule on page 744

5. Running a local schedule or test on page 783

6. Evaluating results in web analytic reports on page 966

7. Publishing test results to the server on page 971

8. Running a user group at a remote location on page 709

9. Checking the status of agents on page 726

10. Setting user loads on page 700

11. Adding a user group to VU Schedule on page 705

12. Adding a test to a schedule on page 729

Chapter 3. Getting Started

Task flow: Recording a SAP test
The task flow shows the recording of interactions with the SAP GUI client to generate a SAP test.

The recording wizard opens the SAP GUI client and records all the interactions that occur between the client and the

server. You can record a SAP test by using the HTTP SAP Portal option to measure the performance of a SAP Portal

from a web interface. After you complete SAP recording or HTTP recording session with SAP portal, you must play

it back and fix the errors, if any. You can add other HCL OneTest™ Performance elements such as data correlation,

verification points, and loops and playback the test again to evaluate the results.

35

HCL OneTest Performance

36

Note: If a test is not behaving as expected during playback, you must ensure that the connection to the SAP

server is available. For more information, see SAP connection details on page 1417.

1. Recording an SAP test on page 365

2. Recording a session with HTTP SAP Portal on page 371

3. Running a local schedule or test on page 783

4. Running a local schedule or test on page 783

5. Evaluating results in web analytic reports on page 966

6. Correlating response and request data on page 609

7. Verifying application behavior on page 512

8. Adding a loop to a test on page 561

9. SAP Performance report on page 1033

10. Generating functional reports on page 968

Chapter 3. Getting Started

Task flow: Recording a service test to test an SOA application
The task flow shows the testing services in an SOA environment. You can record a test session by invoking service

calls by using a generic service client or an existing client.

To test the performance of an SOA application, you must record a service call and create a service test. After you

complete the service test recording, play it back and fix the errors, if any. You can edit your service test to include

verification points, data correlations, loops, and play back the test again to evaluate the results.

37

HCL OneTest Performance

38

1. Recording service tests on page 394

2. Running a local schedule or test on page 783

3. Running a local schedule or test on page 783

4. Correlating response and request data on page 609

5. Verifying application behavior on page 512

6. Adding a loop to a test on page 561

7. Web service reports on page 1041

8. Generating functional reports on page 968

Chapter 3. Getting Started

Task flow: Recording a SAP batch input test
The task flow shows the recording of certain SAP transaction sessions from SAP GUI with SAP batch input tests

recording wizard. When you record a session, the recording wizard automatically starts a SAP GUI interface and

records the transaction that you specified. Typically, you use batch input tests in a schedule mixed with normal SAP

performance tests to increase the load on the server.

After you complete the recording, the wizard generated a SAP batch input test in HCL OneTest™ Performance. You

can then play it back again to fix the errors, if any.

Note:

• You must perform the recording of certain SAP transaction sessions from SAP GUI. For more

information, see Recording a SAP batch input test on page 374.

• If a test is not behaving as expected during playback, you must ensure that the connection to the SAP

server is available. For more information, see SAP connection details on page 1417.

Later, you can add the other HCL OneTest™ Performance elements such as data correlation, verification points, loops,

transactions, and custom codes to test and playback the test to evaluate the results.

39

HCL OneTest Performance

40

1. Recording a SAP batch input test on page 374

2. Running a local schedule or test on page 783

3. Data correlation overview on page 609

4. Verifying application behavior on page 512

5. Adding a loop to a test on page 561

6. Adding a transaction to a test on page 557

7. Creating custom Java code on page 847

8. Running a local schedule or test on page 783

9. Evaluating results in web analytic reports on page 966

10. SAP Performance report on page 1033

11. Generating functional reports on page 968

Chapter 3. Getting Started

Task flow Integrating HCL OneTest™ Performance and HCL OneTest™ API
You can execute integration tests in HCL OneTest™ Performance by using HCL OneTest™ Performance Extension for

HCL OneTest™ API. In HCL OneTest™ Performance, you can create a compound test to run the integration tests by

using agents.

To integrate tests, you must install HCL OneTest™ Performance Extension for HCL OneTest™ API. Also, to execute the

tests remotely, you must install HCL OneTest™ Performance Agent and HCL OneTest™ API Agent.

After installing all the required software, you must set the environment variable and connect to the integration project.

To open the HCL OneTest™ API project from HCL OneTest™ Performance Test Navigator, you must set the path to the

execution file in the HOT-API Integration preferences. Later, you must create a compound test and play back the test

to evaluate the results.

41

HCL OneTest Performance

42

Chapter 3. Getting Started

Task flow: Response time breakdown
To collect Response Time Breakdown data, you must follow a workflow that includes installing and configuring

Data Collection Infrastructure, enabling Response Time Breakdown for a schedule, running a schedule, and viewing

Response Time Breakdown reports.

1. ../topics/t_start_install_launchpada.html

2. ../topics/tinstrolocal.html

3. ../topics/cdcibeatips.html

4. ../topics/cdciwastips.html

5. ../topics/tenablertbvista.html

6. ../topics/tenableresponsetime.html

7. ../topics/tenablingrespelem.html

8. Running a local schedule or test on page 783

9. Viewing response time breakdown on page 998

10. ../topics/tfilterpojo.html

Task flow: Rate Scheduler
The task flow shows running a rate scheduler to monitor the workload at the desired rate (transactions per second).

43

../topics/t_start_install_launchpada.html
../topics/t_start_install_launchpada.html
../topics/tinstrolocal.html
../topics/tinstrolocal.html
../topics/cdcibeatips.html
../topics/cdcibeatips.html
../topics/cdciwastips.html
../topics/cdciwastips.html
../topics/tenablertbvista.html
../topics/tenablertbvista.html
../topics/tenableresponsetime.html
../topics/tenableresponsetime.html
../topics/tenablingrespelem.html
../topics/tenablingrespelem.html
../topics/tfilterpojo.html
../topics/tfilterpojo.html
../topics/t_start_install_launchpada.html
../topics/tinstrolocal.html
../topics/cdcibeatips.html
../topics/cdciwastips.html
../topics/tenablertbvista.html
../topics/tenableresponsetime.html
../topics/tenablingrespelem.html
../topics/tfilterpojo.html

HCL OneTest Performance

44

After installing HCL OneTest™ Performance agent, you must create a rate scheduler by adding elements such as rate

runner group, tests, user load, and checking the agent status. Then, you must define the performance requirements

for a schedule to specify the acceptable thresholds to validate the service-level agreements. Later, you must enable

the resource monitoring service and play back the scheduler to evaluate the results.

Chapter 3. Getting Started

1. Installing HCL OneTest Performance on page 86

2. Setting rate load on page 714

3. Rate Runner group overview on page 716

4. Creating a Rate Schedule on page 713

5. Checking the status of agents on page 726

6. Run a Rate Runner group at a remote location on page 719

7. Adding a test to a schedule on page 729

8. Defining requirements in schedules on page 731

9. Enablement of Resource Monitoring services for a schedule on page 744

10. Running a local schedule or test on page 783

11. Transaction report on page 1011

12. Rate Runner report on page 1010

13. Evaluating results in web analytic reports on page 966

14. Performance report on page 1017

15. Loops report on page 1009

45

HCL OneTest Performance

46

Product overview
You can gain the conceptual understanding of HCL OneTest™ Performance and its test extensions with these topics.

HTTP performance testing overview
There are five stages when performance testing HTTP applications: test creation, test editing, workload emulation

with schedules, schedule execution, and evaluation of results.

• Test creation. Although it is possible to write a test from scratch, you generally create HTTP performance

tests by recording representative interactions with an application. These actions are saved and a test is

generated from these recorded actions. Test recording and related tasks are explained in Recording HTTP

tests on page 335.

• Test editing. After recording a test, run it individually and inspect the results to make sure that the HTTP tests

are doing what you expect. You might want to edit your tests. Typical changes that you might make are:

◦ Replacing a value in a recorded test with values in a dataset. This produces more realistic test data.

Providing tests with variable data (datasets) on page explains how to use datasets to replace

data.

◦ Adding dynamic data to a test (referred to as data correlation). Data correlation, including how to

manually correlate test values, is explained in Correlating response and request data on page .

◦ Enabling verification points, so that you can determine whether an expected behavior occurred.

Verification points are explained in Verifying expected behavior on page 461.

• Workload emulation with schedules. After editing HTTP tests, you create a schedule. You add user groups

to the schedule and add appropriate tests to each group to emulate a task. A typical schedule contains the

following:

◦ User groups and tests. A schedule requires at least these items to run.

◦ User groups running from a remote location. This separates your workbench activity and your load-

adding activity. For more information, see Running a user group at a remote location on page 709.

◦ Optional schedule items, such as loops, delays, and think time behavior settings, to further emulate a

load. For more information, see Emulating workloads on page 694.

• Schedule execution. You typically run a schedule as explained in Running a local schedule or test on

page 783.

• Evaluation of results. Reports are displayed during the schedule run. You can also regenerate reports after the

run, customize reports, and export reports in HTML format, so that others who do not have the product can

see them.

SAP performance testing overview
With HCL OneTest™ Performance Extension for SAP Solutions, you can test the performance of SAP applications.

Informative performance test results rely upon sound test development. Each of the following stages contributes to

generating meaningful results when performance testing SAP applications:

../topics/tvardata.html
../topics/tvardata.html
../topics/tvardata.html
../topics/tvardata.html
../topics/tdatacorrtop.html
../topics/tdatacorrtop.html
../topics/tdatacorrtop.html
../topics/tdatacorrtop.html

Chapter 3. Getting Started

• Test creation. You create your test by recording a session with the SAP GUI client. Typically, the recorded

session starts when you log on to the SAP server. You then interact with the application in order to produce

a relevant performance test, and the session ends when you log out. The recorded session is split into

transactions and SAP screens. Response time measurements and verification points are automatically added

to transactions and SAP screens.

• Test editing. After recording, you can edit the events in each transaction and SAP screen. With the SAP

Protocol Data view, you can use snapshots of the SAP screen to edit the events. You can replace recorded test

values with variable test data, or add dynamic data to SAP tests. You can also set verification points on field

values or window titles to validate that the test behaved as expected.

• Test validation. Before deploying the test, you can run the test manually as a single virtual user to make sure

that the test runs smoothly and produces the expected results in a nominal environment with minimal server

load. You can experience multiple test editing and validation cycles before your test is robust.

• Workload emulation with schedules. When the test runs repeatedly as anticipated, you specify an execution

schedule and user groups to emulate a workload that is generated by a large number virtual users. You can

add SAP batch input tests to the schedule to simulate a heavy load on the servers while minimizing virtual

tester resources.

• Schedule execution. You run the schedule, deploying test execution over virtual users that can be hosted on

remote hosts. Each virtual user runs an instance of the SAP GUI client. Response time results are provided by

the SAP server and recorded. Verification points are checked and results are recorded.

• Evaluation of results. You evaluate the results produced by the SAP performance tests through the various

reports that are generated during execution. You can also design custom reports.

Citrix performance testing overview
HCL OneTest™ Performance Extension for Citrix Presentation Server allows you to test the performance of Citrix

applications.

Informative performance test results rely upon sound test development. Each of the following stages contributes to

generating meaningful test results:

• Test creation. You create your test by recording a session with the Citrix XenApp client. Typically, the recorded

session starts when you log in to the Citrix server. You then interact with the application to produce a relevant

performance test. The session ends when you log out. The recording is split into window events and contains

keyboard and mouse interactions with the Citrix server. You can use the Citrix Recording Control window to

add screen captures or comments. You can add image synchronizations to help the test remain synchronized

with the server.

• Test editing. After recording, you can edit the events in each window element. Because the recorded input is

primarily made of low-level keyboard and mouse input, you can streamline the test by, for example, replacing

key-press events with string inputs. You can use the comments and recorded screen captures to make

navigating through the test easier. You can replace recorded test values with variable test data, or add

dynamic data to the test. You can also set verification points on window titles or image synchronizations to

validate that the application behaves as expected.

47

HCL OneTest Performance

48

• Test validation. Before deploying the test, you can run the test manually as a single virtual user to make

sure that the test synchronizes user input actions and server output correctly in a nominal environment with

minimal server load. You might experience multiple test editing and validation cycles before your test runs as

expected.

• Workload emulation with schedules. When the test runs repeatedly as anticipated, you specify an execution

schedule and user groups to emulate a workload that is generated by a large number of virtual users.

• Schedule execution. You run the schedule, deploying test execution over virtual users that can be hosted on

remote hosts. Each virtual user runs an instance of the Citrix client.

• Evaluation of results. You evaluate the results produced by the tests through the various reports that are

generated during execution. You can also design custom reports.

Prerequisites

Before you can test the performance of Citrix applications, a Citrix XenApp client must be installed on the same

computer as HCL OneTest™ Performance. The Citrix XenApp client is required for recording and execution of

performance tests.

Ensure that you have a working Citrix client environment and that you can connect to a Citrix server. .

If you are deploying tests over remote computers to emulate a large number of users, the following software must be

installed on each remote computer:

• The Citrix XenApp client

• The HCL OneTest™ Performance Agent

Limitations

Citrix performance tests use window creation and change events, and optionally image recognition techniques,

to synchronize user input with server output. Before you record a session with a Citrix application, the behavior of

that application must be perfectly reproducible. Specifically, the application must always create windows and GUI

elements at the same locations and in the same sequence. Mouse or keyboard events must always produce the same

output. Consider these examples:

• If the application displays windows or dialog boxes on only the first execution of a particular program or

feature, such as tips or security warnings, ensure that they are disabled when you record the test. Any

windows or dialog boxes that were recorded but are not displayed on subsequent executions, or displayed at

different coordinates on the screen, will fail the test and cause synchronization timeouts.

• If you save a file during a recorded session, the application might issue a warning for an existing filename

when you replay the tests. If the warning was not in the recorded session, this will fail the test and cause

errors.

It is essential to be aware of the context of user actions when you edit a test. Because the Citrix performance tests

interact with the Citrix XenApp client at a very low level (mouse movements and key presses) any changes that you

Chapter 3. Getting Started

make to the test after the recording, such as moving test elements, adding loops or conditions, or inserting new

sequences, can alter the context of the emulated user actions and cause synchronization timeouts.

Service testing overview
The service testing capabilities of HCL OneTest™ Performance automate the creation, execution and analysis of

functional, regression and performance tests for SOAP-based web services, including support for Java Messagine

Service (JMS), Websphere MQ, WebSphere Java MQ, and Microsoft .NET Windows Communication Foundation

(WCF), as well as any service that produces XML, plain text, or binary data.

Informative test results rely upon sound test development. Each of the following stages contributes to generating

meaningful test results:

• Preparation. Set up your test environment with the libraries and configuration files required for SOAP-based

web services or custom security algorithms. You can import Web Service Description Language (WSDL)

definition files and digital certificates that are required by the web services to automatically generate your

tests. You can create SOAP security profiles with security algorithms for the web service calls and message

returns.

• Test creation: Create your test by recording the service requests and responses either with the generic

service client, or with an existing client or a web browser through a recording proxy. When you start the

recording, you interact with the service by performing service requests and receiving responses. You can also

create service tests manually or from a synchronous Business Process Execution Language (BPEL) model.

• Test editing: After recording, you can edit the requests and responses in the test. You can use XML Schema

Description (XSD) documents to facilitate XML edition. You can replace recorded test values with variable test

data, or add dynamic data to the test.

• Functional testing: You can run the test to ensure that service matches the expected behavior defined in

verification points. During the run, each verification point is checked and receives a pass, fail or inconclusive

status.

• Performance testing: If you are using HCL OneTest™ Performance, you can specify an execution schedule

and user groups to emulate a workload that is generated by a large number of virtual users. Then, you can run

the schedule, deploying test execution on virtual users that can be hosted on remote computers. Each virtual

user runs an instance of the test client. Response times are measured and recorded. Verification points are

checked and recorded.

• Stub simulation: Service stubs are functional simulations of an existing service. Service stubs are useful for

replacing a service that is unavailable or impractical to use in a test environment. They can also be used to

input specific data into a service under test or for prototyping. You can deploy stubs onto a stub server, which

can replace the actual server in your test or development environment.

• Evaluation of results: You evaluate the results that the tests produce through the performance and verification

point reports that are generated during execution. You can also design custom reports by manipulating

various counters. Functional reports provide a comprehensive view of the behavior of the service under test.

Reports can be exported and archived for validation.

49

HCL OneTest Performance

50

Service testing tools

The following tools are available in the product:

• The generic service client enables you to manually perform service requests for a wide variety of transport

protocols, authentication configurations and security profiles, making it an extremely versatile service client.

It effectively replaces a dedicated client and can be used to record service calls or for manual testing and

debugging a service during development. To open the generic service client, click the Generic Service Client

 toolbar button.

• The WSDL security editor allows you to set up sophisticated algorithm stacks for your service requests

and responses. Algorithm stacks contain digital certificate information and the security algorithms that

are applied to messages to perform secure communication with a web service. Algorithm stacks are made

of blocks, which can be key definitions, encryption , time stamp, or signature operations which can be

associated with any operation in the WSDL file. To open the WSDL security editor, right-click a WSDL file in

your workspace and select Edit WSDL Security or click the WSDL Security Editor button in the generic

service client..

• The test editor is where you develop your test. After recording, you can modify the test to add data correlation

or verification points. You can also add loops and conditions and you can edit every detail of the service

requests.

• The stub editor enables you to create service stubs. With the stub editor, you can define multiple input

conditions, which are similar to verification points. Each condition triggers a predefined simulated response,

which is functionally identical to a response from the simulated service.

• In HCL OneTest™ Performance, the schedule editor lets you deploy multiple virtual users on local and remote

computers to generate a heavy load for performance testing. A schedule typically contains multiple tests and

multiple virtual users.

Generic service client overview
The purpose of the generic service client is to send requests to any service that uses an HTTP, JMS, WebSphere®

MQ, or Microsoft™ .NET transport. The generic service client also displays the response returned by the service.

The generic service client is useful for debugging or testing a service when you do not have access to a dedicated

client to send the request. You can set up a large variety of transport and security configurations for the service, edit

the parameters of the request and send attachments.

When a request is successfully invoked, its message return is added to the Request History. You can use this feature

to look back at results that were produced at different times.

If you are using HCL OneTest™ Performance , you can select requests in the Request History and click Generate Test

to generate a test that will replay all the selected requests. You can edit the test to replace recorded test values with

variable test data, or add dynamic data correlation to the test. You can also set verification points on the contents of

the XML documents in the service response.

Chapter 3. Getting Started

Supported services

The generic service client enables you to send requests for many types of services that use the following transport

protocols:

• HTTP

• Java™ Message Service (JMS), including JBoss and WebSphere® implementations

• WebSphere® MQ

• Microsoft™ .NET Framework Windows™ Communication Foundation (WCF).

Note: If you are using IBM® Security AppScan®, only the HTTP transport protocol is supported.

Encryption and security

The Java™ Runtime Environment (JRE) that the product uses must support the level of encryption required by the

digital certificate that you select. For example, you cannot use a digital certificate that requires 256-bit encryption with

a JRE that supports only 128-bit encryption. By default, the product is configured with restricted or limited strength

ciphers. To use less restricted encryption algorithms, you must download and apply the unlimited jurisdiction policy

files (local_policy.jar and US_export_policy.jar).

For Oracle Java, download the files from this site:http://www.oracle.com/technetwork/java/javase/downloads/jce8-

download-2133166.html.

Before installing these policy files, back up the existing policy files in case you want to restore the original files later.

Then overwrite the files in /jre/lib/security/ directory with the unlimited jurisdiction policy files.

SSL Authentication

Service tests support simple or double SSL authentication mechanisms:

• Simple authentication (server authentication): In this case, the test client needs to determine whether the

service can be trusted. You do not need to setup a key store. If you select the Always trust option, you do not

need to provide a server certificat key store.

If you want to really authenticate the service, you can configure an certificate trust store, which contains the

certificates of trusted services. In this case, the test will expect to receive a valid certificate.

• Double authentication (client and server authentication): In this case, the service needs to authenticate the

test client according to its root authority. You must provide the client certificate keystore that needs to be

produced to authenticate the test as a certified client.

When recording a service test through a proxy, the recording proxy sits between the service and the client. In this

case, you must configure the SSL settings of the recording proxy to authenticate itself as the actual service to the

client (for simple authentication), and as the client to the service (for double authentication). This means that you

must supply the recording proxy with the adequate certificates.

51

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

HCL OneTest Performance

52

When using stub services, you can also configure the SSL settings of the stub service to authenticate itself as the

actual server. This means that you must supply the service stub with the adequate certificate.

NTLM and Kerberos Authentication

The product supports Microsoft™ NT LAN Manager (NTLMv1 and NTLMv2) and Kerberos authentication. The

authentication information is recorded as part of the test during the recording phase.

To enable NTLMv2 support, you must add a third party library to the workbench. For more information, see

Configuring the workbench for NTLMv2 authentication on page 671.

Digital certificates

You can test services with digital certificates for both SSL and SOAP security protocol. Digital certificates must be

contained in Java™ Key Store (JKS) keystore resources that are accessible in the workspace. When dealing with

keystore files, you must set the password required to access the keys both in the security editor and the test editor.

For SOAP security you might have to provide an explicit name for the key and provide a password to access the

private keys in the keystore.

Limitations

Arrays are not supported.

Because of a lack of specification, attachments are not supported with the Java™ Message Service (JMS) transport.

The envelope is directly sent using UTF-8 encoding.

All security algorithms are not always available for every Java™ Runtime Environment (JRE) implementation. If a

particular security implementation is not available, add the required libraries to the class path of the JRE that this

product uses.

The Microsoft™ .NET transport protocol does not support transactions, scopes, or duplex mode requests such as

callbacks or two-way services based on the MS-MQ transport.

Socket API performance testing overview
With HCL OneTest™ Performance Extension for Socket Protocols, you can test the performance of any application

that uses a TCP/IP socket-based protocol.

Informative performance test results rely upon sound test development. Each of the following stages contributes to

the generation of meaningful test results:

• Test creation. You create your test by recording a session with a client application. Typically, the recorded

session starts when you run the client application. You then interact with the application in order to produce

relevant network traffic, and the session ends when you close the application or end the recording. The

recording is used to generate a performance test that reproduces the behavior of the client application.

• Test editing. After recording, you can edit the events that were recorded. You can replace recorded test values

with variable test data or add dynamic data to the test.

Chapter 3. Getting Started

• Test validation. Before deploying the test, you can run the test manually as a single virtual user to make sure

that the test runs smoothly and produces the expected results in a nominal environment with minimal server

load. You might experience multiple test editing and validation cycles before your test runs as expected.

• Workload emulation with schedules. When the test runs repeatedly as anticipated, you specify an execution

schedule and user groups to emulate a workload that a large number of virtual users generates.

• Schedule execution. You run the schedule, deploying test execution over virtual users that can be hosted on

remote hosts. Each virtual user runs an instance of the test. Response time results are collected.

• Evaluation of results. You evaluate the results produced by the tests through the various reports that are

generated during execution. You can also design custom reports.

TN3270 performance testing overview
With HCL OneTest™ Performance Extension for Socket Protocols, you can test the performance of TN3270 terminal

server applications.

Informative performance test results rely on sound test development. Each of these stages contributes to the

generation of meaningful test results:

• Test creation. You create a test by recording a session with a client application. Typically, the recorded

session starts when you run the TN3270 terminal client. You then interact with the application in order to

produce relevant network traffic. The session ends when you close the terminal client or end the recording.

The recording is used to generate a performance test that reproduces the behavior of the client application.

• Test editing. After recording, you can edit the recorded events. You can replace recorded test values with

variable test data or add dynamic data to the test.

• Test validation. Before deploying the test, you can run the test manually as a single virtual user to make sure

that the test runs smoothly and produces the expected results in a nominal environment with minimal server

load. You might complete multiple test editing and validation cycles before your test is robust.

• Workload emulation with schedules. When the test runs repeatedly as anticipated, you specify an execution

schedule and user groups to emulate a workload that a large number of virtual users generates.

• Schedule execution. You run the schedule, deploying test execution over virtual users that can be hosted on

remote hosts. Each virtual user runs an instance of the test. Response time results are collected.

• Evaluation of results. You evaluate the results that the tests produce through the various reports that are

generated during execution. You can also design custom reports.

IBM® Engineering Test Management overview
IBM® Engineering Test Management is a collaborative, web-based, quality management solution that offers

comprehensive test planning, manual testing, and integration with other test tools.

Quality Manager is based on the IBM® Rational® Jazz™ platform (http://jazz.net and http://www.ibm.com/software/

rational/jazz/) and inherits many characteristics from that platform. Engineering Test Management is designed to

be used by test teams of all sizes and supports a variety of user roles, such as test manager, test architect, test lead,

tester, and lab manager, as well as roles outside the test organization.

53

HCL OneTest Performance

54

Comprehensive test planning

A test plan that you define in Engineering Test Management drives activity for distributed teams through all phases

of the project life cycle. The test plan defines the objectives and scope of the test effort and contains criteria to help

teams determine the answer to the question "Are we ready to release?"

The test plan can be configured to meet the needs of your organization. You can use the test plan to do any and all of

the following tasks:

• Define business and test objectives

• Establish a review and approval process for the test plan and for individual test cases

• Manage project requirements and test cases and establish the interdependencies between the two

• Estimate the size of the test effort

• Define the schedule for each test iteration and track the dates of other important test activities

• List the various environments to be tested and generate test configurations

• Create a read-only snapshot of the test plan at a particular point in time

• Define quality goals, entrance criteria, and exit criteria

• Create and manage test cases

Test script construction, execution, and reuse

Engineering Test Management provides a full-featured manual test editor. You can also import manual test scripts

from IBM® Rational® Manual Tester. You can add reuse and automation capabilities to your manual tests by using

keywords.

With Engineering Test Management, you can manage and execute test scripts that are created with tools such as HCL

OneTest™ Performance and IBM® Security AppScan® Tester Edition.

You can also import test artifacts from external test management solutions, such as IBM® Rational® ClearQuest®

Test Manager and IBM® Rational® Test Manager.

Test analysis and reporting

Engineering Test Management includes several standard test reports to help you evaluate test results. Reports are

available during all phases of the test process.

You can use reports to perform these tasks:

• Determine the validity of a test run.

• Check feature coverage against test plans, test inputs, configurations, and so on. This can also be used to

measure test progress and to analyze trends.

• Run a gap analysis to measure the resources needed to do your testing versus the resources that are available

Chapter 3. Getting Started

Team collaboration

Engineering Test Management makes it easy to share information with other members of your team. With the

Jazz-based work-item system, team members can assign tasks and defects to each other and to view everyone's

status. Test plan authors and test case designers can distribute their work for review and track the status of each

reviewer. New and changed requirements are visible to the team, as are the test cases that are needed to satisfy

those requirements. Team members are notified automatically of any changes and milestones that impact their work.

Lab management

With Engineering Test Management lab management capabilities, you can create requests for the test environments

that your test plan specifies. You can then work with the lab manager to ensure that lab resources and test

environments are available when needed. Lab managers can track all lab resources from a centralized resource

repository and fulfill requests from the test team.

Web application security

Engineering Test Management helps IT and security professionals protect against the threat of attacks and security

breaches through its integration with IBM® Security AppScan® Tester Edition. Security testing for your web

applications can result in higher-quality, more secure applications at a reasonable cost.

Governance

Engineering Test Management helps ensure that your business processes comply with industry, corporate, and

departmental standards and regulations. Throughout the testing life cycle, Engineering Test Management provides

you with the tools to obtain an up-to-the-minute measurement of software quality and project metrics. With its

comprehensive test plan and integration with requirements management and defect tracking tools, Engineering Test

Management helps streamline your test strategy and produce reliable records of test results and project history.

Streamlined Eclipse and full Eclipse overview
When you work in the streamlined Eclipse mode, only those functions that are directly related to the product are

enabled in the workbench. When you install the product, by default, the check box to use the streamlined Eclipse

mode is selected. With the full Eclipse mode, you have access to all Eclipse functions.

The streamlined Eclipse mode disables options from the menus that are not typically used during testing. Both the

fully-enabled and streamlined Eclipse modes can operate using the same workspace, so if you start the product in

the streamlined mode and discover that you cannot accomplish all of your tasks, you can close the workbench and

restart it in the full Eclipse mode.

The choice of the mode in which to start the product depends on the user's activity and objectives. The streamlined

mode is designed for straightforward testing and shows only those menu items that are related to testing. However,

this restricts functions. The following list includes use cases where the full Eclipse mode might be preferred:

55

HCL OneTest Performance

56

• You have multiple products installed and you want to use them in the same session.

• You are using the profiling and logging features. The profiling and logging view is not available in the

streamlined mode.

• You are using advanced features of custom code including debugging custom code. For more information on

custom code, see Extending test execution with custom code on page .

Starting HCL OneTest™ Performance in full Eclipse mode
You can start the product in the full Eclipse mode to continue to use native Eclipse features along with HCL OneTest™

Performance.

Before you begin

You must have installed HCL OneTest™ Performance.

1. Click Start > HCL > HCL OneTest Performance - Full Eclipse.

2. Perform the following steps to select a working directory, if you are starting the installation of HCL OneTest™

Performance for the first time.

a. Enter the path of a working directory in the Workspace field or click Browse to select the directory.

b. Select Use this as the default and do not ask again to make this your default workspace.

You can change your workspace from HCL OneTest™ Performance by clicking File > Switch

Workspace.

3. Click OK.

Results

You have started HCL OneTest™ Performance in full Eclipse mode.

Starting HCL OneTest™ Performance in streamlined Eclipse mode
If you do not want to view native Eclipse UI, you can start HCL OneTest™ Performance in streamlined mode.

Before you begin

You must have installed HCL OneTest™ Performance.

Note: To start HCL OneTest™ Performance in the streamlined mode, the streamlined mode must be installed

as an optional feature. It is automatically selected during the installation process.

1. Click Start > HCL > HCL OneTest Performance.

2. Perform the following steps to select a working directory, if you are starting the installation of HCL OneTest™

Performance for the first time.

../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html

Chapter 3. Getting Started

a. Enter the path of a working directory in the Workspace field or click Browse to select the directory.

b. Select Use this as the default and do not ask again to make this your default workspace.

You can change your workspace from HCL OneTest™ Performance by clicking File > Switch

Workspace.

3. Click OK.

Results

You have started HCL OneTest™ Performance in streamlined Eclipse mode.

57

58

Chapter 4. Tutorials
This section contains the tutorials which explains the main features of HCL OneTest™ Performance.

You can find the following information:

• Performance test a Web application on page 58

• Performance test an SAP application on page 66

• Performance test a Citrix application on page 72

Performance test a Web application
The movies in this tutorial show you the main features of HCL OneTest™ Performance. The tutorial requires Flash

Player to view.

Learning objectives
You will learn how to perform the following tasks:

• Record user actions to create a test

• Create a schedule, which enables you to run multiple tests and control how they run

• Run the schedule

• Analyze the results from the schedule run

Time required
45 minutes

Introduction: Test a Web application
This tutorial is designed to introduce you to testing.

Learning objectives
The tutorial is divided into six modules, each with its own learning objectives. You will learn to:

• Record a user actions to create a test

• Create a schedule, which enables you to run multiple tests and control how they run.

• Analyze the results from the schedule run

Time required
This tutorial should take approximately 45 minutes to finish. If you explore other concepts related to this tutorial, it

could take longer to complete.

Skill level
Beginner

Chapter 4. Tutorials

Prerequisites
This tutorial assumes that you are familiar with using the perspectives and views in the HCL OneTest™ Performance

Software Delivery Platform.

Module 1: Creating projects and recording user actions
Learn how to create projects and record user actions for testing. The second part of this module will help you to build

an understanding of a recorded test.

Learning objectives
After completing the lessons in this module, you will know how to do the following tasks and understand the

associated concepts:

• Create a project

• Record a test of user interactions

• View a test in the test editor

Time required
This module requires approximately 8 minutes to complete.

Lesson 1.1: Recording a test
In this lesson, you will learn how to create a project and record user actions. Note that the server under test in this

Watch and Learn tutorial is not publicly available.

About this task

See video

Lesson 1.2: Understanding a recorded test
In this lesson, you will become familiar with your recorded test.

About this task

See video

Module 1 summary
In this tutorial module, you learned how to create projects and record user actions for testing

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Creating a project is the first step in testing

• Associating elements of the project, such as the tests, with the project

• Recording the actions of your users

• Identifying the components of a recorded test

59

HCL OneTest Performance

60

Related information

Recording HTTP tests on page 335

Editing HTTP tests on page 445

Module 2: Editing a test
See how to edit your recorded test to include variable data using datasets and verification points.

Learning objectives
After completing the lessons in this module, you will know how to do the following tasks and understand the

associated concepts:

• Enable a verification point

• Create a dataset

• Use a dataset in a test

Time required
This module requires approximately 8 minutes to complete.

Lesson 2.1: Enabling a verification point
In this lesson, you will learn how to add verification points to a test. Verification points check whether the expected

behavior actually occurs during a run.

About this task

See video

Lesson 2.2: Creating a dataset
In this lesson, you will learn how to create a dataset, which enables you to vary the values from what you recorded in

the test.

About this task

See video

Lesson 2.3: Using a dataset in a test
In this lesson, you will learn how to enable your test to use a dataset.

About this task

See video

Chapter 4. Tutorials

Module 2 summary
In this tutorial module, you learned how to use variable data to edit and manage testing situations.

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Adding verification points to check whether an expected behavior occurs during a test run

• Enabling datasets to provide substitute variable data for the fixed values stored in the recorded test

• Importing data that is contained in a comma-separated-value (CSV) file

• Updating your test with a reference to the dataset so that the test can use variables from a dataset during a

run

Related information

Providing tests with variable data on page

Module 3: Validating a test with a single user
Watch a demonstration on running a single-user test for debugging and getting dataset values to work properly.

Learning objectives
After completing the lessons in this module, you will know how to do the following tasks and understand the

associated concepts:

• Run a test with a single user

• View the test log

Time required
This module requires approximately 5 minutes to complete.

Lesson 3.1: Running a test with a single user
In this lesson, you will learn how to run a test with a single user, to ensure that your test and the dataset values are

working properly.

About this task

See video

Lesson 3.2: Viewing the test log
In this lesson, you will learn how to open the test log and view a record of all the events that occurred during your test

run or schedule run.

About this task

61

../topics/tvardata.html
../topics/tvardata.html
../topics/tvardata.html
../topics/tvardata.html

HCL OneTest Performance

62

See video

Module 3 summary
In this tutorial module, you learned how to run a test with a single user and view the test log.

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Viewing changes in the reports while the schedule is running

• Running a test locally with one user

• Running a schedule with a default launch configuration

Related information

Viewing test logs on page

Module 4: Representing workloads
View how to create schedules that represent a typical workload for your site.

Learning objectives
After completing the lessons in this module, you will understand how to do the following tasks and understand the

associated concepts:

• Create a schedule and add user groups

• Add loops to a schedule

• Add tests to a schedule

• Display your assets by type or in alphabetical order.

• Enable resource monitoring

Time required
This module requires approximately 10 minutes to complete.

Lesson 4.1: Controlling test execution with a schedule
In this lesson, you will learn how to control test execution by creating a schedule and adding user groups, loops, and

tests to the schedule. At the end of the lesson, you will learn how to display your assets in a logical order.

About this task

See video

Lesson 4.2: Enabling resource monitoring
In this lesson, you will learn how to enable resource monitoring in a schedule and to add data sources.

../topics/topenexechist_perf.html
../topics/topenexechist_perf.html
../topics/topenexechist_perf.html
../topics/topenexechist_perf.html

Chapter 4. Tutorials

About this task

See video

Module 4 summary
In this tutorial module, you learned how to represent a workload accurately by creating a schedule and adding user

groups, tests, and other elements to it.

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Grouping tests in a logical order with user groups

• Adding a loop to a schedule to repeat a test for a number of iterations and set the test run rate

• Adding a test to a schedule to emulate accurately the actions of individual users

• Displaying your assets by type or in the default alphabetical order.

• Monitoring resources to capture system resource data, such as processor or memory usage

Related information

Emulating workloads on page 694

Monitoring resource data on page 743

Module 5: Running the test
Become familiar with configuring a schedule, running a schedule, and adding virtual users during a test run.

Learning objectives
After completing the lessons in this module, you will know how to do the following tasks and understand the

associated concepts:

• Configure and run the schedule

• View the report

• Add virtual users during a run

Time required
This module requires approximately 10 minutes to complete.

Lesson 5.1: Configuring the schedule
In this lesson, you will learn how to set up a schedule configuration, which controls where the execution results are

stored.

About this task

See video

63

HCL OneTest Performance

64

Lesson 5.2: Running the schedule and viewing the reports
In this lesson, you will learn how to run the schedule.

About this task

See video

Lesson 5.3: Adding virtual users during a run
In this lesson, you will learn how to increase the number of virtual users during a schedule run.

About this task

See video

Module 5 summary
In this tutorial module, you learned how to configure and run a schedule, and add virtual users to the schedule during

a run.

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Specifying the name and location for your execution results by configuring the schedule

• Running a schedule and viewing the reports

• Increasing the number of virtual users in a schedule during the test run

Related information

Running schedules on page 783

Setting a launch configuration on page 795

Changing the number of virtual users during a run on page 828

Module 6: Evaluating results
Learn how to retrieve stored test results in reports, customize a report, and get detailed information on an event that

occurred in a test.

Learning objectives
After completing the lessons in this module, you will know how to do the following tasks and understand the

associated concepts:

• Review reports after the schedule has run

• View the verification report

• Customize and compare reports.

Chapter 4. Tutorials

Time required
This module requires approximately 5 minutes to complete.

Lesson 6.1: Viewing verification point status
In this lesson, you will learn how to view the status of the verification points that you set in the test.

About this task

See video

Lesson 6.2: Customizing and comparing reports
In this lesson, you will learn how to customize reports to investigate a specific performance problem in more detail

than that provided in the default reports. You will also learn how to compare two reports.

About this task

See video

Module 6 summary
In this tutorial module, you learned how to retrieve stored test results in reports, customize a report, and get detailed

information on an event that occurred in a test.

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Evaluating the results that are generated dynamically during a run

• Regenerating the results for viewing and analysis after a run

• Customizing and comparing reports

Related information

Customizing reports on page 975

Summary
This tutorial has taught you the basics of HCL OneTest™ Performance. You have learned how this product provides

the following functions and features:

• Ease of recording

• A graphical test editor for programmers and nonprogrammers alike

• Datasets to supply realistic test data

• Real-time reporting of response time

65

HCL OneTest Performance

66

Lessons learned
After completing all of the modules, you should now be able to perform the following tasks:

• Create projects and record user actions

• Edit and manage variable data using datasets

• Represent workloads

• Run schedules

• View reports

• Add virtual users

• Retrieve reports from previous runs and customize them

Performance test an SAP application
The movies in this tutorial show you the main features of HCL OneTest™ Performance for testing applications on SAP

servers. The tutorial requires Flash Player to view.

Learning objectives
You will learn how to perform the following tasks:

• Record a test for SAP

• Create a multi-user schedule

• Analyze SAP test results

45 minutes

Introduction: Performance test SAP solutions
This tutorial introduces you to performance testing applications running on SAP servers.

Learning objectives
The tutorial is divided into six modules, each with its own learning objectives. You will learn to perform the following

tasks:

• Record an SAP test

• Create a multi-user schedule

• Analyze SAP test results

This tutorial requires approximately 45 minutes to finish. If you explore other concepts related to this tutorial, it might

take longer to complete.

Skill level
Beginner

Chapter 4. Tutorials

Prerequisites
To complete this tutorial, you need to be familiar with using the perspectives and views in HCL OneTest™

Performance Software Development Platform, with SAP, and with the SAP GUI environment.

Module 1: Creating projects and recording user actions
In this module, you will learn how to create projects and record user actions for testing. The second part of this

module will help you understand a recorded test.

Learning objectives
After completing the lessons in this module, you will know how to do the following tasks and understand the

associated concepts:

• Create a test project

• Record a test of user interactions

• View a test in the test editor

This module requires approximately 8 minutes to complete.

Lesson 1.1: Recording an SAP test
In this lesson, learn how to create a test project and record user actions in the SAP GUI client.

About this task

The most convenient way to create a test in HCL OneTest™ Performance is to record an SAP session. The recording

contains SAP events that are transmitted between the SAP GUI client and SAP server.

For each SAP transaction, the recorder logs all the SAP events that occur in the SAP GUI and generates a test that can

reproduce the sequence of events in the SAP GUI.

For SAP recording tips, see SAP performance testing guidelines on page 362.

See video

Lesson 1.2: Understanding a recorded test
In this lesson, become familiar with your recorded test.

About this task

With the test editor, you can edit and view the elements that constitute your SAP performance test.

The left pane of the editor displays the structure of the test as a sequence of SAP transactions, which contain

the recorded SAP Set, Get, and Call events. You can add elements to this sequence, such as transactions, loops,

conditions, synchronization points, or comments. However, if you change the structure of the test, you must ensure

that the SAP Set events are always applicable to the situation on the SAP GUI screen.

67

HCL OneTest Performance

68

The right pane displays details about the current test element.

See video

Lesson 1.3: Creating an SAP batch input test
In this lesson, learn how record a batch input test for generating a load on the SAP server.

About this task

With SAP batch input tests, you can generate a load on the server without requiring that each virtual tester run the

SAP GUI client. For performance testing, this is particularly useful because the test computer can typically simulate a

much larger number of users with batch input virtual testers than with SAP GUI virtual testers.

However, SAP batch input tests cannot contain verification points and do not produce performance results by

themselves. Therefore, you typically use batch input tests in a schedule mixed with SAP GUI tests to increase the load

on the server. The actual test results are produced by the SAP GUI tests.

See video

Module 1 summary

In this module, you learned how to create projects and record user actions for testing.

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Creating a project is the first step in performance testing

• Associating elements of the project, such as tests, with the project

• Recording the actions of your users in a test and a batch input test

• Identifying the components of a recorded test

Module 2: Editing an SAP test
In this module, you will see how to edit your recorded test to include variable data using datasets and verification

points.

Learning objectives
After completing the lessons in this module, you will know how to do the following tasks and understand the

associated concepts:

• Add a verification point

• Create a dataset

• Use a dataset in a test

This module requires approximately 8 minutes to complete.

Chapter 4. Tutorials

Lesson 2.1: Adding verification points
In this lesson, learn how to add verification points to check whether an expected behavior occurs during a run.

About this task

With verification points, you can verify the behavior of the SAP application during a test. For example, you can use

verification points to ensure that a particular transaction returns the expected result in any graphical element of the

SAP GUI screen. You can also use regular expressions and you can search for the occurrence of an expected string in

a list.

Each verification point returns a Pass, Fail or Inconclusive verdict in the test log. You can view a summary of

verification point verdicts in the verification point report after running the test.

See video

Lesson 2.2: Creating and using datasets
In this lesson, learn how to create a dataset that can provide tests with variable data and how to enable your test to

use a dataset during a run.

About this task

Datasets provide tests with variable data during a run. When you record a test, you perform a sequence of steps

that you expect a typical user to perform. From the recording, a test is generated that exactly reproduces these

interactions. During a run, this test uses the same data that you used during recording. To vary the data in the test,

you use a dataset, which is typically a table that contains variable data. At run time, this variable data is substituted

for the data in the recorded test.

See video

Module 2 summary
In this module, you learned how to use variable data to edit and manage testing situations.

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Adding verification points to check whether an expected behavior occurs during a test run

• Enabling datasets to provide substitute variable data for the fixed values stored in the recorded test

• Importing data that is contained in a comma-separated-value (CSV) file

• Updating your test with a reference to the dataset so that the test can use variables from a dataset during a

run

Module 3: Running tests
In this module, you will see how to create schedules that represent a typical workload for your SAP server.

69

HCL OneTest Performance

70

Learning objectives
After completing the lessons in this module, you will understand how to do the following tasks and understand the

associated concepts:

• Create a schedule and add user groups

• Add loops to a schedule

• Add tests to a schedule

This module requires approximately 10 minutes to complete.

Lesson 3.1: Running a single test and viewing the test log
In this lesson, learn how to validate a test by running it with a single user and viewing the results in the test log.

About this task

Before deploying a full emulated workload test with a schedule, ensure that your test runs adequately with a single

user. Developing a performance test often requires several iterations of editing the test and validating changes with a

single user run.

See video

Lesson 3.2: Creating a schedule and adding user groups
In this lesson, learn how to control test execution by creating a schedule and adding user groups.

About this task

A schedule can be as simple as one virtual user running one test, or as complicated as hundreds of virtual users in

different groups, each running different tests at different times.

A schedule is the "engine" that runs a test. You add user groups, tests, and other items to the schedule to emulate

a workload. However, schedules are much more than simple vehicles for running tests. For example, you can use a

schedule to control tests in the following ways:

• Group tests under user groups to emulate the actions of different types of users.

• Set the order in which tests run: sequentially, randomly, or in a weighted order.

• Set the number of times that each test runs.

• Run tests at a certain rate.

• Run tests for a certain time and increase or decrease virtual users during the run.

See video

Lesson 3.3: Running the schedule and viewing the performance report
In this lesson, learn how to run a schedule in a custom run configuration and to view the results in the SAP

performance report.

Chapter 4. Tutorials

About this task

After you have validated your individual tests and added them to a schedule, you are ready to deploy the schedule and

run the virtual users on remote computers. By using remote computers, you can multiply the number of virtual users

to simulate a real work load. During the run, you can monitor the behavior of each virtual user.

When the test is finished, you can view the performance report to help locate bottlenecks in your SAP environment.

See video

Module 3 summary
In this module, you learned how represent a workload accurately by creating a schedule and adding user groups,

tests, and other elements to it.

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Grouping tests in a logical order with user groups

• Adding a test to a schedule to emulate accurately the actions of individual users

• Adding a loop to a schedule to repeat a test for a number of iterations and set the test run rate

Summary
This tutorial introduced you the basics of the HCL OneTest™ Performance Extension for SAP Solutions. You have

learned how this product provides the following functions and features:

• Ease of recording

• A graphical test editor for programmers and nonprogrammers alike

• Datasets to supply realistic test data

• Real-time reporting of response time

Lessons learned
After completing all of the modules, you can perform the following tasks:

• Create projects and record user actions

• Edit and manage variable data using datasets

• Represent workloads

• Run schedules

• View reports

• Add virtual users

• Retrieve reports from previous runs

71

HCL OneTest Performance

72

Performance test a Citrix application
The movies in this tutorial show you the main features of using HCL OneTest™ Performance for testing applications

running in a Citrix XenApp environment. The tutorial requires Flash Player to view.

Learning objectives
You will learn how to perform the following tasks:

• Record a test for Citrix

• Create a multi-user schedule

• Analyze Citrix test results

45 minutes

Introduction: Performance test Citrix applications
This tutorial is designed to introduce you to performance testing applications running on Citrix XenApp.

Learning objectives
The tutorial is divided into five modules, each with its own learning objectives. You will learn to perform the following

tasks:

• Record a Citrix test

• Create a multi-user schedule

• Analyze Citrix test results

This tutorial requires approximately 45 minutes to finish. If you explore other concepts related to this tutorial, it might

take longer to complete.

Skill level
Beginner

Prerequisites
To complete this tutorial, you need to be familiar with using the perspectives and views in the HCL OneTest™

Performance Software Development Platform and with Citrix XenApp.

Module 1: Creating projects and recording user actions
In this module, you will learn how to create projects and record user actions for testing. The second part of this

module will help you to build an understanding of a recorded test.

Learning objectives
After completing the lessons in this module, you will know how to do the following tasks and understand the

associated concepts:

Chapter 4. Tutorials

• Create a project

• Record a test of user interactions

• View a test in the test editor

This module requires approximately 8 minutes to complete.

Lesson 1.1: Recording a Citrix performance test
In this lesson, you learn how to create a test project and record user actions in Citrix XenApp.

About this task

The most convenient way to create a new test in HCL OneTest™ Performance is to record a Citrix session. The

recording contains mouse and key strokes as user input actions and window events as responses from the Citrix

server.

Because of the way the recorder works, consider these issues during the recording:

• Set up your application so that all actions are repeatable. For example, turn off "tips of the day," ensure

that any file already existswarnings are consistent, and avoid using dynamic menu items such as recent

documents.

• Ensure that mouse movements are clearly decomposed. The recorder does not record mouse wheel scrolls.

• Use specific Microsoft® Windows® accounts for performance testing that have limited potential for data loss

if there are errors or synchronization failures during the test run.

For more Citrix recording tips, see Citrix performance testing guidelines on page 379.

The recorder synchronizes user actions and window events automatically so that the generated test waits for a

window event before triggering the next user input. In some cases, however, you must manually add synchronizations.

For example, add synchronizations when screen updates do not result directly from a user action. These

synchronizations tell the test to wait for a specific window, text, or graphic to open on the screen before running the

next user input.

See video

Lesson 1.2: Understanding a recorded test
In this lesson, you become familiar with your recorded test.

About this task

With the test editor, you can edit and view the elements that constitute your Citrix performance test.

The left pane of the editor displays the structure of the test as a sequence of input actions and window events. You

can add elements to this sequence, such as transactions, loops, conditions, synchronization points, and comments.

However, if you change the structure of the test, you must ensure that the input actions always apply to the context of

the actual Citrix screen.

73

HCL OneTest Performance

74

The right pane displays details about the current test element.

See video

Module 1 summary

In this module, you learned how to create projects and record user actions for testing.

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Creating a project is the first step in performance testing.

• Associating elements of the project, such as tests, with the project.

• Recording the actions of your users in a test.

• Identifying the components of a recorded test.

Module 2: Editing a Citrix performance test
In this module, you will see how to edit your recorded test to include verification points and response time

measurements.

Learning objectives
After completing the lessons in this module, you will know how to do the following tasks and understand the

associated concepts:

• Enable a verification point

• Create a response time measurement

This module requires approximately 8 minutes to complete.

Lesson 2.1: Enabling verification points
In this lesson, learn how to add verification points to check whether an expected behavior occurs during a run.

About this task

With verification points, you can test the behavior of the application during a test. For example, you can use

verification points to ensure that a particular window is displayed after a specific action or that a portion of the screen

graphically matches an expected bitmap.

Each verification point returns a Pass, Fail, or Inconclusive verdict in the test log. You can view a summary of

verification point verdicts in the verification point report after running the test.

In Citrix tests you can also use optical character recognition (OCR) on a screen capture to check for text content.

See video

Chapter 4. Tutorials

Lesson 2.2: Creating a response time measurement
In this lesson, learn how to create a response time measurement that can record the time that the application spends

processing an event.

About this task

Response time measurements report how fast the application responds to a specific user input event. Typically,

response time measurements are automatically created between a user input action and the window event that

occurs immediately after.

In addition, you can manually add your own response time measurements, for example to record a global response

time that covers multiple window events.

See video

Module 2 summary
In this module, you learned how to use verification points and response time measurements to evaluate server

response.

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Adding verification points to check whether an expected behavior occurs during a test run

• Setting up timers inside the test to measure response times

Module 3: Representing workloads
In this module, you will see how to create schedules that represent a typical workload for your Citrix server.

Learning objectives
After completing the lessons in this module, you will understand how to do the following tasks and understand the

associated concepts:

• Run individual validation tests

• Create a schedule and add user groups

• Add loops to a schedule

• Add tests to a schedule

• Run schedules using a run configuration

• View results in the test log and the Citrix performance report

This module requires approximately 20 minutes to complete.

75

HCL OneTest Performance

76

Lesson 3.1: Running a single test and viewing the test log
In this lesson, learn how to validate a test by running it with a single user and viewing the results in the test log.

About this task

Before you deploy a full emulated workload test with a schedule, ensure that your test runs adequately with a single

user. Developing a performance test often requires several iterations of editing the test and validating changes with a

single user run.

See video

Lesson 3.2: Creating a schedule and adding user groups
In this lesson, learn how to control test execution by creating a schedule and adding user groups.

About this task

A schedule can be as simple as one virtual user running one test, or as complicated as hundreds of virtual users in

different groups, each running different tests at different times.

A schedule is the "engine" that runs a test. You add user groups, tests, and other items to the schedule to emulate

a workload. However, schedules are much more than simple vehicles for running tests. For example, you can use a

schedule to control tests in the following ways:

• Group tests under user groups to emulate the actions of different types of users.

• Set the order in which tests run: sequentially, randomly, or in a weighted order.

• Set the number of times that each test runs.

• Run tests at a certain rate.

• Run tests for a certain time, and increase or decrease virtual users during the run

See video

Lesson 3.3: Running the schedule and viewing the performance report
In this lesson, learn how to run a schedule in a custom run configuration and to view the results in the performance

report.

About this task

After you have validated your individual tests and added them to a schedule, you are ready to deploy the schedule and

run the virtual users on remote computers. By using remote computers, you can multiply the number of virtual users

to simulate a real work load. During the run, you can monitor the behavior of each virtual user.

When the test is finished, you can view the performance report to help locate bottlenecks in your Citrix environment.

See video

Chapter 4. Tutorials

Module 3 summary
In this module, you learned how represent a workload accurately by creating a schedule and adding user groups,

tests, and other elements to it.

Lessons learned
By completing this module, you learned about the following concepts and tasks:

• Running a test locally with one user

• Viewing changes in the reports while the schedule is running

• Grouping tests in a logical order with user groups

• Adding a test to a schedule to emulate accurately the actions of individual users

• Adding a loop to a schedule to repeat a test for a number of iterations and set the test run rate

• Running a schedule with a default run configuration

Summary
This tutorial has taught you the basics of the HCL OneTest™ Performance Extension for Citrix Presentation Server. You

have learned how this product provides the following functions and features:

• Ease of recording

• A graphical test editor for programmers and nonprogrammers

• Real-time reporting of response time

Lessons learned
After completing all of the modules, you can now perform the following tasks:

• Create projects and record user actions

• Represent workloads

• Run schedules

• View reports

• Add virtual users

• Retrieve reports from previous runs

77

78

Chapter 5. Samples
This section describes about the sample project which can be used with HCL OneTest™ Performance to test the

functionality of an application.

Installation tuning tests for WebSphere® Application Server
The installation tuning tests were created to quickly and conveniently apply load to an application server for the

purpose of tuning the application server for maximum throughput. The three tests that are provided stress various

parts of the application server.

Time required to import sample project: 5 minutes

The installation tuning tests are designed to test IBM® WebSphere® Application Server Version 7. Each test has

different requirements that must be met before you run the test.

• The Schedule_Snoop test is ready to use with any WebSphere® Application Server installation.

• The "Schedule_Plants: PlantsByWebSphere" sample application must be installed. The sample application is

provided with WebSphere® Application Server, but its installation is optional.

• The Schedule_Daytrader test application is freely available from the Apache project Geronimo. Daytrader

requires access to an IBM DB2 database.

Best results can be achieved for all tests by using one or more separate, dedicated computers to provide the greatest

possible loads on the application server. When testing a large WebSphere® Application Server application, a single

computer that runs HCL OneTest™ Performance and provides a load on the application might not provide sufficient

stress to test the application.

An installation tuning test is designed to stress your application server to achieve maximum throughput from

basic tuning. Tuning is a complex procedure with many possible adjustments available according to the varying

requirements of the application that you plan to run. For more information on tuning WebSphere® Application Server,

see http://www.ibm.com/developerworks/websphere/techjournal/0909_blythe/0909_blythe.html.

A simple goal when you run the installation tuning tests is to achieve the highest percentage of CPU utilization on the

application server while the test runs. Follow these guidelines as you run each test:

• Use Task Manager, vmstat, or a similar tool to observe CPU utilization on the computer that runs the

application server. With maximum throughput as a goal, you work to achieve the highest CPU percentage

possible. To achieve maximum throughput, this number must increase as you make tuning adjustments.

• Monitor the CPU utilization of the computer that runs HCL OneTest™ Performance. If CPU utilization exceeds

70%, you might be approaching the limits of what that computer can provide. However, HCL OneTest™

Performance supports using multiple computers to achieve an even greater load.

• Because these tests provide high throughput, the tests might exceed the capabilities of your network. A tool

such as Task Manager can show network utilization. If you are limited by a 100 Mbps network, access to a

1000 Mbps network might be required to fully stress the application server.

http://www.ibm.com/developerworks/websphere/techjournal/0909_blythe/0909_blythe.html

Chapter 5. Samples

Related information

Installing the assets for tuning tests on page 79

Testing with the Snoop test on page 79

Testing the Daytrader application on page 80

Testing the PlantsByWebSphere application on page 79

Installing the assets for tuning tests
HCL OneTest™ Performance provides Installation Tuning Tests for WebSphere Application Server as a sample project

that you can import into your workspace.

1. Right-click on Installation Tuning Tests for WebSphere Application Server and save the sample project.

Note: After saving, import the sample project in Eclipse. To import the sample, click File > Import >

Existing projects into workspace > Select archive file and select the downloaded sample project file.

2. Click Finish. If you are asked to switch to the Performance Test Perspective, click Yes.

What to do next

Expand the sample in the Test Navigator view to open the project and explore the resources and reports.

Testing with the Snoop test
The Snoop test stresses the servlet engine of IBM® WebSphere® Application Server.

Snoop is an application that is provided with all WebSphere® Application Server installations. This exercises only a

small, direct portion of the application server. The Plants test is more complex than the Snoop test.

1. Select Snoop in the Test Project to open it in the editor.

2. Open Test Variables.

3. In hostname enter the name of the WebSphere® Application Server to stress test.

4. Select Schedule_Snoop in the Test Project to open the test in the editor.

5. Click Run to start the test. The test runs for approximately 5 minutes.

Testing the PlantsByWebSphere application
The Plants test provides load using the PlantsByWebSphere application.

This application is provided with IBM® WebSphere® Application Server, but it must by installed. Use the WebSphere

Administrative console to ensure that the PlantsByWebSphere application is installed and running.

The Plants test is more complex than the Snoop test, because the test exercises more parts of the application server.

79

docs/install/RPTWebSphereTests.zip

HCL OneTest Performance

80

1. Select Plants in the Test Project to open the test in the editor.

2. Open Test Variables.

3. In hostname enter the name of the WebSphere® Application Server to stress test.

4. Select Schedule_Plants in the Test Project to open it in the editor.

5. Click Run to start the test. The test runs for approximately 5 minutes.

Testing the Daytrader application
The Daytrader test provides a load using the Daytrader application.

This application is available at http://geronimo.apache.org/GMOxDOC30/daytrader-a-more-complex-application.html.

1. Click Daytrader in the Test Project to open the application in the editor.

2. Open the Test Variables.

3. Change the hostname variable to the name of the IBM® WebSphere® Application Server to stress test.

4. Select Schedule_Daytrader in the Test Project to open the schedule in the editor.

5. Click Run to start the test. The test runs for approximately 5 minutes.

On the Daytrader application configuration page, you can change the configuration from Enterprise JavaBeans (EJB)

to Java Database Connectivity (JDBC). Run the Daytrader test in both modes to obtain the widest possible coverage.

http://geronimo.apache.org/GMOxDOC30/daytrader-a-more-complex-application.html

Chapter 6. Administrator Guide
This guide describes how to install HCL OneTest™ Performance. After you install the product, you can perform

administration tasks such as license configuration and integration with other products. This guide is intended for

administrators.

Installation of HCL OneTest™ Performance
Installation of the product involves verifying requirements, planning, managing licenses, and configuring web-based

help. This section lists all such topics.

This installation guide covers two independent products: HCL OneTest™ Performance and the HCL OneTest™

Performance Agent. The HCL OneTest™ Performance Agent is a tool that you use with HCL OneTest™ Performance. It

is included as part of the HCL OneTest™ Performance product kit.

HCL OneTest™ Performance Agent consists of two capabilities:

• Generate load for the application under test by using the virtual users. You can increase the load generation

capacity by installing additional agents on remote computers.

• Gather data for the Response Time Breakdown feature and in support of the startup and control of web

services stubs in the SOA protocol.

Note: The HCL OneTest™ Performance and HCL OneTest™ Performance Agent are separate offerings and

must be installed separately.

Installation requirements
Installation requires the correct hardware, software, server environment, operating systems, and user privileges for

installing and running your software.

Hardware and Software requirements

Before you install the product, verify that your system meets the hardware and software requirements.

For information about hardware and software compatibility, see System Requirements on page 18.

User privileges requirements

You must have a user ID that meets the following requirements to install HCL OneTest™ Performance and HCL

OneTest™ Performance Agent.

Notes:

81

HCL OneTest Performance

82

• Your user ID must not contain double-byte characters.

• For Windows operating system, you must have a user ID that belongs to the Administrators group.

• For Linux operating system, you must be able to log in as root.

Installation conventions and terminology
Understanding these terms and conventions can help you take full advantage of the installation information and your

product.

The following conventions are used in this installation information:

• The default installation directory is written as C:\installation_directory\product\inst.file.

• The default log location for installation information is C:\log_file_dir\log.txt.

These terms are used in the installation topics.

Installation directory

The location of product artifacts after the package is installed.

Package

An installable unit of a software product. Software product packages are separately installable units

that can operate independently from other packages of that software product.

Package group

A package group is a directory in which different product packages share resources with other

packages in the same group. When you install a package using Installation Manager, you can create

a new package group or install the packages into an existing package group. Eclipse-based packages

installed in the same package group are able to use the shell-sharing features of Eclipse. Some

packages cannot share a package group, in which case the option to use an existing package group is

unavailable.

Repository

A storage area for installable software packages. A repository can be disc media, a folder on a local

hard disk, or a server or web location.

Shared directory

In some instances, product packages can share resources. These resources are located in a directory

that the packages share.

Installation Manager overview
Installation Manager is a program for installing, updating, and modifying packages. It helps you to manage the

applications or packages that it installs on your computer. Installation Manager also helps you to keep track of what

you have installed, determine what is available for you to install, and to organize installation directories.

Chapter 6. Administrator Guide

Installation Manager provides features that help you keep packages up to date, modify packages, manage the

licenses for your packages, and uninstall packages.

Installation Manager includes six wizards that make it easy to maintain packages:

• The Install wizard walks you through the installation process. You can install a package by simply accepting

the defaults or you can modify the default settings to create a custom installation. Before you install, you get

a complete summary of your selections throughout the wizard. Using the wizard you can install one or more

packages at one time.

• The Update wizard searches for available updates to packages that you have installed. An update might

be a released fix, a new feature, or a new version of the product. Details of the contents of the update are

provided in the wizard. You can choose whether to apply an update. The Update wizard searches connected

repositories for updates. If you are not connected to the Internet, you may not see newly available updates

for your installed products. To apply an update to a computer that is not connected to the Internet, you must

download the update and extract it to a local repository.

• The Modify wizard helps you modify certain elements of a package that you have already installed. During

the first installation of the package, you select the features that you want to install. Later, if you require other

features, you can use the modify packages wizard to add them to your package. You can also remove features

and add or remove languages.

• The Manage Licenses wizard helps you set up the licenses for your packages. Use this wizard to change your

trial license to a full license, to set up your servers for floating licenses, and to select which type of license to

use for each package. HCL OneTest™ Performance Rational® Service Tester for SOA Quality requires runtime

floating license keys to run tests with multiple virtual users and to use product extensions such as protocols.

Runtime floating license keys are not managed using Installation Manager. Use the License Key Administrator

program, installed with the Rational® License Server, to manage runtime floating license keys.

• The Roll Back wizard helps you to revert to a previous version of a package.

• The Uninstall wizard removes a package from your computer. You can uninstall more than one package at a

time.

Installation locations
Installation Manager retrieves product packages from specified repositories and installs the products into selected

locations, which are referred to as package groups.

Package groups

During installation, you specify a package group into which to install a product.

• A package group represents a directory in which products share resources.

• When you install a product by using Installation Manager, you either create a package group or install the

product into an existing package group. A new package group is assigned a name automatically; however, you

choose the installation directory for the package group.

• After you create a package group you cannot change the installation directory. The installation directory

contains files and resources that are shared by the products that are installed into that package group.

83

HCL OneTest Performance

84

• Product resources that are designed to be shared with other packages are installed in the shared resources

directory. Not all products can share a package group, in which case the option to use an existing package

group is disabled.

• When you install multiple products at the same time, all products are installed into the same package group.

Shared resources directory

The shared resources directory is where product resources are installed so that they can be used by multiple product

package groups. You define the shared resources directory the first time that you install the first product package.

For best results, use your largest disk drive for shared resources directories. You cannot change the directory location

unless you uninstall all product packages.

Offering coexistence considerations
Some products are designed to coexist and share functions when they are installed in the same package group. A

package group is a location where you can install one or more software product packages.

When you install each product package, you select whether to install the product package into an existing package

group or to create a package group. Installation Manager prevents you from installing products into package groups

products that are not designed to share or do not meet version compatibility and other requirements. To install more

than one product at a time, the products must be able to share a package group.

Any number of eligible products can be installed to a package group. When a product is installed, the product

functions are shared with all the other products in the package group. If you install a development product and a

testing product into one package group, when you start either of the products, you have both the development and

testing functions available to you in your user interface. If you add a product with modeling tools, all the products in

the package group have the development, testing, and modeling functions available.

Eclipse instance overview
The product package that you install using Installation Manager comes with a version of Eclipse, which is the

base platform of this product package. If you already have Eclipse installed on your workstation, you can add your

product package directly to that Eclipse installation and extend the functions of the Eclipse integrated development

environment (IDE).

Extending an Eclipse IDE adds the functions of the newly installed product, but maintains your IDE preferences and

settings. Previously installed plug-ins are also still available.

In most cases, your current Eclipse IDE must be the same version as the Eclipse that the product you are installing

uses. Installation Manager checks that the Eclipse instance that you specify meets the requirements for the

installation package and helps you install the latest updates from eclipse.org, if required.

Increasing the number of file handles on Linux™ workstations
For best product performance, increase the number of file handles above the default setting of 1024 handles.

About this task

Chapter 6. Administrator Guide

Important: Before you work with your product, increase the number of file handles. Most products use more

than the default limit of 1024 file handles per process. A system administrator might need to make this

change.

Exercise caution when using the following steps to increase your file descriptors on Linux™. If the instructions are not

followed correctly, the computer might not start correctly.

To increase your file descriptors:

1. Log in as root. If you do not have root access, you must obtain it before continuing.

2. Change to the etc directory.

Attention: If you decide to increase the number of file handles in the next step, do not leave an empty

initscript file on your computer. If you do so, your computer will not start up the next time that you

turn it on or restart.

3. Use the vi editor to edit the initscript file in the etc directory. If this file does not exist, type vi initscript

to create it.

4. On the first line, type ulimit -n 30000. The point is that 30000 is significantly larger than 1024, the default

value on most Linux™ computers.

Important: Do not set the number of handles too high, because doing so can negatively impact

system-wide performance.

5. On the second line, type eval exec "$4".

6. Save and close the file after making sure that you have completed steps 4 and 5.

Note: Ensure that you follow the steps correctly. If this procedure is not completed correctly, your

computer will not start.

7. Optional: Restrict the number of handles available to users or groups by modifying the limits.conf file in

the etc/security directory. Both SUSE Linux™ Enterprise Server (SLES) Version 9 and Red Hat Enterprise

Linux™ Version 4.0 have this file by default. If you do not have this file, consider using a smaller number in step

4 in the previous procedure (for example, 2048). Do this so that most users have a reasonably low limit on

the number of open files that are allowed per process. If you use a relatively low number in step 4, it is less

important to do this. However, if you set a high number in step 4 earlier and you do not establish limits in the

limits.conf file, computer performance can be significantly reduced.

The following sample limits.conf file restricts all users, and then sets different limits for others

afterwards. This sample assumes that you set handles to 8192 in step 4 earlier.

* soft nofile 1024

* hard nofile 2048

85

HCL OneTest Performance

86

root soft nofile 4096

root hard nofile 8192

user1 soft nofile 2048

user1 hard nofile 2048

Note that the * in the preceding example sets the limits for all users first. These limits are lower than the limits

that follow. The root user has a higher number of allowable handles open, while the number that is available to

user1 is between the two. Make sure that you read and understand the documentation that the limits.conf

file contains before making changes.

What to do next

For more information on the ulimit command, see the main page for ulimit in the Linux™ documentation.

Installation of the product by using IBM® Installation Manager
Download the product bits and from the Installation Manager point to the Setup disk.

Note: For Linux™ computers, you must log in as the root user before you begin installation process.

Installing HCL OneTest™ Performance
To test the performance of an application, you must install HCL OneTest™ Performance.

Before you begin

You must have completed the following tasks:

• Download and install Installation Manager from https://jazz.net/downloads/ibm-installation-manager/.

• If you were using the IBM testing product and want to reuse the test assets in the HCL testing product, follow

these instructions:

◦ From the IBM testing product, export all the test assets with dependencies. Follow instructions till step

5 in Copying test assets with dependencies on page 570.

◦ Uninstall the IBM testing product.

◦ Install the HCL testing product by following the instructions.

◦ Import the test assets with dependencies to the HCL workspace. Follow instructions from step 6 in

Copying test assets with dependencies on page 570.

About this task

Notes:

https://jazz.net/downloads/ibm-installation-manager/

Chapter 6. Administrator Guide

• You cannot upgrade to the latest version of the product. You must uninstall the existing version of the

product before installing the latest version of the product.

• Currently, the collection of response time breakdown data from the macOS system is not supported.

1. In the Installation Manager, click File > Preferences > Repositories, and add a repository link to the product

setup disk and click OK.

2. Click Install.

3. Click a product package to highlight it.

Result

The description of the package is displayed in the Details pane at the end of the screen.

4. To search for updates to the product packages, click Check for Other Versions, Fixes, and Extensions. If

updates for a product package are found, then they are displayed in the Installation Packages list on the

Install Packages page under their corresponding products. Only recommended updates are displayed by

default.

Choose from:

◦ To view all updates that are found for the available packages, click Show all versions.

◦ To display a package description in the Details pane, click the package name. If additional information

about the package is available, such as a readme file or release notes, a More info link is included at

the end of the description text. Click the link to display the additional information in a browser. To fully

understand the package that you are installing, review all information.

Note: For Installation Manager to search the predefined IBM® update repository locations

for the installed packages, the Search the linked repositories during installation and updates

preference on the Repositories preference page must be selected. This preference is selected

by default. Internet access is also required. A progress indicator shows that the search is

taking place. You can install updates at the same time that you install the base product

package.

5. Select the product package and any updates to the package to install. Updates that have dependencies are

automatically selected and cleared together. Click Next to continue.

Note: If you install multiple packages at the same time, then all the packages are installed into the

same package group.

6. On the Licenses page, read the license agreement for the selected package.

a. If you agree to the terms of all of the license agreements, click I accept the terms of the license

agreements.

b. Click Next to continue.

87

HCL OneTest Performance

88

7. On the Location page, type the path for the shared resources directory in the Shared Resources Directory field,

or accept the default path. The shared resources directory contains resources that can be shared by one or

more package groups. Click Next to continue.

The default path to use follows:

◦ C:\Program Files\HCL\HCLIMShared

◦ /opt/HCL/HCLIMShared

◦ /Applications/HCL/HCLIMShared

Important: You can specify the shared resources directory only the first time that you install a

package. Use your largest disk for this to help ensure adequate space for the shared resources of

future packages. You cannot change the directory location unless you uninstall all packages.

8. On the Location page, create a package group to install the product package into or if this is an update, use

the existing package group. A package group represents a directory in which packages share resources with

other packages in the same group. To create a package group:

a. Click Create a new package group.

b. Type the path for the installation directory for the package group.

The name for the package group is created automatically.

The default path follows:

▪ C:\Program Files\HCL\HCLOneTest

▪ /opt/HCL/HCLOneTest

▪ /Applications/HCL/HCLOneTest

c. Click Next to continue.

9. Optional: On the next Location page, you can choose to extend an existing Eclipse IDE that is installed on your

computer, which adds the functions in the packages that you are installing. You must have Eclipse Version 3.6

with the latest updates from eclipse.org to select this option. Click Next to continue.

Note: HCL OneTest™ Performance does not support extending an existing Eclipse IDE.

10. On the Features page under Translations, select the languages for the package group. The corresponding

translations for the user interface and documentation for the product package will be installed.

11. On the next Features page, select the package features to install.

a. Optional: To see the dependency relationships between features, select Show Dependencies.

b. Optional: Click a feature to view its brief description under Details .

Chapter 6. Administrator Guide

c. Select or clear features in the packages. Installation Manager automatically enforces any

dependencies with other features and displays updated download sizes and disk space requirements

for the installation.

d. When you integrate HCL OneTest™ Performance along with Rational® Application Developer or

Rational® Software Architect in a shell-shared mode, you must clear Java 8 OpenJDK with Eclipse

OpenJ9 check box during the installation. If you not clear this check box, multiple instances of

OpenJDK are installed as Rational® Application Developer and Rational® Software Architect already

have an existing OpenJDK.

Note: If you install Rational® Application Developer or Rational® Software Architect in a

separate package, you can select the Java 8 OpenJDK with Eclipse OpenJ9 check box.

e. When you are finished selecting features, click Next to continue.

12. On the Summary page, review your choices before installing the product package. To change the choices that

you made on previous pages, click Back, and make your changes. When you are satisfied with your installation

choices, click Install to install the package.

Result

A progress indicator shows the percentage of the installation that is completed.

13. When the installation process is complete, a message confirms the completion of the process.

a. Click View log file to open the installation log file for the current session in a new window. You must

close the Installation Log window to continue.

b. In the Install Package wizard, select whether to start the product when you exit.

c. Click Finish to start installing the selected package.

14. License the product.

See the Applying the license on page 152 topic.

Installing HCL OneTest™ Performance Agent
You must install HCL OneTest™ Performance Agent on different computers to apply load on the server that hosts the

application under test.

Before you begin

You must have installed Installation Manager from the jazz website. For more information about installing the product

from the command-line interface in the silent mode, see IBM Installation Manager Knowledge Centre.

You must ensure that you have connected to the Internet.

About this task

Notes:

89

https://jazz.net/downloads/ibm-installation-manager/
https://www.ibm.com/docs/en/installation-manager/1.8.5?topic=manager-working-in-silent-mode

HCL OneTest Performance

90

• To use the response time breakdown feature in HCL OneTest™ Performance Agent V8.7 or later,

uninstall the existing version of the agent and install it afresh.

• Currently, the collection of response time breakdown data from the macOS system is not supported.

• You cannot upgrade to the latest version of the product. You must uninstall the existing version of the

product before installing the latest version of the product.

1. Open Installation Manager.

2. Click File > Preferences > Repositories to add a repository link to the product's setup disk, and then click OK.

3. Click Install.

4. Click a product package.

Result

The description of the product package is displayed in the Details pane at the end of the window.

5. Optional: Click Check for Other Versions, Fixes, and Extensions to search for any updates to the product

packages.

If updates for a product package are found, they are displayed in the Installation Packages list under their

corresponding product. Installation Manager displays only the recommended updates by default.

6. Optional: Select the Show all versions checkbox to view all the updates that are available for the packages.

You can click the package name to view the package description under the Details pane. If additional

information about the package is available, such as a readme file or release notes, a More info link is included

at the end of the description text. You can click the link to view additional information in a browser.

7. Select the product package and its updates, install it on your computer, and then click Next.

Note: Updates with dependencies are automatically selected and cleared together. If you install

multiple packages simultaneously, all the packages are installed into the same package group.

8. Read and understand the terms of all of the license agreements for the selected package, and then perform

the following steps:

a. Click I accept the terms in the license agreement.

b. Click Next to continue.

9. Select a location for the shared resources directory, and then click Next.

The shared resources directory contains resources that can be shared with one or more package groups. You

can either browse the location in the Shared Resources Directory field or enter the path of the location for the

shared resources directory.

The default path of the Shared Resources Directory are as follows:

Chapter 6. Administrator Guide

◦ For : C:\Program Files\HCL\HCLIMShared

◦ For : /opt/HCL/HCLIMShared

◦ For : /Applications/HCL/HCLIMShared

Remember: You can specify the shared resources directory only for the first time when you install

a package. You must use your largest disk for this directory. The largest disk ensures that you have

adequate space for the shared resources of future packages. You cannot change the location of the

directory unless you uninstall all packages.

10. Select one of the following options to use an existing or new package group:

Choose from:

◦ Use the existing package group: You can use this package group if you update the product.

◦ Create a new package group: You can use this package group either to install or update the product.

A package group represents a directory in which packages share resources with other packages in the same

group.

Note: The Use the existing package group option is disabled when you install a package for the first

time.

11. Perform the following steps to create a new package group:

a. Select Create a new package group.

b. Enter the path in the Installation Directory field for the package group.

The name for the package group is created automatically.

The default paths are as follows:

▪ For : C:\Program Files\HCL\HCLOneTest

▪ For : /opt/HCL/HCLOneTest

▪ For : /Applications/HCL/HCLOneTest

c. Select 32-bit or 64-bit as Architecture Selection.

d. Click Next.

12. Click Next.

HCL OneTest™ Performance Agent does not support extending an existing Eclipse IDE.

13. Select the languages for the package group.

The corresponding translations for the user interface and documentation for the product package are

installed.

14. Select all the features that you want to install, and then click Next.

91

HCL OneTest Performance

92

You can perform the following actions to install or view information about the features:

◦ Select the Windows desktop Application testing (Next Generation) and Appium Drivers for Automated

Testing checkboxes to install the UI Test Agent which provides the necessary prerequisites to test

native and hybrid mobile applications, and Windows desktop applications. The UI Test Agent is

installed along with HCL OneTest™ Performance Agent on your computer.

Note: After the installation, the UI Test Agent starts to run automatically on your computer

whenever you restart your computer. On Linux and macOS, you must set the environment

variable to start the UI Test Agent automatically. For more details, see the related links.

◦ Select Show Dependencies to view the dependency relationships between features.

◦ Click a feature to view its brief description under Details.

Notes:

◦ The Load Generation Agent is used to generate a load on the system under test and gather

data for the Response Time Breakdown feature.

◦ Installation Manager automatically enforces any dependencies with other features and

displays updated download sizes and disk space requirements for the installation.

15. Perform the following steps to configure the agent:

a. Select HCL OneTest UI Panel if you shell-share HCL OneTest™ Performance with HCL OneTest™ UI and

run a UI test on the remote agent computers.

Notes:

▪ On Windows system, clear The agent will be used primarily to support remote

execution of UI tests from HOT-UI checkbox if you are not running a UI test, so that

Majordomo runs as a service.

▪ On Linux and Mac operating systems, the The agent will be used primarily to support

remote execution of UI tests from HOT-UI option is not available. The agent runs as a

service and can run a UI test. This is the default behavior.

▪ When Majordomo runs as a service, it starts the service automatically after the

computer is restarted. However, if you want to run the UI test on remote agent

computers, then you must select The agent will be used primarily to support remote

Chapter 6. Administrator Guide

execution of UI tests from HOT-UI checkbox so that after the installation of the agent

is complete, Majordomo runs as a batch file instead of a service.

▪ When Majordomo runs as a batch file, it stops after the computer is restarted. You

must restart Majordomo by double-clicking the AgentInstallDir/Majordomo/

Majordomo.bat file.

b. Select HCL Load Generation Agent Configuration and perform the following steps:

i. Specify the values for the following parameters for HCL OneTest™ Performance:

Field name Description Example

Workbench hostname The hostname of HCL OneTest™ Performance. localhost

Workbench port The port number of HCL OneTest™ Perfor­

mance.

7080

ii. Specify the values of the following parameters for HCL OneTest™ Server:

Field name Description Example

Server Host­

name

The hostname of HCL OneTest™ Server.

Note:

▪ The hostname of HCL OneTest™ Serv­

er must be resolvable through a Domain

Name Server (DNS).

▪ An IP address cannot be the hostname of

HCL OneTest™ Server.

▪ The hostname of HCL OneTest™ Server

through host files must not be specified.

For example, /etc/hosts or C:/Win­

dows/system32/drives/etc/host

localhost

Server Port The port number of HCL OneTest™ Server. 443

93

HCL OneTest Performance

94

Field name Description Example

Server To­

ken

An offline user token that is created from HCL OneTest™

Server.

eyJhbGciOiJIUz­

I1NiIsInR

Server URL

Alias

The name of the Server URL Alias that you provided dur­

ing the creation of the team space in HCL OneTest™ Serv­

er.

testteam

c. Click Next.

16. Review your choices, and then click Install.

You can click Back to change the choices that you made on previous pages and make your changes.

Result

A progress indicator shows the percentage of the installation that is complete.

17. Optional: Click View Log File to open the installation log file for the current session in a new window.

Note: You must close the Installation Log window to continue.

18. Click Finish to exit the installation wizard.

Results

You have installed HCL OneTest™ Performance Agent.

What to do next

You can check the status of agents from the workbench. See Checking the status of agents on page 726.

Uninstalling the product by using IBM® Installation Manager
When you no longer require HCL OneTest™ Performance, you can use IBM® Installation Manager to uninstall HCL

OneTest™ Performance that you have installed.

Before you begin

You must have completed the following tasks:

• Installed Installation Manager.

• Closed any open windows of HCL OneTest™ Performance.

• Closed any open web browsers.

• Closed all the other applications that are enabled by HCL OneTest™ Performance.

1. Open Installation Manager.

2. Click Uninstall.

Chapter 6. Administrator Guide

3. Select the HCL OneTest™ Performance package checkbox on the Uninstall Packages window, and then click

Next.

4. Review the list of packages that are ready to uninstall, and then click Uninstall.

Result

The Complete page is displayed after the uninstallation process is complete.

5. Click Finish to exit the Installation Manager wizard.

Results

You have uninstalled HCL OneTest™ Performance from your computer.

Installation of the product by using the stand-alone installer
This guide intended for an administrator and describes how to install the product by using stand-alone installer on

different operating systems.

You can install the product by using any of the following methods:

• GUI mode

• Console mode

• Silent mode

Installation of the product on Windows systems
You can find information about installing the product software on Windows system by using the stand-alone installer.

You can install the product by using any of the following methods:

• GUI mode

• Silent mode

Installing the product in the GUI mode on Windows systems
To get started with the desktop client on Windows system, you can install the product in the GUI mode by using the

stand-alone installer.

Before you begin

• You must be an administrator.

Note: If you are a non-admin user, you must have the credentials of an administrator to start the

installation by using the Run as Administrator option.

• You must have completed the following tasks:

95

HCL OneTest Performance

96

◦ Uninstalled the previous version of the product. See Uninstalling the product in the GUI mode on

Windows systems on page 142.

◦ Verified the software and hardware requirements. See System Requirements on page 18.

◦ Cleared files from the Temp directory.

About this task

The test extensions such as SAP, Citrix, and Siebel are supported only for 32-bit stand-alone HCL OneTest™

Performance installer and 32-bit shell-shared installer that are installed on Windows system 64-bit operating system.

You cannot update, modify, or roll back the product by using the stand-alone installer.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por­

tuguese

Brazil

• Sim­

pli­

fied

Chi­

nese

• Eng­

lish

• Tra­

di­

tion­

al

Chi­

nese

• Eng­

lish

• Japan­

ese

• Eng­

lish

• Czech

• Eng­

lish

• Hun­

gari­

an

• Pol­

ish

• Ko­

re­

an

• Eng­

lish

• Turk­

ish

• Eng­

lish

• Russ­

ian

• Eng­

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Right-click the product installer file and select Run as Administrator.

The GUI window is displayed.

3. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

The drop-down list displays the languages based on the display language that is set on your computer.

4. Read through the details on the Introduction window, and then click Next.

5. Read the license agreement carefully, select the I accept checkbox, and then click Next.

6. Browse for the location or directory where you want to install the product, and then click Next.

Note: You must select any other directory if the default directory is not empty. The default locations

for 32-bit and 64-bit installers are as follows:

◦ For 32-bit: C:\Program Files(x86)\HCL

◦ For 64-bit: C:\Program Files\HCL

7. Read through the installation details and, then click Install.

8. Click Done after the installation of the product is complete.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 150.

Creating a properties file on Windows systems
To install the product in the silent mode, you must first create a properties file that contains the data required to

install the product. Alternatively, you can generate the properties file by using the stand-alone installer.

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 98 through 4 on

page 98.

• Copying the contents of the sample properties file to your local properties file. See step 5 on page 98.

97

HCL OneTest Performance

98

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Right-click the Command Prompt application and select Run as Administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd C:\users\Downloads

4. Run the following command to generate the properties file:

<installer_file.exe> -r <location of the installer.properties file>

For example, HCL-OneTest-Performance-Windows-x64-v10.1.0.0.exe -r C:\users\Downloads

\installer.properties

5. Create your properties file by copying the content of the following sample properties file:

#Host Name
Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=C:\\Program Files\\HCL

Results

You have generated or created the properties file.

What to do next

You can install the product by using the silent mode method.

Installing the product in the silent mode on Windows systems
To get started with the desktop client, you can install the product on Windows system by using the silent mode

installation method.

Before you begin

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

• You must be an administrator.

Note: If you are a non-admin user, you must have the credentials of an administrator to start the

installation by using the Run as Administrator option.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling the product in the silent mode on

Windows systems on page 143.

◦ Deleted the installer.properties file generated from the previous installation if you are installing

a newer version of the product.

◦ Created a properties file that contains the inputs for the installer during the installation process. See

Creating a properties file on Windows systems on page 97.

◦ Verified the software and hardware requirements. See System Requirements on page 18.

◦ Cleared files from the Temp directory.

About this task

The SAP, Citrix, and Siebel tests are supported only for 32-bit stand-alone HCL OneTest™ Performance installer and

32-bit shell-shared installer that are installed on Windows system 64-bit operating system. You cannot update, modify,

or roll back the product by using the stand-alone installer.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Right-click the Command Prompt application and select Run as Administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd C:\users\Downloads

99

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest Performance

100

4. Extract the downloaded installer file.

5. Run the following command to install the product:

<installer_name> -i silent -l <language_code> -f <location_of_the_installer.properties_file_name>

For example, you can run the following command to install HCL OneTest™ Performance 10.2.0 in French:

HCL-OneTest-Performance-Windows-x64-v10.2.0.0.exe -i silent -l fr -f C:\users\Downloads\installer.properties

The following table lists the language codes that you might want to choose during the installation:

Lan­

guages

Chi­

nese

(Sim­

pli­

fied)

Chi­

nese

(Tra­

di­

tion­

al)

Czech Eng­

lish

FrenchGer­

man

Hun­

gari­

an

Ital­

ian

Japan­

ese

Kore­

an

Pol­

ish

Por­

tuguese

(Brazil)

Russ­

ian

Span­

ish

Turk­

ish

Lan­

guage

codes

zh_­

CN

zh_­

TW

cz en fr de hu it ja ko pl pt_­

BR

ru es tr

Notes:

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt

file to know more about the problem that occurred during the installation process. The error

log is located at \<installation directory>\Logs.

Result

You can verify the status of the installation of the product by checking the log file at \<installation

directory>\Logs.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 150.

Chapter 6. Administrator Guide

Changing the language of the product on Windows systems
When you want to use the product in a different language other than the display language of your computer, then you

can change the language of the product by using the command-line interface.

About this task

Important: After you changed the language and closed the application for any reason, the product displays in

the language that is set in your computer if you re-open the product.

For example, consider the display language of your computer is set as French and you change the language of the

product to Japanese by using the command-line interface. When you close the product and open it again, the product

displays in the French language.

1. Right-click the Command Prompt application and select Run as Administrator.

2. Run the following command to change the directory to a location where you installed the product:

cd <directory path>

For example, cd C:\Program Files\HCL\HCLOneTest

3. Run the following command to change the language of the product:

eclipse.exe -nl <language_code>

Where <language_code> is the code of your preferred language.

The following table lists the language codes that you might want to choose during the installation:

Lan­

guages

Chi­

nese

(Sim­

pli­

fied)

Chi­

nese

(Tra­

di­

tion­

al)

Czech Eng­

lish

FrenchGer­

man

Hun­

gari­

an

Ital­

ian

Japan­

ese

Kore­

an

Pol­

ish

Por­

tuguese

(Brazil)

Russ­

ian

Span­

ish

Turk­

ish

Lan­

guage

codes

zh_­

CN

zh_­

TW

cz en fr de hu it ja ko pl pt_­

BR

ru es tr

For example, eclipse.exe -nl ja

Result

The product opens in the Japanese language.

Results

You have changed the language of the product until you restart the product.

101

HCL OneTest Performance

102

Installation of the product software on Linux
You can find information about installing the product software on Linux by using the stand-alone installer.

You can install the product software by using any of the following methods:

• GUI mode

• Console mode

• Silent mode

Installing the product in the GUI mode on Linux
To get started with the desktop client on Linux, you can install the product in the GUI mode by using the stand-alone

installer.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling the product in the GUI mode on Linux on

page 145.

• Installed Konsole on your computer. The Konsole application is required to enable the shortcut icon of the

product after installation. You can install Konsole by running the apt-get install konsole command in the

terminal.

Note: You need not install Konsole on the computer that is running RHEL 8 or later.

• Verified the software and hardware requirements. See System Requirements on page 18.

About this task

You cannot update, modify, or roll back the product by using the stand-alone installer.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

Chapter 6. Administrator Guide

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por­

tuguese

Brazil

• Sim­

pli­

fied

Chi­

nese

• Eng­

lish

• Tra­

di­

tion­

al

Chi­

nese

• Eng­

lish

• Japan­

ese

• Eng­

lish

• Czech

• Eng­

lish

• Hun­

gari­

an

• Pol­

ish

• Ko­

re­

an

• Eng­

lish

• Turk­

ish

• Eng­

lish

• Russ­

ian

• Eng­

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as a root user.

3. Run the following command to extract the zip file:

unzip <filename>

Result

The GUI window is displayed.

4. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

The drop-down list displays the languages based on the display language that is set on your computer.

5. Read through the details on the Introduction window, and then click Next.

6. Read the license agreement carefully, select the I accept checkbox, and then click Next.

7. Browse for the location or directory where you want to install the product, and then click Next.

Note: The default installation directory is /opt/HCL.

8. Read through the installation details and, then click Install.

9. Click Done after the installation of the product is complete.

103

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest Performance

104

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 150.

Installing the product in the console mode on Linux
To install the product on Ubuntu and Red Hat Enterprise Linux (RHEL) operating systems where GUI mode is not

supported, you can use the console-mode installation method.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling the product in the console mode on Linux on

page 145.

• Installed Konsole on your computer. The Konsole application is required to enable the shortcut icon of the

product after installation. You can install Konsole by running the apt-get install konsole command in the

terminal.

Note: You need not install Konsole on the computer that is running RHEL 8 or later.

• Verified the software and hardware requirements. See System Requirements on page 18.

About this task

In console mode, the installation process is an interactive and text-based. You can install the product in the console

mode only on the Ubuntu and RHEL operating systems.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the appropriate number during

the installation of the product.

The following languages are displayed in the drop-down list based on the display language of your computer:

Chapter 6. Administrator Guide

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por­

tuguese

Brazil

• Sim­

pli­

fied

Chi­

nese

• Eng­

lish

• Tra­

di­

tion­

al

Chi­

nese

• Eng­

lish

• Japan­

ese

• Eng­

lish

• Czech

• Eng­

lish

• Hun­

gari­

an

• Pol­

ish

• Ko­

re­

an

• Eng­

lish

• Turk­

ish

• Eng­

lish

• Russ­

ian

• Eng­

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory from root to the directory where you downloaded the

installer zip file:

cd <path of the downloaded folder>

For example, cd Downloads/

4. Run the following command to extract the downloaded zip file:

unzip <product package name>

For example, unzip HCL-OneTest-Performance-Linux-x64-v10.1.0.0.zip

5. Run the following command to begin the installation process:

./<installer_name.bin> -i console

For example, ./HCL-OneTest-Performance-Linux-x64-v10.1.0.0.bin -i console

The command-line interface displays the list of preferred languages based on the display language that is set

on your computer.

105

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest Performance

106

Note: To identify the display language of your computer, the command-line interface displays an arrow

mark (->) that precedes the name of the language.

6. Enter a number to select your preferred language, and then Enter.

Result

The installation instructions are displayed in your preferred language.

7. Review the license agreement and perform the following actions:

◦ Read the license agreement by pressing any key along with the Enter key to continue reading the

license agreement.

◦ At any time, press 0 (zero) along with the Enter key to go to the end of the license agreement.

◦ After you read the license agreement, enter Y to accept the license agreement and continue with the

installation.

Note: You can type N if you want to cancel the installation.

8. Provide the path where you want to install the product and perform the following steps:

a. Press Enter to install the product in the default path: /opt/HCL.

b. Enter the complete path of the directory and press Enter to install the product in the new directory

path.

Note: You can type Back and press Enter to go to the previous step if you want to modify your inputs

during the installation process.

9. Review the pre-installation summary, and then press Enter to continue with the installation process.

10. Press Enter to exit the installer.

Result

Note: If the installation of the product is not successful, you can check the errors that occurred during

the installation in the log file. The log file is available at the location: /opt/HCL/Logs.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 150.

Creating a properties file on Linux
To install the product in the silent mode, you must first create a properties file that contains the data required to

install the product. Alternatively, you can generate the properties file by using the stand-alone installer.

Chapter 6. Administrator Guide

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 107 through 4 on

page 107 .

• Copying the contents of the sample properties file to your local properties file. See 5 on page 107.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <path of the downloaded folder>

For example, cd Downloads/

4. Run the following command to generate the properties file:

<installer_file.bin> -r <location of the installer.properties file>

For example,

For example, HCL-OneTest-Performance-Linux-x64-v10.1.0.0.bin -r /root/Downloads/installer.properties

5. Create your properties file by copying the content of the following sample properties file:

#Host Name
Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=/opt/HCL

Results

You have generated or created the properties file.

What to do next

You can install the product by using the silent mode method.

107

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest Performance

108

Installing the product in the silent mode on Linux
To get started with the product, you can install the product on Linux by using the silent mode installation method.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling the product in the silent mode on Linux on

page 146.

• Deleted the installer.properties file generated from the previous installation if you are installing a

newer version of the product.

• Created a properties file that contains the inputs for the installer during the installation process. See Creating

a properties file on Linux on page 106.

• Verified the software and hardware requirements. See System Requirements on page 18.

About this task

You cannot update, modify, or roll back the product by using the stand-alone installer.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <path of the downloaded folder>

For example, cd Downloads/

4. Run the following command to extract the downloaded zip file:

unzip <product package name>

For example, unzip HCL-OneTest-Performance-Linux-x64-v10.1.0.0.zip

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

5. Run the following command to install the product:

<installer_name> -i silent -l <language_code> -f <location_of_the_installer.properties_file_name>

For example, you can run the following command to install HCL OneTest™ Performance 10.2.0 in French:

HCL-OneTest-Performance-Linux-x64-v10.2.0.0.bin -i silent -l fr -f /root/Downloads/installer.properties

The following table lists the language codes that you might want to choose during the installation:

Lan­

guages

Chi­

nese

(Sim­

pli­

fied)

Chi­

nese

(Tra­

di­

tion­

al)

Czech Eng­

lish

FrenchGer­

man

Hun­

gari­

an

Ital­

ian

Japan­

ese

Kore­

an

Pol­

ish

Por­

tuguese

(Brazil)

Russ­

ian

Span­

ish

Turk­

ish

Lan­

guage

codes

zh_­

CN

zh_­

TW

cz en fr de hu it ja ko pl pt_­

BR

ru es tr

Notes:

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt to

know more about the problem that occurred during the installation process. The error log is

located at /<installation directory>/Logs.

Result

You can verify the status of the installation of the product by checking the log file at /<installation

directory>/Logs.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 150.

109

HCL OneTest Performance

110

Increasing the number of file handles on Linux™ workstations
For best product performance, increase the number of file handles above the default setting of 1024 handles.

About this task

Important: Before you work with your product, increase the number of file handles. Most products use more

than the default limit of 1024 file handles per process. A system administrator might need to make this

change.

Exercise caution when using the following steps to increase your file descriptors on Linux™. If the instructions are not

followed correctly, the computer might not start correctly.

To increase your file descriptors:

1. Log in as root. If you do not have root access, you must obtain it before continuing.

2. Change to the etc directory.

Attention: If you decide to increase the number of file handles in the next step, do not leave an empty

initscript file on your computer. If you do so, your computer will not start up the next time that you

turn it on or restart.

3. Use the vi editor to edit the initscript file in the etc directory. If this file does not exist, type vi initscript

to create it.

4. On the first line, type ulimit -n 30000. The point is that 30000 is significantly larger than 1024, the default

value on most Linux™ computers.

Important: Do not set the number of handles too high, because doing so can negatively impact

system-wide performance.

5. On the second line, type eval exec "$4".

6. Save and close the file after making sure that you have completed steps 4 and 5.

Note: Ensure that you follow the steps correctly. If this procedure is not completed correctly, your

computer will not start.

7. Optional: Restrict the number of handles available to users or groups by modifying the limits.conf file in

the etc/security directory. Both SUSE Linux™ Enterprise Server (SLES) Version 9 and Red Hat Enterprise

Linux™ Version 4.0 have this file by default. If you do not have this file, consider using a smaller number in step

4 in the previous procedure (for example, 2048). Do this so that most users have a reasonably low limit on

the number of open files that are allowed per process. If you use a relatively low number in step 4, it is less

important to do this. However, if you set a high number in step 4 earlier and you do not establish limits in the

limits.conf file, computer performance can be significantly reduced.

Chapter 6. Administrator Guide

The following sample limits.conf file restricts all users, and then sets different limits for others

afterwards. This sample assumes that you set handles to 8192 in step 4 earlier.

* soft nofile 1024

* hard nofile 2048

root soft nofile 4096

root hard nofile 8192

user1 soft nofile 2048

user1 hard nofile 2048

Note that the * in the preceding example sets the limits for all users first. These limits are lower than the limits

that follow. The root user has a higher number of allowable handles open, while the number that is available to

user1 is between the two. Make sure that you read and understand the documentation that the limits.conf

file contains before making changes.

What to do next

For more information on the ulimit command, see the main page for ulimit in the Linux™ documentation.

Changing the language of the product on Linux
When you want to use the product in a different language other than the display language of your computer, then you

can change the language of the product by using the command-line interface.

About this task

Important: After you changed the language and closed the application for any reason, the product displays in

the language that is set in your computer if you re-open the product.

For example, consider the display language of your computer is set as French and you change the language of the

product to Japanese by using the command-line interface. When you close the product and open it again, the product

displays in the French language.

1. Open the terminal and log in as a root user.

2. Run the following command to change the directory to a location where you installed the product:

cd <directory path>

For example, cd root/HCL-OneTest

3. Run the following command to change the language of the product:

./eclipse -nl <language_code>

Where <language_code> is the code of your preferred language.

The following table lists the language codes that you might want to choose during the installation:

111

HCL OneTest Performance

112

Lan­

guages

Chi­

nese

(Sim­

pli­

fied)

Chi­

nese

(Tra­

di­

tion­

al)

Czech Eng­

lish

FrenchGer­

man

Hun­

gari­

an

Ital­

ian

Japan­

ese

Kore­

an

Pol­

ish

Por­

tuguese

(Brazil)

Russ­

ian

Span­

ish

Turk­

ish

Lan­

guage

codes

zh_­

CN

zh_­

TW

cz en fr de hu it ja ko pl pt_­

BR

ru es tr

For example, ./eclipse -nl ja

Result

The product opens in the Japanese language.

Results

You have changed the language of the product until you restart the product.

Installation of the product software on macOS
You can find information about installing the product software on macOS by using the stand-alone installer.

You can install the product software by using any of the following methods:

• GUI mode

• Silent mode

Installing the product in the GUI mode on macOS
To get started with the desktop client on macOS, you can install the product in the GUI mode by using the stand-alone

installer.

Before you begin

• You must have elevated privileges access.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling the product in the GUI mode on

macOS on page 148.

◦ Verified the software and hardware requirements. See System Requirements on page 18.

About this task

You cannot update, modify, or roll back the product by using the stand-alone installer.

Chapter 6. Administrator Guide

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por­

tuguese

Brazil

• Sim­

pli­

fied

Chi­

nese

• Eng­

lish

• Tra­

di­

tion­

al

Chi­

nese

• Eng­

lish

• Japan­

ese

• Eng­

lish

• Czech

• Eng­

lish

• Hun­

gari­

an

• Pol­

ish

• Ko­

re­

an

• Eng­

lish

• Turk­

ish

• Eng­

lish

• Russ­

ian

• Eng­

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Extract the downloaded product installer file.

3. Double-click the installer to initiate the installation process.

The GUI window is displayed.

4. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

The drop-down list displays the languages based on the display language that is set on your computer.

5. Read through the details on the Introduction window, and then click Next.

6. Read the license agreement carefully, select the I accept checkbox, and then click Next.

113

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest Performance

114

7. Browse for the location or directory where you want to install the product, and then click Next.

Note: By default, the product is installed at the following location: /Applications/HCL.

8. Read through the installation details and, then click Install.

9. Click Done after the installation of the product is complete.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 150.

Creating a properties file on macOS
To install the product in the silent mode, you must first create a properties file that contains the data required to

install the product. Alternatively, you can generate the properties file by using the stand-alone installer.

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 114 through 4 on

page 114.

• Copying the contents of the sample properties file to your local properties file. See 5 on page 115.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as an administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd /Users/username/Downloads

4. Run the following command to generate the properties file:

<installer_file.app> -r <location of the installer.properties file>

For example, HCL-OneTest-Performance-MAC-x64-v10.1.0.0.app -r /Users/Applications/HCL/

installer.properties

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

5. Create the properties file by copying the content of the following sample properties file:

#Host Name
Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=/Applications/HCL

Results

You have generated or created the properties file.

What to do next

You can install the product by using the silent mode method.

Installing the product in the silent mode on macOS
To get started with the product, you can install the product on macOS by using the silent mode installation method.

Before you begin

• You must have elevated privileges access.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling the product in the silent mode on

macOS on page 149.

◦ Deleted the installer.properties file generated from the previous installation if you are installing

a newer version of the product.

◦ Created a properties file that contains the inputs for the installer during the installation process. See

Creating a properties file on macOS on page 114.

◦ Verified the software and hardware requirements. See System Requirements on page 18.

About this task

You cannot update, modify, or roll back the product by using the stand-alone installer.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

115

HCL OneTest Performance

116

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as an administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd /Users/username/Downloads

4. Extract the downloaded the product installer file.

5. Run the following command to start the installation process:

<installer_file.app> -i silent -l <language_code> -f <location of the properties file>

For example, you can install the product in French by running the following command:

HCL-OneTest-Performance-MAC-x64-v10.2.0.0.app -i silent -l fr -f /Users/Applications/HCL/installer.properties

The following table lists the language codes that you might want to choose during the installation:

Lan­

guages

Chi­

nese

(Sim­

pli­

fied)

Chi­

nese

(Tra­

di­

tion­

al)

Czech Eng­

lish

FrenchGer­

man

Hun­

gari­

an

Ital­

ian

Japan­

ese

Kore­

an

Pol­

ish

Por­

tuguese

(Brazil)

Russ­

ian

Span­

ish

Turk­

ish

Lan­

guage

codes

zh_­

CN

zh_­

TW

cz en fr de hu it ja ko pl pt_­

BR

ru es tr

Notes:

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt to

know more about the problem that occurred during the installation process. The error log is

located at /<installation directory>/Logs.

Result

You can verify the status of the installation of the product by checking the log file at \<installation

directory>\Logs.

Results

You have installed the product on your computer.

What to do next

You must enter the license key when you open the product. See License management on page 150.

Changing the language of the product on macOS
When you want to use the product in a different language other than the display language of your computer, then you

can change the language of the product by using the command-line interface.

About this task

Important: After you changed the language and closed the application for any reason, the product displays in

the language that is set in your computer if you re-open the product.

For example, consider the display language of your computer is set as French and you change the language of the

product to Japanese by using the command-line interface. When you close the product and open it again, the product

displays in the French language.

1. Open the terminal and log in as an administrator.

2. Run the following command to change the directory to a location where you installed the product:

cd <directory path>

For example, cd /Users/Applications/HCL/HCL-OneTest

3. Run the following command to change the language of the product:

./eclipse -nl <language_code>

117

HCL OneTest Performance

118

Where <language_code> is the code of your preferred language.

The following table lists the language codes that you might want to choose during the installation:

Lan­

guages

Chi­

nese

(Sim­

pli­

fied)

Chi­

nese

(Tra­

di­

tion­

al)

Czech Eng­

lish

FrenchGer­

man

Hun­

gari­

an

Ital­

ian

Japan­

ese

Kore­

an

Pol­

ish

Por­

tuguese

(Brazil)

Russ­

ian

Span­

ish

Turk­

ish

Lan­

guage

codes

zh_­

CN

zh_­

TW

cz en fr de hu it ja ko pl pt_­

BR

ru es tr

For example, ./eclipse -nl ja

Result

The product opens in the Japanese language.

Results

You have changed the language of the product until you restart the product.

Installation of HCL OneTest™ Performance Agent by using the stand-alone installer
To get started with HCL OneTest™ Performance Agent, you must install the product on Windows system or Linux or

macOS by using the stand-alone installer.

You can install the product by using any of the following methods:

• GUI mode

• Console mode

• Silent mode

Installation of the Agent on Windows systems
You can find information about installing HCL OneTest™ Performance Agent on Windows system by using the stand-

alone installer.

You can install the Agent by using any of the following methods:

• GUI mode

• Silent mode

Chapter 6. Administrator Guide

Installing Agent in the GUI mode on Windows systems
You can install HCL OneTest™ Performance Agent on different computers to apply load on the server that hosts

the application under test. When you want to run the test scripts on any computer, you must install HCL OneTest™

Performance Agent.

Before you begin

• You must be an administrator.

Note: If you are a non-admin user, you must have the credentials of an administrator to start the

installation by using the Run as Administrator option.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling Agent in the GUI mode on Windows

systems on page 143.

◦ Verified the software and hardware requirements. See System Requirements on page 18.

◦ Cleared files from the Temp directory.

About this task

All 32-bit test extensions such as SAP, Citrix, and Siebel are supported only for 32-bit HCL OneTest™ Performance

Agent. The product installer does not support the following features:

• Updates, modifications, or rollback

• Shell sharing in Eclipse

• Sharing of common components

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

119

HCL OneTest Performance

120

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por­

tuguese

Brazil

• Sim­

pli­

fied

Chi­

nese

• Eng­

lish

• Tra­

di­

tion­

al

Chi­

nese

• Eng­

lish

• Japan­

ese

• Eng­

lish

• Czech

• Eng­

lish

• Hun­

gari­

an

• Pol­

ish

• Ko­

re­

an

• Eng­

lish

• Turk­

ish

• Eng­

lish

• Russ­

ian

• Eng­

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

If you do not want to configure the agent during the installation of the product, then you can leave the configuration

fields blank. Later, when you decide to configure the agent, you can update the parameter values in the

Majordomo.config file. The Majordomo.config file is at the following location:

\HCL\HCLoneTest\Majordomo.config

Note: The URL Alias parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Right-click the product installer file and select Run as Administrator.

The GUI window is displayed.

3. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

The drop-down list displays the languages based on the display language that is set on your computer.

4. Read through the details on the Introduction window, and then click Next.

5. Read the license agreement carefully, select the I accept checkbox, and then click Next.

6. Read the Microsoft Software license agreement carefully, and then select the I accept check box to install

the execution agent that provides you with the necessary prerequisites to test the hybrid and native mobile

applications, and Windows desktop applications. Click Next to continue.

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

Note: After the installation, the execution agent starts automatically when you run AFT test suites and

it stops after the playback is completed.

7. Browse for the location or directory where you want to install the product, and then click Next.

Note: You must select any other directory if the default directory is not empty. The default locations

for 32-bit and 64-bit installers are as follows:

◦ For 32-bit: C:\Program Files(x86)\HCL

◦ For 64-bit: C:\Program Files\HCL

8. Optional: Perform the following steps to configure the agent:

a. Specify the values for the following parameters for HCL OneTest™ Performance:

Field name Description Example

Host name The hostname of HCL OneTest™ Performance. localhost

Port The port number of HCL OneTest™ Performance. 7080

b. Specify the values for the following parameters for HCL OneTest™ Server:

Field name Description Example

Host name The hostname of HCL OneTest™ Server.

Note:

▪ The hostname of HCL OneTest™ Serv­

er must be resolvable through a Domain

Name Server (DNS).

▪ An IP address cannot be the hostname

of HCL OneTest™ Server.

▪ The hostname of HCL OneTest™ Server

through host files must not be specified.

For example, /etc/hosts or C:/Win­

dows/system32/drives/etc/host

localhost

Port The port number of HCL OneTest™ Server. 443

121

HCL OneTest Performance

122

Field name Description Example

Token An offline user token that is created from HCL OneTest™

Server.

eyJhbGciOiJIUzI1NiIsInR

URL Alias The name of the URL Alias that you provided during the

creation of the team space in HCL OneTest™ Server.

testteam

9. Read through the installation details and, then click Install.

10. Click Done after the installation of the product is complete.

Results

You have installed the agent on your computer.

Creating the properties file on Windows systems for HCL OneTest™ Performance
Agent
To install HCL OneTest™ Performance Agent in the silent mode, you must first create a properties file that contains

the data required to install the product. Alternatively, you can generate the properties file by using the stand-alone

installer.

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 122 through 4 on

page 122.

• Copying the contents of the sample properties file to your local properties file. See step 5 on page 123.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Right-click the Command Prompt application and select Run as Administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd C:\users\Downloads

4. Run the following command to generate the properties file:

<installer_file.exe> -r <location of the installer.properties file>

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

For example, HCL-OneTest-Performance-Agent-Windows-x64-v10.1.0.0.exe -r C:\users\Downloads

\installer.properties

5. Create your properties file by copying the content of the following sample properties file:

Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=C:\\Program Files\\HCL

#HCL Load Generation Agent Configuration
#---------------------------------------
WORKBENCH_HOSTNAME=<host name of HCL OneTest Performance>
WORKBENCH_PORT=7080
SERVER_HOSTNAME=<host name of server>
SERVER_PORT=6969
SERVER_TOKEN=<server token>
SERVER_URL_ALIAS=<name of the URL alias for the team space>

Results

You have generated or created the properties file.

What to do next

You can install the product by using the silent mode method.

Installing Agent in the silent mode on Windows systems
You can install HCL OneTest™ Performance Agent on different computers to apply load on the server that hosts

the application under test. When you want to run the test scripts on any computer, you must install HCL OneTest™

Performance Agent.

Before you begin

• You must be an administrator.

Note: If you are a non-admin user, you must have the credentials of an administrator to start the

installation by using the Run as Administrator option.

• You must have completed the following tasks:

123

HCL OneTest Performance

124

◦ Uninstalled the previous version of the product. See Uninstalling Agent in the silent mode on Windows

systems on page 144.

◦ Deleted the installer.properties file generated from the previous installation if you are installing

a newer version of the product.

◦ Created a properties file that contains the inputs for the installer during the installation process. See

Creating the properties file on Windows systems for HCL OneTest Performance Agent on page 122.

◦ Verified the software and hardware requirements. See System Requirements on page 18.

◦ Cleared files from the Temp directory.

About this task

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

If you decided to configure the agent, later, then you can update the parameter values in the Majordomo.config file.

The Majordomo.config file is at the following location:

\HCL\HCLoneTest\Majordomo.config

Note: The SERVER_URL_ALIAS parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Right-click the Command Prompt application and select Run as Administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd C:\users\Downloads

4. Extract the downloaded product installer file.

5. Run the following command to install the product:

<installer_name> -i silent -l <language_code> -f <location_of_the_installer.properties_file_name>

For example, you can run the following command to install HCL OneTest™ Performance Agent 10.2.0 in

French:

HCL-OneTest-Performance-Agent-Windows-x64-v10.2.0.0.exe -i silent -l fr -f C:\users\Downloads

\installer.properties

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

The following table lists the language codes that you might want to choose during the installation:

Lan­

guages

Chi­

nese

(Sim­

pli­

fied)

Chi­

nese

(Tra­

di­

tion­

al)

Czech Eng­

lish

FrenchGer­

man

Hun­

gari­

an

Ital­

ian

Japan­

ese

Kore­

an

Pol­

ish

Por­

tuguese

(Brazil)

Russ­

ian

Span­

ish

Turk­

ish

Lan­

guage

codes

zh_­

CN

zh_­

TW

cz en fr de hu it ja ko pl pt_­

BR

ru es tr

Notes:

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt

file to know more about the problem that occurred during the installation process. The error

log is located at \<installation directory>\Logs.

Result

You can verify the status of the installation of the product by checking the log file at \<installation

directory>\Logs.

Results

You have installed the product on your computer.

Installation of the Agent on Linux
You can find information about installing HCL OneTest™ Performance Agent on Linux by using the stand-alone

installer.

You can install the Agent by using any of the following methods:

125

HCL OneTest Performance

126

• GUI mode

• Console mode

• Silent mode

Installing Agent in the GUI mode on Linux
You can install HCL OneTest™ Performance Agent on different computers to apply load on the server that hosts

the application under test. When you want to run the test scripts on any computer, you must install HCL OneTest™

Performance Agent.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling Agent in the GUI mode on Linux on

page 146.

• Verified the software and hardware requirements. See System Requirements on page 18.

About this task

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por­

tuguese

Brazil

• Sim­

pli­

fied

Chi­

nese

• Eng­

lish

• Tra­

di­

tion­

al

Chi­

nese

• Eng­

lish

• Japan­

ese

• Eng­

lish

• Czech

• Eng­

lish

• Hun­

gari­

an

• Pol­

ish

• Ko­

re­

an

• Eng­

lish

• Turk­

ish

• Eng­

lish

• Russ­

ian

• Eng­

lish

Chapter 6. Administrator Guide

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

If you do not want to configure the agent during the installation of the product, then you can leave the configuration

fields blank. Later, when you decide to configure the agent, you can update the parameter values in the

Majordomo.config file. The Majordomo.config file is at the following location:

/HCL/HCLoneTest/Majordomo.config

Note: The URL Alias parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Open the terminal and log in as a root user.

3. Run the following command to extract the zip file:

unzip <filename>

Result

The GUI window is displayed.

4. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

The drop-down list displays the languages based on the display language that is set on your computer.

5. Read through the details on the Introduction window, and then click Next.

6. Read the license agreement carefully, select the I accept checkbox, and then click Next.

7. Browse for the location or directory where you want to install the product, and then click Next.

Note: The default installation directory is /opt/HCL.

8. Optional: Perform the following steps to configure the agent:

a. Specify the values for the following parameters for HCL OneTest™ Performance:

Field name Description Example

Host name The hostname of HCL OneTest™ Performance. localhost

Port The port number of HCL OneTest™ Performance. 7080

b. Specify the values for the following parameters for HCL OneTest™ Server:

Field name Description Example

Host name The hostname of HCL OneTest™ Server. localhost

127

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest Performance

128

Field name Description Example

Note:

▪ The hostname of HCL OneTest™ Serv­

er must be resolvable through a Domain

Name Server (DNS).

▪ An IP address cannot be the hostname

of HCL OneTest™ Server.

▪ The hostname of HCL OneTest™ Server

through host files must not be specified.

For example, /etc/hosts or C:/Win­

dows/system32/drives/etc/host

Port The port number of HCL OneTest™ Server. 443

Token An offline user token that is created from HCL OneTest™

Server.

eyJhbGciOiJIUzI1NiIsInR

URL Alias The name of the URL Alias that you provided during the

creation of the team space in HCL OneTest™ Server.

testteam

9. Read through the installation details and, then click Install.

10. Click Done after the installation of the product is complete.

Results

You have installed the agent on your computer.

Installing Agent in the console mode on Linux
To install the HCL OneTest™ Performance Agent on Ubuntu and Red Hat Enterprise Linux (RHEL) operating systems

where GUI mode is not supported, you can use the console-mode installation method.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling the product in the console mode on Linux on

page 145.

• Installed Konsole on your computer. The Konsole application is required to enable the shortcut icon of the

product after installation. You can install Konsole by running the apt-get install konsole command in the

terminal.

Chapter 6. Administrator Guide

Note: You need not install Konsole on the computer that is running RHEL 8 or later.

• Verified the software and hardware requirements. See System Requirements on page 18.

About this task

In console mode, the installation process is an interactive and text-based. You can install the product in the console

mode only on the Ubuntu and RHEL operating systems.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the appropriate number during

the installation of the product.

The following languages are displayed in the drop-down list based on the display language of your computer:

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por­

tuguese

Brazil

• Sim­

pli­

fied

Chi­

nese

• Eng­

lish

• Tra­

di­

tion­

al

Chi­

nese

• Eng­

lish

• Japan­

ese

• Eng­

lish

• Czech

• Eng­

lish

• Hun­

gari­

an

• Pol­

ish

• Ko­

re­

an

• Eng­

lish

• Turk­

ish

• Eng­

lish

• Russ­

ian

• Eng­

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

If you do not want to configure the agent during the installation of the product, then you can leave the configuration

fields blank. Later, when you decide to configure the agent, you can update the parameter values in the

Majordomo.config file. The Majordomo.config file is at the following location:

/HCL/HCLoneTest/Majordomo.config

129

HCL OneTest Performance

130

Note: The URL Alias parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory from root to the directory where you downloaded the

installer zip file:

cd <path of the downloaded folder>

For example, cd Downloads/

4. Run the following command to extract the product installer zip file:

unzip <product package name>

For example, unzip HCL-OneTest-Performance-Agent-Windows-x64-v10.2.0.0.zip

The command-line interface displays the list of preferred languages based on the display language that is set

on your computer.

Note: To identify the display language of your computer, the command-line interface displays an arrow

mark (->) that precedes the name of the language.

5. Enter a number to select your preferred language, and then Enter.

Result

The installation instructions are displayed in your preferred language.

6. Run the following command to begin the installation process:

./<filename.bin> -i console

For example, ./HCL-OneTest-Performance-Agent-Windows-x64-v10.2.0.0.bin -i console

7. Review the license agreement and perform the following actions:

◦ Read the license agreement by pressing any key along with the Enter key to continue reading the

license agreement.

◦ At any time, press 0 (zero) along with the Enter key to go to the end of the license agreement.

◦ After you read the license agreement, enter Y to accept the license agreement and continue with the

installation.

Note: You can type N if you want to cancel the installation.

8. Provide the path where you want to install the product and perform the following steps:

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

a. Press Enter to install the product in the default path: /opt/HCL.

b. Enter the complete path of the directory and press Enter to install the product in the new directory

path.

Note: You can type Back and press Enter to go to the previous step if you want to modify your inputs

during the installation process.

9. Optional: Perform the following steps to configure the agent:

a. Specify the values for the following parameters for HCL OneTest™ Performance:

Field name Description Example

Host name The hostname of HCL OneTest™ Performance. localhost

Port The port number of HCL OneTest™ Performance. 7080

b. Specify the values for the following parameters for HCL OneTest™ Server:

Field name Description Example

Host name The hostname of HCL OneTest™ Server.

Note:

▪ The hostname of HCL OneTest™ Serv­

er must be resolvable through a Domain

Name Server (DNS).

▪ An IP address cannot be the hostname

of HCL OneTest™ Server.

▪ The hostname of HCL OneTest™ Server

through host files must not be specified.

For example, /etc/hosts or C:/Win­

dows/system32/drives/etc/host

localhost

Port The port number of HCL OneTest™ Server. 443

Token An offline user token that is created from HCL OneTest™

Server.

eyJhbGciOiJIUzI1NiIsInR

URL Alias The name of the URL Alias that you provided during the

creation of the team space in HCL OneTest™ Server.

testteam

10. Review the pre-installation summary, and then press Enter to continue with the installation process.

131

HCL OneTest Performance

132

11. Press Enter to exit the installer.

Result

Note: If the installation of the product is not successful, you can check the errors that occurred during

the installation in the log file. The log file is available at the location: /opt/HCL/Logs.

Results

You have installed the agent on your computer.

Note: If the installation of the product is not successful, you can check the errors that occurred during the

installation in the log file. The log file is available at the location: /opt/HCL/Logs.

What to do next

You must enter the license key when you open the product. See License management on page 150.

Creating the properties file on Linux for HCL OneTest™ Performance Agent
To install the product in the silent mode, you must first create a properties file that contains the data required to

install the product. Alternatively, you can generate the properties file by using the stand-alone installer.

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 132 through 4 on

page 132.

• Copying the contents of the sample properties file to your local properties file. See 5 on page 133.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <path of the downloaded folder>

For example, cd Downloads/

4. Run the following command to generate the properties file:

<installer_file.bin> -r <location of the installer.properties file>

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

For example,

For example, HCL-OneTest-Performance-Agent-Linux-x64-v10.1.0.0.bin -r /root/Downloads/installer.properties

5. Create your properties file by copying the content of the following sample properties file:

Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=/opt/HCL

#HCL Load Generation Agent Configuration
#---------------------------------------
WORKBENCH_HOSTNAME=<host name of HCL OneTest Performance>
WORKBENCH_PORT=7080
SERVER_HOSTNAME=<host name of server>
SERVER_PORT=6969
SERVER_TOKEN=<server token>
SERVER_URL_ALIAS=<name of the URL alias for the team space>

Results

You have generated or created the properties file.

What to do next

You can install the product by using the silent mode method.

Installing Agent in the silent mode on Linux
You can install HCL OneTest™ Performance Agent on different computers to apply load on the server that hosts

the application under test. When you want to run the test scripts on any computer, you must install HCL OneTest™

Performance Agent.

Before you begin

You must have completed the following tasks:

• Uninstalled the previous version of the product. See Uninstalling Agent in the silent mode on Linux on

page 148.

• Installed Konsole on your computer. The Konsole application is required to enable the shortcut icon of the

product after installation. You can install Konsole by running the apt-get install konsole command in the

terminal.

133

HCL OneTest Performance

134

Note: You need not install Konsole on the computer that is running RHEL 8 or later.

• Deleted the installer.properties file generated from the previous installation if you are installing a

newer version of the product.

• Created a properties file that contains the inputs for the installer during the installation process. See Creating

the properties file on Linux for HCL OneTest Performance Agent on page 132.

• Verified the software and hardware requirements. See System Requirements on page 18.

About this task

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

If you decided to configure the agent, later, then you can update the parameter values in the Majordomo.config file.

The Majordomo.config file is at the following location:

/HCL/HCLoneTest/Majordomo.config

Note: The SERVER_URL_ALIAS parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Open the terminal and log in as a root user.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <path of the downloaded folder>

For example, cd Downloads/

4. Run the following command to extract the downloaded zip file:

unzip <product package name>

For example, unzip HCL-OneTest-Performance-Agent-Linux-x64-v10.1.0.0.zip

5. Run the following command to install the product:

<installer_name> -i silent -l <language_code> -f <location_of_the_installer.properties_file_name>

For example, you can run the following command to install HCL OneTest™ Performance Agent 10.2.0 in

French:

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

HCL-OneTest-Performance-Agent-Linux-x64-v10.2.0.0.bin -i silent -l fr -f /root/Downloads/installer.properties

The following table lists the language codes that you might want to choose during the installation:

Lan­

guages

Chi­

nese

(Sim­

pli­

fied)

Chi­

nese

(Tra­

di­

tion­

al)

Czech Eng­

lish

FrenchGer­

man

Hun­

gari­

an

Ital­

ian

Japan­

ese

Kore­

an

Pol­

ish

Por­

tuguese

(Brazil)

Russ­

ian

Span­

ish

Turk­

ish

Lan­

guage

codes

zh_­

CN

zh_­

TW

cz en fr de hu it ja ko pl pt_­

BR

ru es tr

Notes:

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt

file to know more about the problem that occurred during the installation process. The error

log is located at /<installation directory>/Logs.

Result

You can verify the status of the installation of the product by checking the log file at /<installation

directory>/Logs.

Results

You have installed the product on your computer.

Installation of the Agent on macOS
You can find information about installing HCL OneTest™ Performance Agent on macOS by using the stand-alone

installer.

You can install the Agent by using any of the following methods:

135

HCL OneTest Performance

136

• GUI mode

• Silent mode

Installing Agent in the GUI mode on macOS
You can install HCL OneTest™ Performance Agent on different computers to apply load on the server that hosts

the application under test. When you want to run the test scripts on mac machine, you must install HCL OneTest™

Performance Agent.

Before you begin

• You must have elevated privileges access.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling Agent in the GUI mode on macOS on

page 149.

◦ Verified the software and hardware requirements. See System Requirements on page 18.

About this task

All 32-bit test extensions such as SAP, Citrix, and Siebel are supported only for 32-bit HCL OneTest™ Performance

Agent. The product installer does not support the following features:

Note: When you run a test or schedule by using HCL OneTest™ Performance Agent on macOS, by default, the

majordomo.log file is stored in the $TMPDIR.

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the preferred language of the stand-alone installer and the product by selecting the language from

the drop-down list during the installation of the product. The drop-down list displays the languages based on the

default language that is set on your computer.

The following languages are displayed in the drop-down list based on the display language of your computer:

Chapter 6. Administrator Guide

List of preferred languages that are displayed in the drop-

down list based on the display language of your computer

• English

• French

• German

• Italian

• Spanish

• Por­

tuguese

Brazil

• Sim­

pli­

fied

Chi­

nese

• Eng­

lish

• Tra­

di­

tion­

al

Chi­

nese

• Eng­

lish

• Japan­

ese

• Eng­

lish

• Czech

• Eng­

lish

• Hun­

gari­

an

• Pol­

ish

• Ko­

re­

an

• Eng­

lish

• Turk­

ish

• Eng­

lish

• Russ­

ian

• Eng­

lish

For example, if the display language of your computer is Japanese, then the drop-down list shows Japanese and

English as the preferred languages.

If you do not want to configure the agent during the installation of the product, then you can leave the configuration

fields blank. Later, when you decide to configure the agent, you can update the parameter values in the

Majordomo.config file. The Majordomo.config file is at the following location:

/Application/HCL/HCLOnetest/Majordomo.config

Note: The URL Alias parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Extract the downloaded product installer file.

3. Double-click the installer to initiate the installation process.

The GUI window is displayed.

4. Initiate the GUI installation from the command line by completing the following steps:

a. Change the directory to where you have downloaded the installer by running the following command:

cd <directory path>

By default, the package is downloaded to /Users/Applications/HCL. For example, cd HCL-

OneTest-Performance-Mac-v10.1.2.app/Contents/MacOS/

b. Run the following command to initiate the product installation:

./<product name>

For example, ./HCL-OneTest-Performance-Mac-v10.1.2

137

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest Performance

138

5. Select the language from the drop-down list to view the installation instructions and the product in your

preferred language.

The drop-down list displays the languages based on the display language that is set on your computer.

6. Read through the details on the Introduction window, and then click Next.

7. Read the license agreement carefully, select the I accept checkbox, and then click Next.

8. Browse for the location or directory where you want to install the product, and then click Next.

Note: By default, the product is installed at the following location: /Applications/HCL.

9. Optional: Perform the following steps to configure the agent:

a. Specify the values for the following parameters for HCL OneTest™ Performance:

Field name Description Example

Host name The hostname of HCL OneTest™ Performance. localhost

Port The port number of HCL OneTest™ Performance. 7080

b. Specify the values for the following parameters for HCL OneTest™ Server:

Field name Description Example

Host name The hostname of HCL OneTest™ Server.

Note:

▪ The hostname of HCL OneTest™ Serv­

er must be resolvable through a Domain

Name Server (DNS).

▪ An IP address cannot be the hostname

of HCL OneTest™ Server.

▪ The hostname of HCL OneTest™ Server

through host files must not be specified.

For example, /etc/hosts or C:/Win­

dows/system32/drives/etc/host

localhost

Port The port number of HCL OneTest™ Server. 443

Chapter 6. Administrator Guide

Field name Description Example

Token An offline user token that is created from HCL OneTest™

Server.

eyJhbGciOiJIUzI1NiIsInR

URL Alias The name of the URL Alias that you provided during the

creation of the team space in HCL OneTest™ Server.

testteam

10. Read through the installation details and, then click Install.

11. Click Done after the installation of the product is complete.

Results

You have installed the agent on your computer.

Creating the properties file on macOS for HCL OneTest™ Performance Agent
To install the product in the silent mode, you must first create a properties file that contains the data required to

install the product. Alternatively, you can generate the properties file by using the stand-alone installer.

About this task

You can create the properties file by using one of the following methods:

• Generating the properties file by using the stand-alone installer. See steps 1 on page 139 through 4 on

page 139 .

• Copying the contents of the sample properties file to your local properties file. See 5 on page 139.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

Note: When you want to install both HCL OneTest™ UI and HCL OneTest™ Performance on your

computer, you can install the products by using a single shell-shared HCL OneTest UI and

Performance installer that is available in the HCL® License & Delivery portal.

2. Right-click the Command Prompt application and select Run as Administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd C:\users\Downloads

4. Run the following command to generate the properties file:

<installer_file.exe> -r <location of the installer.properties file>

For example, HCL-OneTest-Performance-Agent-AMC-x64-v10.1.0.0.exe -r C:\users\Downloads

\installer.properties

5. Create the properties file by copying the content of the following sample properties file:

139

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest Performance

140

Replay feature output

This file was built by the Replay feature of Installer.
It contains variables that were set by Panels, Consoles or Custom Code.

#Destination Folder
#------------------
USER_INSTALL_DIR=/Applications/HCL

#HCL Load Generation Agent Configuration
#---------------------------------------
WORKBENCH_HOSTNAME=<host name of HCL OneTest Performance>
WORKBENCH_PORT=7080
SERVER_HOSTNAME=<host name of server>
SERVER_PORT=6969
SERVER_TOKEN=<server token>
SERVER_URL_ALIAS=<name of the URL alias for the team space>

Results

You have generated or created the properties file.

What to do next

You can install the product by using the silent mode method.

Installing Agent in the silent mode on macOS
To get started with HCL OneTest™ Performance Agent on macOS, in addition to the GUI mode, you can also use the

silent installation method to install the product.

Before you begin

• You must have elevated privileges access.

• You must have completed the following tasks:

◦ Uninstalled the previous version of the product. See Uninstalling Agent in the GUI mode on macOS on

page 149

◦ Deleted the installer.properties file generated from the previous installation if you are installing

a newer version of the product.

◦ Verified the software and hardware requirements. See System Requirements on page 18.

◦ Created a properties file that contains the inputs for the installer during the installation process. See

Creating the properties file on macOS for HCL OneTest Performance Agent on page 139.

About this task

Chapter 6. Administrator Guide

You can use the stand-alone installer and the product in your preferred language. The display language of your

computer is selected as the preferred language of the stand-alone installer. For example, if the display language of

your computer is set as French, then the preferred language of the stand-alone installer is also selected as French.

You can change the language of the stand-alone installer and the product by providing the -l language_code

parameter during the installation of the product.

If you decided to configure the agent, later, then you can update the parameter values in the Majordomo.config file.

The Majordomo.config file is at the following location:

/Application/HCL/HCLOnetest/Majordomo.config

Note: The SERVER_URL_ALIAS parameter name is shown as a slug in the Majordomo.config file.

1. Download the product installer from the HCL® License & Delivery portal.

You must download the appropriate product variant, version, and architecture based on your requirements.

2. Open the terminal and log in as an administrator.

3. Run the following command to change the directory to a location where you downloaded the installer file:

cd <directory path>

For example, cd /Users/username/Downloads

4. Extract the downloaded installer file.

5. Run the following command to install the product:

<installer_name> -i silent -l <language_code> -f <location_of_the_installer.properties_file_name>

For example, you can install HCL OneTest™ Performance Agent in French by running the following command:

HCL-OneTest-Performance-Agent-MAC-x64-v10.2.0.0.app -i silent -l fr -f /Users/Applications/HCL/

installer.properties

The following table lists the language codes that you might want to choose during the installation:

Lan­

guages

Chi­

nese

(Sim­

pli­

fied)

Chi­

nese

(Tra­

di­

tion­

al)

Czech Eng­

lish

FrenchGer­

man

Hun­

gari­

an

Ital­

ian

Japan­

ese

Kore­

an

Pol­

ish

Por­

tuguese

(Brazil)

Russ­

ian

Span­

ish

Turk­

ish

Lan­

guage

codes

zh_­

CN

zh_­

TW

cz en fr de hu it ja ko pl pt_­

BR

ru es tr

141

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest Performance

142

Notes:

◦ The -l parameter is optional. If you do not want to use this parameter, then the following

information are displayed in a language based on the display language that is set on your

computer:

▪ The installation instructions

▪ The language of the product

◦ If the installation is terminated due to any reason, you must check the Installerror.txt

file to know more about the problem that occurred during the installation process. The error

log is located at /<installation directory>/Logs.

Result

You can verify the status of the installation of the product by checking the log file at /<installation

directory>/Logs.

Results

You have installed the product on your computer.

Uninstallation of the product by using the stand-alone installer
When you no longer require the product, you can use the stand-alone installer to uninstall the products that you have

installed.

Uninstalling the product on Windows systems
You can find information about uninstalling the product on Windows system by using either the stand-alone installer.

You can uninstall the product by using any of the following methods:

• GUI mode

• Silent mode

Uninstalling the product in the GUI mode on Windows systems
When you want to remove the product on a Windows system computer, use the uninstall option. You can choose to

uninstall the product by using any one of the uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

Chapter 6. Administrator Guide

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. On the Start menu, click Add or remove programs option.

2. On the Apps & Features page, click the product software that you want to remove.

3. Click Uninstall.

A dialog appears with the warning message.

4. In the dialog, click Uninstall and follow the on-screen instructions.

The product is removed from your system.

Results

You have uninstalled the product from your computer.

Uninstalling the product in the silent mode on Windows systems
When you no longer require a version of the product, you can uninstall the product automatically without manual

intervention by using the command prompt option.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Right-click the Command Prompt application and select Run as Administrator.

2. Change to the directory where the product is installed by running the following command:

cd <directory path>

For example, cd C:\Program Files\HCL\Uninstall

3. Start the uninstallation process by running the following command:

Uninstall-HCL-OneTest-Performance.exe -uninstall -i silent

Results

You have uninstalled the product from your computer.

Uninstalling Agent in the GUI mode on Windows systems
When you want to remove HCL OneTest™ Performance Agent on a Windows system computer, use the uninstall

option. You can choose to uninstall the product by using any one of the uninstallation methods regardless of the

mode of installation.

143

HCL OneTest Performance

144

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. On the Start menu, click Add or remove programs option.

2. On the Apps & Features page, click the product software that you want to remove.

3. Click Uninstall.

A dialog appears with the warning message.

4. In the dialog, click Uninstall and follow the on-screen instructions.

The product is removed from your system.

Results

You have uninstalled the agent from your computer.

Uninstalling Agent in the silent mode on Windows systems
When you no longer require HCL OneTest™ Performance Agent, you can uninstall it automatically without manual

intervention by using the command prompt option. You can choose to uninstall the product by using any one of the

uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Right-click the Command Prompt application and select Run as Administrator.

2. Change to the directory where the product is installed by running the following command:

cd <directory path>

For example, cd C:\Program Files\HCL\Uninstall

3. Start the uninstallation process by running the following command:

Uninstall-HCL-OneTest-Performance-Agent.exe -uninstall -i silent

Results

You have uninstalled the product from your computer.

Chapter 6. Administrator Guide

Uninstalling the product on Linux
You can find information about uninstalling the product on Linux by using the stand-alone installer.

You can uninstall the product by using any of the following methods:

• GUI mode

• Console mode

• Silent mode

Uninstalling the product in the GUI mode on Linux
When you want to remove the product on Linux machine, use the uninstall option. You can choose to uninstall the

product by using any one of the uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as root user.

2. Click Applications > Programming > Uninstall.

3. On the Uninstall screen, click Uninstall and follow the on-screen instructions.

4. Uninstall the product by running the following commands in the terminal, if you are a non-root user:

<installation directory>/Uninstall
sudo ./Uninstall-HCL-OneTest-Performance

Results

You have uninstalled the product from your computer.

Uninstalling the product in the console mode on Linux
When you no longer want to use the product installed on Ubuntu or Red Hat Enterprise Linux (RHEL) operating

system, you can uninstall the product in the console mode.

Before you begin

• You must be a root user.

• You must close browsers and other applications that are enabled by the product before you uninstall the

product.

145

HCL OneTest Performance

146

1. Open a terminal and change the current directory to the installation directory by running the following

command:

cd <directory path>/<installation folder>/Uninstall

For example, cd /opt/HCL/OneTest-Performance/Uninstall

2. Run the following command to uninstall the product:

./Uninstall-HCL-OneTest-Performance -uninstall -i console

3. Read the details about the uninstallation process, and then press Enter.

4. Exit the console mode by pressing Enter after the product is uninstalled.

Results

You have uninstalled the product from your computer.

What to do next

You can reinstall the product when you want to upgrade the product to the latest version. You can also reinstall the

product if the previous installation is unsuccessful. See Installing the product in the console mode on page 104.

Uninstalling the product in the silent mode on Linux
When you no longer require a version of the product, you can uninstall the product automatically without manual

intervention by using the command prompt option.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as a root user.

2. Change the directory to where you have installed the product by entering the following command:

cd <directory path>

For example, cd /opt/HCL/Uninstall-HCL-OneTest-Performace

3. Initiate the uninstallation process by entering the following command:

./Uninstall-HCL-OneTest-Performance -uninstall -i silent

Results

You have uninstalled the product from your computer.

Uninstalling Agent in the GUI mode on Linux
When you want to remove HCL OneTest™ Performance Agent on Linux machine, use the uninstall option.

Chapter 6. Administrator Guide

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as root user.

2. Click Applications > Programming > Uninstall.

3. On the Uninstall screen, click Uninstall and follow the on-screen instructions.

4. Uninstall the product by running the following commands in the terminal, if you are a non-root user:

<installation directory>/Uninstall
sudo ./Uninstall-HCL-OneTest-Performance

Results

You have uninstalled the agent from your computer.

Uninstalling Agent in the console mode on Linux
When you no longer want to use HCL OneTest™ Performance Agent installed on Ubuntu or Red Hat Enterprise Linux

(RHEL) operating system, you can uninstall HCL OneTest™ Performance Agent in the console mode.

Before you begin

• You must be a root user.

• You must close browsers and other applications that are enabled by the product before you uninstall the

product.

1. Open a terminal and change the current directory to the installation directory by running the following

command:

cd <directory path>/<installation folder>/Uninstall

For example, cd /opt/HCL/OneTest-Performance-Agent/Uninstall

2. Run the following command to uninstall the product:

./Uninstall-HCL-OneTest-Performance-Agent -uninstall -i console

3. Read the details about the uninstallation process, and then press Enter.

4. Exit the console mode by pressing Enter after the product is uninstalled.

Results

You have uninstalled the agent from your computer.

What to do next

147

HCL OneTest Performance

148

You can reinstall the product when you want to upgrade the product to the latest version. You can also reinstall the

product if the previous installation is unsuccessful. See Installing Agent in the console mode on Linux on page 128.

Uninstalling Agent in the silent mode on Linux
When you no longer require HCL OneTest™ Performance Agent, you can uninstall the product automatically without

manual intervention using the command prompt option. You can choose to uninstall the product by using any one of

the uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as a root user.

2. Change the directory to where you have installed the product by entering the following command:

cd <directory path>

For example, cd /opt/HCL/Uninstall-HCL-OneTest-Performace-Agent

3. Initiate the uninstallation process by entering the following command:

./Uninstall-HCL-OneTest-Performance-Agent -uninstall -i silent

Results

You have uninstalled the product from your computer.

Uninstalling the product on macOS
You can find information about uninstalling the product on macOS by using either the stand-alone installer.

You can uninstall the product by using any of the following methods:

• GUI mode

• Silent mode

Uninstalling the product in the GUI mode on macOS
When you no longer require the product, you can uninstall the product in the GUI mode by using the stand-alone

installer. You can choose to uninstall the product by using any one of the uninstallation methods regardless of the

mode of installation.

Before you begin

You must have completed the following tasks:

Chapter 6. Administrator Guide

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Go to the directory where the product is installed.

2. Double-click the Uninstall-HCL-OneTest-Performance file and follow the on screen instructions.

The product is uninstalled from your computer.

Results

You have uninstalled the product from your computer.

Uninstalling the product in the silent mode on macOS
When you no longer require a version of the product, you can uninstall it by using the silent mode method. You can

choose to uninstall the product by using any one of the uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as an administrator.

2. Change to the directory where the product is installed by entering the following command:

cd <directory path>

For example, cd Applications/HCL/Uninstall-HCL-OneTest-Performance/Contents/MacOS

3. Start the uninstallation process by running the following command:

/Uninstall-HCL-OneTest-Performance -uninstall -i silent

Results

You have uninstalled the product from your computer.

Uninstalling Agent in the GUI mode on macOS
When you no longer require HCL OneTest™ Performance, you can uninstall the product in the GUI mode by using the

stand-alone installer.

Before you begin

You must have completed the following tasks:

149

HCL OneTest Performance

150

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Go to the directory where the product is installed.

2. Double-click the Uninstall-HCL-OneTest-Performance file and follow the on screen instructions.

The product is uninstalled from your computer.

Results

You have uninstalled the agent from your computer.

Uninstalling Agent in the silent mode on macOS
When you no longer require HCL OneTest™ Performance Agent, you can uninstall it in the silent mode. You can

choose to uninstall the product by using any one of the uninstallation methods regardless of the mode of installation.

Before you begin

You must have completed the following tasks:

• Closed any open windows of the product.

• Closed any open web browsers.

• Closed all the other applications that are enabled by the product.

1. Log in as an administrator.

2. Change to the directory to where the product is installed by entering the following command:

cd <directory path>

For example, cd Applications/HCL/Uninstall-HCL-HCL-OneTest-Performance-Agent/Contents/MacOS

3. Start the uninstallation process by running the following command:

/Uninstall-HCL-OneTest-Performance-Agent -uninstall -i silent

Results

You have uninstalled the product from your computer.

License management
Licensing for HCL OneTest™ Performance is administered through HCL Software License & Download portal. This

portal is a FlexNet-based web application that helps to manage software entitlements and licenses.

When a software order is placed and acknowledged, a software entitlement is created. You must then follow the

instructions in the Software Order Acknowledgment document that you receive to activate your entitlement, create

devices, and download the software from the portal.

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

The license portal provides both software distribution and management of your software entitlements that are

purchased from HCL Software. The portal provides control and flexibility on how to consume your licenses. An

organization identifies one of its resources as a License Manager (also called Tech or Portal Admin) who is familiar

with the language of licenses.

For more information about the HCL Software License & Download portal, you can refer to the following knowledge

articles:

• What is the HCL Software License & Download portal (FlexNet portal)?

• How to find HCL Product Releases in HCL Software License & Download portal

• Managing Users on the HCL Software License & Download portal

If you do not have access to the internet, you can install and configure a Local License Server (LLS).See Configuring

licenses by using a Local License Server on page 154.

License descriptions
The usage of base product and test extensions are enabled by floating licenses, whereas schedule runs can be

enabled by either floating or consumption-based licenses. With floating licenses, multiple users can use the product;

however, the total number of concurrent users cannot exceed the number of floating licenses you purchase.

When a software order is placed and acknowledged, a software entitlement is created for the user. You can then

create devices and map the software entitlement with the devices through the HCL® License & Delivery portal. Every

device is associated to a server ID. This server ID is applied in the product. Multiple software entitlements can be

created based on the requirements.

You can use any of these licenses according to your requirements:

Product licenses

• Floating license to use the product:

To use the product, you need a HCL OneTest™ Performance floating license or you can also use a HCL

OneTest™ Studio floating license. A floating license is checked out when you use the product and is returned

to HCL® License & Delivery portal when the license is not used for 15 minutes.

• Floating licenses for test extensions:

For HCL OneTest™ Performance, in addition to the license for product usage, if you use SOA, SAP, Citrix, and

Siebel test extensions, you need separate software entitlements. You can map all the entitlements to one

server ID. With HCL OneTest™ Studio license, you can use the above test extensions without the need for

separate entitlements. A license is checked out from the time the product is opened by the user. The license

remains checked out until the user closes the product. When the user closes the product, after 15 minutes, the

license is returned to the HCL® License & Delivery portal.

151

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0073344
https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0010149
https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0072851

HCL OneTest Performance

152

Licenses for schedule, in this context, is used to refer to both VU Schedule and Rate Schedule runs

• HCL® OneTest™ Studio - Virtual Users:

These are floating licenses that are purchased in blocks of 100 virtual users each. After the run, the licenses

are checked back in to the server. For example, if you have 200 HCL OneTest™ Studio - Virtual Users available,

you can run schedule A with 100 virtual users and schedule B with 20 virtual users, leaving 80 virtual users

for other team members to use for schedule execution using the same license server. After the schedule run

completes, the all the virtual users are returned to the server for others to use.

• HCL® OneTest™ Studio - Virtual User Execution Capacity:

The calculation of Rate Schedule VU-Hours is based on 1 transaction per second being the equivalent of one

virtual tester. These licenses are referred as consumption-based license. They are purchased in blocks, for

example, 1000 hours. Every time you run a schedule or compound test, the number of hours are deducted

from the block. Prior to schedule run, the product provides an estimate of the VU-Hours required to run the

schedule. At the end of successful schedule run, the product sends a request to the HCL® License & Delivery

portal to deduct the number of VU-Hours consumed. For Run Until Finished schedule run, the estimate warns

that the actual number of VU-Hours to be consumed cannot be determined in advance.

While you check out licenses for a schedule, the product first checks for HCL OneTest™ Studio - Virtual Users

licenses and utilizes it if there are enough licenses. Otherwise, HCL® OneTest™ Studio - Virtual User Execution

Capacity licenses are used."For example, suppose you are entitled to 500 HCL OneTest™ Studio - Virtual Users

and 1000 hours HCL® OneTest™ Studio - Virtual User Execution Capacity license. If a team member starts

schedule A that requires 400 virtual users and another team member starts schedule B that requires 200

virtual users, schedule A picks up 400 virtual users and runs as expected. Schedule B searches 200 virtual

users but does not find them. So, the duration of schedule B will be calculated and the estimated number of

hours is displayed to the user. If the user clicks OK, HCL® OneTest™ Studio - Virtual User Execution Capacity

licenses are consumed.

You can add more virtual users or change the rate of execution during the test or schedule run only if there are

sufficient number of Virtual User licenses or if a sufficient number of VU-Hours are on balance in the customer's

account.

License configuration
To start using a product, you must first apply a license.

When you start the product for the first time, a licensing dialog is displayed. Specify the server ID that was provided to

you or copy the ID from the HCL® License & Delivery portal. When you submit the server ID, the product connects with

the HCL® License & Delivery portal to verify it and if there is a license available, it is checked out so that you can use

the product. If the license is not available, a message is displayed about it. In most cases, you must not change the

server URL in the licensing dialog.

Notes:

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

• If the license is not used for 15 minutes, the license is returned to the server for others to consume it.

If the product looses connectivity to the HCL® License & Delivery portal, you can use the product for

two hours only if the server ID that you entered last time is correct.

• After the product installation, when you apply the license to the product, the license information

is cached in a system directory. If there are any permission issues accessing the directory or the

directory is deleted, there can be licensing error when starting the product. The workaround is to

create an environment variable HCL_ONETEST_LICENSING_STORAGE and specify a directory path. The

licensing information is now stored in the new directory. For example,

You can also apply the license after you open the product by using any of the following methods based on your

requirement:

• Configuring licenses by using a cloud-based License Server on page 154

• Configuring licenses by using a Local License Server on page 154

• Configuring licenses by using a Proxy Server on page 155

To apply the license without opening the product, add the licensing parameters as environment variables:

Variables Values

HCL_ONETEST_LICENSING_URL https://hclsoftware.compliance.flexnetoperations.com

HCL_ONETEST_LICENSING_ID Enter your server ID. The ID is a 12-character alphanu­

meric identifier.

When running the tests from command line, you do not have to specify any licensing argument. However, when

running a schedule for HCL OneTest™ Performance or accelerated/distributed tests for HCL OneTest™ UI in an

uninterrupted mode, you must specify vmargs -Dhptcostconfirm argument in the command. The uninterrupted

mode refers to any of the non-GUI based test execution scenarios such as the following use cases:

• Running a test from the command line

• Running a test with Jenkins

• Running a test with Ant

153

https://hclsoftware.compliance.flexnetoperations.com

HCL OneTest Performance

154

• Running a test with UrbanCode™ Deploy

• Running a test with IBM® Rational® Quality Manager

Configuring licenses by using a cloud-based License Server
You can apply license by using a cloud-based License Server to use HCL OneTest™ Performance.

1. Open HCL OneTest™ Performance.

2. Click Windows > Preferences > Test > HCL Licensing.

3. Select the Server Type as Cloud.

4. Enter the URL of the License Server in the Server URL field.

5. Enter the ID of the License Server in the Server ID field.

6. Click Test Connection to verify the connection to the License Server.

7. Click Apply to configure the license.

Results

You have configured the license to use HCL OneTest™ Performance. The HCL Licensing dialog displays the following

information:

• The number of Virtual Users (VUs)

• The number of VU Execution hours

• The number of floating licenses

What to do next

You can work with HCL OneTest™ Performance.

Configuring licenses by using a Local License Server
You might not be able to connect your computer to the internet due to certain restrictions. In such cases, you can

configure a Local License Server (LLS) behind a firewall to use HCL OneTest™ Performance.

Before you begin

You must have completed the following tasks:

• Installed and started the LLS. For more information, refer to the HCL Software License & Download portal

documentation.

• Imported a self-signed certificate into OneTest Java key store if you installed the LLS by using the self-signed

certificate and used an HTTPS protocol to check out licenses from the LLS.

Note: You can run the following commands to import the certificate into OneTest Java key store:

https://hclsoftware.flexnetoperations.com/flexnet/help/OperationsPortal/Content/helplibrary/opspManDevicesCreateDevice.htm

Chapter 6. Administrator Guide

cd <install_dir>\HCL\HCLOneTest\jdk\bin
keytool -printcert -sslserver <LLS_host>:<LLS_port> -rfc | keytool -import -noprompt
 -alias hclfnls -keystore "<install_dir>\HCL\HCLOneTest\jdk\jre\lib\security\cacerts"
 -storepass changeit

You must replace <LLS_host> and <LLS_port> with the hostname and port number of the LLS.

Important: If you used an HTTP protocol to check out licenses from the LLS, you do not

require to import the self-signed certificate.

• Mapped entitlements of software with the LLS to serve your requests. For more information, refer to the HCL

Software License & Download portal documentation.

1. Open HCL OneTest™ Performance.

2. Click Windows > Preferences > Test > HCL Licensing.

3. Select the Server Type as Local.

4. Replace the URL of the cloud-based License Server with the URL of your LLS in the Server URL field.

Remember: You must enter the URL of the LLS in the following format:

http://myserver:portNumber/request

5. Click Test Connection to verify the connection to the LLS.

6. Click Apply to configure the license.

Results

You have configured the license to use HCL OneTest™ Performance. The HCL Licensing dialog displays the following

information:

• The number of Virtual Users (VUs)

• The number of VU Execution hours

• The number of floating licenses

What to do next

You can work with HCL OneTest™ Performance.

Configuring licenses by using a Proxy Server
You can connect directly to a cloud-based license server when you start HCL OneTest™ Performance for the first time.

As an alternative, you can configure HCL OneTest™ Performance to use a Proxy Server.

155

https://hclsoftware.flexnetoperations.com/flexnet/help/OperationsPortal/Content/helplibrary/opspManDevicesMapByActID.htm
https://hclsoftware.flexnetoperations.com/flexnet/help/OperationsPortal/Content/helplibrary/opspManDevicesMapByActID.htm

HCL OneTest Performance

156

1. Open HCL OneTest™ Performance.

2. Click Windows > Preferences > Test > HCL Licensing.

3. Select the Server Type as Cloud or Local.

4. Select the Use Proxy Server checkbox and specify the Host and Port of the Proxy Server.

5. Optional: Select the Provide Credentials checkbox and specify the User Name and Password if login

credentials are required to access the Proxy Server.

6. Click Test Connection to verify the connection to the Proxy Server.

7. Click Apply to configure the license.

Results

You have configured the license to use HCL OneTest™ Performance. The HCL Licensing dialog displays the following

information:

• The number of Virtual Users (VUs)

• The number of VU Execution hours

• The number of floating licenses

What to do next

You can work with HCL OneTest™ Performance.

Collecting usage metrics data
To provide an insight into the usage patterns of the product itself and not necessarily the application that it is testing,

the usage metrics are collected. The product can collect the metrics about the usage of the tool including and not

limited to the number of tests executed, the number of actions performed against an application under test, the

number of successful versus failed actions, verification points, and so on.

Before you begin

• Ensure that HCL® Quality Server is installed. See the HCL® Quality Server documentation for the installation

instructions.

• Ensure that the license key is applied. See License configuration on page 152

About this task

When you collect usage metrics, the data is collected for internal use to provide you better services. For example,

in an HTTP test, the number of HTTP Pages and Requests are counted and logged. No information about the

application under test is collected.

1. Click Window > Preferences > Test > HCL Quality Server.

2. Specify the IP address or host name of the computer where HCL® Quality Server server is installed.

Chapter 6. Administrator Guide

Note: If the IP address or host name is not specified, depending on the license key setting, a warning

message might be logged every time you run a test, the test execution itself might be blocked, or the

tests can be executed without any warning messages.

3. Click Test Connection to check whether the connection is established. Click OK if the connection is

established.

Product upgrade and migration
When you want to use the enhanced functionalities of HCL OneTest™ Performance, you must upgrade to the latest

version of the product software.

You can upgrade HCL OneTest™ Performance to the latest version by uninstalling the existing version of HCL

OneTest™ Performance. You can then install the latest version of HCL OneTest™ Performance.

Migrating test assets to new version of the product
After you install a later version of the product and you choose to open the product from an old workspace, you

are prompted to migrate test projects, tests, schedules, rules, and reports. Tests and schedules are migrated

automatically when you modify and save them.

You cannot have two versions of the products installed on your computer at one time. Before you install a new

version, uninstall the previous version of the product. If you update the product with IBM® Installation Manager, you

do not have to uninstall the previous version. Uninstalling a previous version does not delete your test assets.

Note: When you want to uninstall the previous version of the product and then install the latest version, you

must install the latest version in the same folder that contained the previous version. Thereby, you can avoid

compilation errors in the project in the latest version.

When you open a project that contains an older test asset, a message is displayed in the Test Navigator view.

Typically, you upgrade your tests, schedules, and rules.

Important: Ensure that you back up the test assets before upgrading them for the new version of the product.

Do not open a migrated test project with a previous version of the product.

If you leave tests, schedules, and rules unchanged, they will not have the new functions that current release adds. You

can always save a modified test asset under a new name, which preserves the older asset. You can identify an older

asset by its version, which is listed in brackets:

157

HCL OneTest Performance

158

Note: A new release might include enhancements to the default reports. When you run a test or schedule or

open a report, you are prompted to upgrade reports to the latest version. If you upgrade the default reports to

the latest version, you lose customizations that you have made to the reports.

If you encounter errors when you open a workspace from a different version of the product, reset the perspective. To

reset the perspective, click Window > Reset Perspective.

Configuration of the product
You must configure HCL OneTest™ Performance when you want to run SAP tests, collect response time breakdown

data, or use the product in the Docker container.

The following topics provide more information about the configuration of HCL OneTest™ Performance:

Configuring the environment for SAP tests
Some of the capabilities of service tests require that you manually install additional libraries and files or that you

configure some elements of the test environment.

Configuring SAP for performance testing
Performance test recording and execution requires scripting to be enabled on the SAP application server and on all

SAP GUI clients that are installed on remote computers. The instructions might vary based on the SAP versions that

you use.

Before you begin

Performance testing relies on the SAP Scripting API and ActiveX. Make sure that Active X is installed when installing

the SAP GUI client and enable scripting on the SAP server.

Note: You only need to perform the following actions once. Scripting should remain enabled on the SAP

server after a restart.

To enable scripting on the SAP server:

1. Check that there is a Scripting directory located in the SAP GUI installation directory.

If this directory does not exist, then the SAP Scripting API is not installed and you must reinstall SAP GUI with

the SAP Scripting API option.

2. Run the SAP GUI client and logon to SAP with your user name and password.

Administrator privileges might be required to enable scripting on the server.

3. In SAP, run the transaction rz11, type the parameter name sapgui/user_scripting, and then click Display.

If the parameter is not found, then make sure you have the correct support package level from SAP. Contact

your SAP representative for guidance.

Chapter 6. Administrator Guide

4. If the Current value is FALSE, click the Change value button, and then set the New value to TRUE in uppercase

characters.

5. Click Save, and then end the transaction.

Scripting will be enabled the next time you log on.

6. In the SAP GUI client toolbar, click the Customizing of Local Layout toolbar button, and then select Options.

Result

The SAP GUI Options page is displayed.

7. Expand Accessibility & Scripting from the left pane.

8. Select the Scripting page.

9. Select the Enable scripting check box, and then disable both Notify when a script attaches to SAP GUI and

Notify when a script opens a connection.

10. Click OK.

11. In the Help menu, select Settings, and then select the F4 Help page.

12. In Display, select Dialog (modal) and then click the Enter button.

What to do next

Repeat steps 5 through 10 for SAP GUI clients on all remote computers. For more information about enabling

scripting on the SAP application server, refer to the following SAP notes, available from SAP:

• 480149: ABAP and patch level requirements

• 587202: Limitations of SAP GUI Scripting

• 527737: Composite SAP Note on SAP GUI Scripting

• 612454: SAP GUI Scripting status and lifetime

• 619459: SAP GUI Scripting support of SAP applications

Configuring an environment for batch input tests
To play back the SAP batch input tests, you must configure the environment by installing the SAP Java™ Connector

(JCo) libraries provided by the SAP administrator on local and remote computers where the HCL OneTest™

Performance Agent is running.

Before you begin

• You must have downloaded the following files provided by the SAP administrator:

◦ sapjco3.jar

◦ sapjco3.dll

For more information about downloading the SAP files, refer to the SAP portal.

Note: You must have verified that the Microsoft® Visual Studio 2013 C/C++ runtime libraries are

installed on your computer. If the runtime libraries are not present in your computer, then you

must download and install the latest version of the Visual C++ 2013 Redistributable Package from

Microsoft Download Center, depending on the Windows operating system (For example, Windows 32-

159

https://support.sap.com/en/product/connectors/jco.html#section

HCL OneTest Performance

160

bit or Windows 64-bit). For more information about the redistributable packages, refer to the Microsoft

support portal.

• You must have performed the following actions on each local and remote computer that is used for running

the batch input tests and schedules:

◦ Prepared an environment with the libraries that you have downloaded from the SAP portal.

◦ Set the class path of the Java™ Runtime Environment (JRE) to a value that is used by HCL OneTest™

Performance Agent.

1. Copy sapjco3.jar into the jre/lib/ext directory of the JRE.

The default directory is: C:\Program Files\HCL\HCLOneTest\jdk\jre\lib\ext.

2. Copy sapco3.dll into the system directory.

For example,

◦ If you are using a Windows 32-bit, you must copy the sapco3.dll file into the C:\Windows

\System32 directory.

◦ If you are using a Windows 64-bit machine, you must copy the sapco3.dll file into the C:\Windows

\SysWOW64 directory.

3. Click Start > Control Panel > Administrative Tools > Services, and then stop and restart the Majordomo

service, if you are using an HCL OneTest™ Performance agent.

Results

The environment for the SAP batch input test is configured and as a result, the SAP Batch Input Recording option is

available for selection on the Select Client Application page.

What to do next

After the configuration is complete, you can then select the SAP Batch Input Recording option, and runs a SAP batch

input test. You can then verify the test results from the Batch Input Transaction Rate page of the SAP performance

report. You can also view the Test Log page to verify the SAP connection and transaction execution information.

Related information

Recording a SAP batch input test on page 374

Configuring the data collection infrastructure
If you want to collect response time breakdown data from remote computers used in distributed applications, you

must install and configure the data collection infrastructure on the remote computers.

Data collection infrastructure overview
The data collection infrastructure collects performance profiling data for distributed applications and sends the data

to the workbench computer, where you can view and analyze the collected data. The data collection infrastructure

https://support.microsoft.com/en-us/help/4032938
https://support.microsoft.com/en-us/help/4032938

Chapter 6. Administrator Guide

must be installed, configured, and running on all remote computers that will be used in your distributed application.

The data collection infrastructure is installed when you install HCL OneTest™ Performance Agent.

You can monitor a live application in a development or testing environment and collect data from the application in

real time. Data collection is supported on the following web servers:

• IBM® WebSphere® Application Server, Version 6.1, 7.0, 8.0, or 8.5 running on Microsoft™ Windows™, AIX®,

and Linux™

• Oracle WebLogic Application Server, Version 9 or 10 running on Microsoft™ Windows™ and Linux™

You can also query IBM® Tivoli® Monitoring for Transaction Performance, IBM® Tivoli® Composite Application

Manager for Response Time Tracking, IBM® Tivoli® Composite Application Manager for WebSphere® or IBM®

Tivoli® Composite Appliciuiu.uation Manager for Application Diagnostics management server databases to collect

past performance data for an application that is deployed in a production environment. Data collection is supported

on the following software versions:

• IBM® Tivoli® Monitoring for Transaction Performance, Version 5.3 fix pack 1 (5.3.0.1)

• IBM® Tivoli® Composite Application Manager for Response Time Tracking, Versions 6.0 and 6.1

• IBM® Tivoli® Composite Application Manager for WebSphere®, Versions 6.0 and 6.1

• IBM® Tivoli® Composite Application Manager for Application Diagnostics, Version 7.1

Instrumenting local servers
You must instrument application servers to collect response time breakdown data. You can use either a command-

line or graphical user interface to instrument application servers to work with the data collection infrastructure.

Before you begin

• The data collection infrastructure must be installed on any computer from which you want to collect

performance data.

• If you are instrumenting a WebSphere® application server, the application server must be running.

• The Application Server Instrumenter prompts you to restart BEA WebLogic application servers.

• You must have root or administrator user privileges to instrument servers.

1. In Windows™, click Start > Programs > HCL Data Collection Infrastructure > Application Server Instrumenter.

In Linux™, use the start menu to open the Application Server Instrumenter. In the AIX® operating system, type

/opt/HCL/HCLOneTest/DCI/rapa_prod/instrument_comp/ASI at a command prompt to start the Application Server

Instrumenter.

Result

The Application Server Instrumenter starts.

2. Use the Application Server Instrumenter to instrument the server. See the examples that follow.

3. If you are instrumenting a BEA WebLogic server, after you have instrumented the server you must restart the

application server.

The Application Server Instrumenter automatically restarts WebSphere® application servers.

161

HCL OneTest Performance

162

Note: All HCL OneTest™ Performance systems that are involved with the data collection infrastructure

must have the data collection software running for the transaction breakdown function to be available

within the results of a HCL OneTest™ Performance test schedule.

Note: The application server instrumenter or the instrumentServer.bat (or

instrumentServer.sh) batch file can fail with a generic error message (Error during install/

uninstall) when instrumenting or uninstrumenting a server. If this error occurs, you can find more

information to help troubleshoot the error in the log files in the IBM® Tivoli® common directory. On

Windows™, the default location of this directory is C:\Program Files\IBM\tivoli\common.

On Linux™, the default location of this directory is /var/ibm/tivoli/common. If the IBM® Tivoli®

common directory is not in the default location, search for a path that contains tivoli/common, or

for any of these log files: trace-install.log, trace-ma.log, or trace-tapmagent.log.

Note: For IBM® WebSphere® Application Server 6.0 or later, if you create a new profile and then

use the application server instrumenter to instrument this profile without first starting WebSphere®

Application Server, the application server instrumenter reports that the server is instrumented and

prompts you to restart the server manually. This message is incorrect; the server is not actually

instrumented. To work around this problem, complete these steps:

a. Close and then restart the application server instrumenter.

b. Select the entry that you just added from the list of instrumented servers, and click Remove.

c. Restart WebSphere® Application Server.

d. Restart the application server instrumenter, and use it to instrument the server.

To avoid this problem, after you create a new profile, start the WebSphere® Application Server profile

manually. Then, use the application server instrumenter to instrument the server.

Exemple

To instrument a Linux™ computer that is equipped with the 64-bit version of IBM® WebSphere® Application Server,

Version 6.1, where the server is named server2, the server is installed in the /opt/WebSphere/AppServer

directory, with the profile name set to the default value, and security enabled:

1. Click Instrument Local Server.

2. From the Type list, select IBM WebSphere Application Server v6.1.

3. Type /opt/WebSphere/AppServer in the Server home field.

4. Type server2 in the Server name field.

5. Type default in the Profile name field.

6. Under Server JVM, click 64-bit.

7. Select the Requires global security check box.

8. Type the WebSphere® user ID in the User field.

Chapter 6. Administrator Guide

9. Type the WebSphere® password in the Password field.

10. Click OK.

To instrument a Microsoft™ Windows™ computer that is equipped with a BEA WebLogic 10 application server named

server1 that is installed in the C:\bea\weblogic10 directory, using the 32-bit version of JRockit JVM, and the C:

\bea\weblogic10\mydomain\startWebLogic.cmd start script file :

1. Click Instrument Local Server.

2. Select BEA WebLogic Application Server v10.x from the Type list.

3. Type server1 in the Server name field.

4. Type C:\bea\weblogic10 in the Server home field.

5. Type C:\bea\weblogic10\mydomain\startWebLogic.cmd in the Start script field.

6. Under Server JVM, select Oracle JRockit 32-bit.

7. Click OK.

8. Stop and restart the server.

What to do next

Repeat the instrumentation steps for every application server that is involved in data collection for the applications

that you will profile. Typically, there will be only one application server. You can instrument only one local application

server per computer.

Tips for instrumenting Oracle WebLogic Application Server
Tips when instrumenting Oracle WebLogic Application Server to collect response time breakdown data.

• You must instrument using an account with root or administrator privileges.

You must provide correct information in the Application Server Instrumenter.

Server name is the name of the server to instrument. For example, for Oracle WebLogic Application Server 10.3

running on Microsoft™ Windows™ with the default sample application MedRec installed, the server name is

MedRecServer.

Server home is the path to the server bin directory. For example, for Oracle WebLogic Application Server 10.3 running

on Microsoft™ Windows™ with the default sample application MedRec installed, the server home is: C:\Oracle

\Middleware\wlserver_10.3\samples\domains\medrec.

Start script is the script, a .cmd or .sh file, used to start the Oracle WebLogic Application Server. For example, for

Oracle WebLogic Application Server 10.3 running on Microsoft™ Windows™ with the default sample application

MedRec installed, the start script is C:\Oracle\Middleware\wlserver_10.3\samples\domains\medrec

\bin\startWebLogic.cmd.

163

HCL OneTest Performance

164

Server JVM is the type of Java™ Virtual Machine (JVM) used by Oracle WebLogic Application Server. To determine

the server JVM, examine the system processes while the server is running and see whether the JRockit JVM or the

Oracle JVM is active.

Tips for instrumenting WebSphere® Application Server
Follow these tips when you instrument WebSphere® Application Server to collect response time breakdown data.

• The instance of WebSphere® Application Server to instrument must be running.

• You must instrument with an account with root or administrator privileges.

• If security is enabled for WebSphere® Application Server, you must know the WebSphere® Application Server

administrator ID and password before you can instrument the server.

• Vertical clusters are not supported. You can instrument a horizontal cluster by instrumenting each physical

server separately.

You must provide correct information in the Application Server Instrumenter.

Server home is the complete path to the WebSphere® Application Server installation directory. By default, on

Microsoft™ Windows™ the server home is C:\Program Files\IBM\WebSphere\AppServer. In Linux™ and AIX®,

the default server home is /opt/IBM/WebSphere/AppServer.

Server name is the name of the WebSphere® Application Server instance to instrument. To see a list of server names,

change to the bin directory, and type this command at a command prompt: wsadmin -conntype none -c "puts stdout

[$AdminConfig list Server]".

An example of output from this command is as follows:

WASX7357I: By request, this scripting client is not connected to any server process. Certain configuration

and application operations will be available in local mode. server1(cells/MachinenameNode01Cell/nodes/

MachinenameNode01/servers/server1|server.xml#Server_1183122130078)

In this case, server1 is the server name.

Profile name is the name of the profile that is associated with the server to instrument.

To see a list of profiles from WebSphere® Application Server, change to the bin directory, and type this command

at a command prompt: manageprofiles -listProfiles. By default, in Microsoft™ Windows™ the bin directory is C:

\Program Files\IBM\WebSphere\AppServer\bin. In Linux™ and AIX®, the default bin directory is /opt/

IBM/WebSphere/AppServer/bin.

Instrumenting servers by using the command prompt
You must instrument application servers to collect response time breakdown data. You can use either a command

prompt or graphical user interface to instrument application servers to work with the data collection infrastructure.

Before you begin

Chapter 6. Administrator Guide

The data collection infrastructure must be installed on each computer from which you want to collect performance

data. The application server must be running. You must have administrator or root user privileges to instrument

servers.

1. Open a command prompt, and go to the instrument_comp folder in the directory where the data collection

infrastructure is installed.

By default, in Microsoft™ Windows™, this directory is C:\Program Files\HCL\HCLOneTest\DCI

\rapa_prod\instrument_comp. In Linux™ and IBM® AIX®, this directory is /opt/HCL/HCLOneTest/

DCI/rapa_prod/instrument_comp.

2. Type the command name with the arguments to use to instrument a server. See the examples that follow.

The instrumentation utility is instrumentServer.sh on AIX® and Linux™ systems and

instrumentServer.bat on Windows™ systems. Enter the command name with no arguments to see the

syntax details for the command.

3. After you have instrumented the application server, you might have to restart the application server.

Instrumentation changes take effect after the application server is restarted.

Exemple

Assume that you must instrument a Windows™ computer that is configured as follows:

• IBM® WebSphere® Application Server, Version 7.0.

• The server is named my_Server2.

• The application server is installed in the C:\Program Files\was7.0 directory.

• The profile name is default.

• Security is enabled.

• The server Java™ Virtual Machine (JVM) is a 64-bit JVM.

Type the following command and arguments:

instrumentServer -install -type was7 -serverName my_Server2 -serverHome "C:\Program Files\was7.0" -serverVMArch

64 -user my_WAS_userId -password my_WAS_password -profileName default

To instrument a Linux™ computer that is equipped with a BEA WebLogic 10 application server, with configuration

details as indicated, using the 32-bit version of JRockit JVM, type the following command and arguments:

./instrumentServer.sh -install -type wls10 -serverName server1 -serverHome /opt/bea/weblogic10 -serverVM oracle

-serverVMArch 32 -startScript /opt/bea/weblogic10/mydomain/startWebLogic.sh

To instrument a Liberty Profile, for -type use liberty85, and for -serverHome use the path to the Liberty server

installation directory until wlp.

What to do next

165

HCL OneTest Performance

166

Repeat the instrumentation steps for each application server that is involved in data collection for the applications

that you will profile. Typically, there will be only one application server. You can instrument only one local application

server per computer.

Removing instrumentation
Before you uninstall the data collection infrastructure, you must remove instrumentation from all application servers

that were instrumented to work with the data collection infrastructure.

To remove the instrumentation from an application server:

1. Click Start > Programs > HCL Data Collection Infrastructure > Application Server Instrumenter.

On the IBM® AIX® operating system, type /DCI/rapa_prod/instrument_comp/ASI at a command prompt to start

the Application Server Instrumenter.

2. Select the server to remove the instrumentation from.

3. Click Uninstrument Server.

4. Restart the server if prompted to do so.

What to do next

You can uninstall the data collection infrastructure.

Removing instrumentation using the command prompt
Before you uninstall the data collection infrastructure, you must remove instrumentation from all application servers

that were instrumented to work with the data collection infrastructure.

Before you begin

If you have uninstalled the application server or removed an instance of the application server, you cannot use

the instrumentation utility to remove instrumentation from the server. This situation will block the data collection

infrastructure uninstall process. Do not uninstall an application server before you have removed instrumentation from

the application server.

Instrumented servers are listed in the file InstrumentationRegistry.xml. After you have removed

instrumentation from a server, the InstrumentationRegistry.xml file will be empty of references to any

application server. If you uninstall an application server before you have removed instrumentation, to uninstall the

data collection infrastructure you must edit InstrumentationRegistry.xml to remove the applicationServer

element for the application server that you uninstalled.

To remove instrumentation from application servers:

1. Open a command prompt, and change directories to the instrument_comp folder in the data collection

infrastructure installation directory. By default, on Microsoft™ Windows™ this directory is C:\Program

Files\HCL\HCLOneTest\DCI\rapa_prod\instrument_comp. On Linux™ and IBM® AIX®, this directory

is /opt/HCL/HCLOneTest/DCI/rapa_prod/instrument_comp.

2. Type the command name with the -uninstall argument and all of the other arguments that you used when

instrumenting the server.

Chapter 6. Administrator Guide

The instrumentation utility, which is also used to remove instrumentation from servers, is

instrumentServer.sh on AIX® and Linux™ systems and instrumentServer.bat on Windows™

systems. Enter the command name with no arguments to see the syntax details for the command.

3. Restart the server if prompted to do so.

What to do next

You can uninstall the data collection infrastructure.

Configuring Docker containers
Instead of reading through the system requirements list and installing the products, you can now deploy the Docker

containers on any computer and get started with testing. To automate playing back tests, you can push the product

images to the Docker container.

Before you begin

You must have downloaded and installed Docker-CE. For more information, refer to the following Docker

documentations:

• Docker Desktop for Windows

• Docker Engine on Ubuntu

• Other platforms

1. Open PowerShell or a terminal of your choice and run the following command to verify whether your Docker

installation was successful:

$ docker run hello-world

2. Download the container image for the agents from the same location that you downloaded the product bits

and extract the compressed files.

Important: The version of the product and agents must match.

3. Run the following command to load the agent image into the Docker repository:

$ docker load -i imageFileName.tar.gz

For example, to load the 10.2.0 Docker image, you can use the following command:

$ docker load -i hcl-onetest-agent-10.2.0.tar.gz

Result

When the image is loaded, the following message is displayed:

Loaded image: imageFileName:versionNumber

What to do next

167

https://store.docker.com/editions/community/docker-ce-desktop-windows
https://docs.docker.com/engine/install/ubuntu/
https://hub.docker.com/search?type=edition&offering=community

HCL OneTest Performance

168

You must set up the playback environment on Docker. See Running tests with containerized agents on page 786

and Running automated tests with containerized workbench and agents from Docker on page 788.

Integration with other products
You can integrate HCL OneTest™ Performance with certain products to run tests, manage test assets, and create

defects.

The following topics provides more information about the integration of HCL OneTest™ Performance with other

products:

Integration plugin compatibility matrix
You can find information about the versions of the integration plugin that are compatible with HCL OneTest™

Performance.

The following table lists the versions of the integration plugin that are required to integrate HCL OneTest™

Performance with Jenkins, Ant, and UrbanCode™ Deploy.

Note: You must download the required version of the integration plugin from the HCL® License & Delivery

portal based on the existing version of HCL OneTest™ Performance. You can then integrate HCL OneTest™

Performance with Jenkins, Ant, HCL Launch, and UrbanCode™ Deploy.

HCL OneTest™

Performance

Ant plugin Jenkins plugin UrbanCode™

Deploy plugin

HCL™ Launch plugin

10.1.0
HOT-PERF-Ant-5.0 HOT-PERF-Jenk­

ins-6.0

HOT_PERF_1010_­

UCD-5.0

N/A

10.1.1
HOT-PERF-Ant-6.0 HOT-PERF-Jenk­

ins-7.0

HOT-PERF-UCD-6.0 HOT-PERF-

LAUNCH-6.0

10.1.2
HOT-PERF-Ant-7.0 HOT-PERF-Jenk­

ins-8.0

HOT-PERF-UCD-7.0 HOT-PERF-

LAUNCH-7.0

10.1.3
HOT-PERF-Ant-7.0 HOT-PERF-Jenk­

ins-8.0

HOT-PERF-UCD-7.0 HOT-PERF-

LAUNCH-7.0

10.2.0
HOT-PERF-Ant-8.0 HOT-PERF-Jenk­

ins-8.0

HOT-PERF-UCD-7.0 HOT-PERF-

LAUNCH-7.0

https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

HCL OneTest™

Performance

Ant plugin Jenkins plugin UrbanCode™

Deploy plugin

HCL™ Launch plugin

10.2.1
HOT-PERF-Ant-8.0 HOT-PERF-Jenk­

ins-8.0

HOT-PERF-UCD-7.0 HOT-PERF-

LAUNCH-7.0

10.2.2
HOT-PERF-Ant-9.0 HOT-PERF-Jenk­

ins-9.0

HOT-PERF-UCD-7.0 HOT-PERF-

LAUNCH-7.0

10.2.3
HOT-PERF-Ant-9.1 HOT-PERF-Jenk­

ins-9.1

HOT-PERF-UCD-9.2 HOT-PERF-

LAUNCH-9.2

Running tests by using Ant
When you want to automate repetitive tasks, you can run performance test assets from the command-line interface

by using Ant.

Before you begin

You must have completed the following tasks:

• Installed HCL OneTest™ Performance.

If you installed HCL OneTest™ Performance on the Mac operating system, you must have added

TEST_WORKBENCH_HOME as an environment variable. You must have pointed that environment variable to the

installation directory of HCL OneTest™ Performance.

Note: On Windows® and Linux™ operating systems, the TEST_WORKBENCH_HOME environment variable is

set after the installation of HCL OneTest™ Performance is complete.

• Created test assets within HCL OneTest™ Performance. See Test Author Guide on page 333.

• Installed Apache Ant. For more information, refer to the Installing Apache Ant section in the Apache Ant™ User

Manual.

• Downloaded the HCL OneTest™ Performance Ant plugin from the HCL® License & Delivery portal onto the

computer where you install HCL OneTest™ Performance.

For more information about specific versions of plugin, see Integration plugin compatibility matrix on

page 168.

• Closed HCL OneTest™ Performance.

About this task

169

https://ant.apache.org/manual/index.html
https://ant.apache.org/manual/index.html
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

HCL OneTest Performance

170

You must provide the values for certain parameters in the ANT test script to run tests from the command-line interface.

The minimum parameters that you need to provide are name, workspace, projectname, and suite or configfile. The

remaining parameters are optional.

For example, if you provide a complete path of a configuration file that contains the parameters for a test or

schedule run in the configfile parameter, then you need not be required to provide values for the name, workspace,

projectname, and suite parameters.

Note: If HCL OneTest™ Performance is not installed in default location, then you must provide the value for

the imsharedloc parameter along with other mandatory parameters.

Remember: You must consider the following requirements:

• Enter the parameter values within the double quotation marks.

• Ensure that the special characters in the parameter values do not break the validation of the XML file.

For example, you must enter the & character as &.

1. Extract the following files from the downloaded Ant plugin:

The Ant plugin includes the following files:

◦ HOT-PERF-Ant-x.y.jar

Where x.y is the version number of the Ant plugin.

◦ ExecutePerformanceTest.xml

◦ README.txt

2. Open the ExecutePerformanceTest.xml file in a text editor and provide the required parameter values

within <pt> tag by referring to the following table:

The following table lists the required parameters that you must provide to run the test from Ant:

Parameters Description

configfile
Enter the complete path to a configuration file that contains the parameters for a test

or schedule run.

For example,

<pt configfile=C:\Users\HCL\hclonetest\workspace\Project1\config.txt />

For more information about creating a command line config file from HCL OneTest™

Performance, see the Related information section.

name Enter a name for the Ant task.

Chapter 6. Administrator Guide

Parameters Description

For example,

<pt name="runtest_ant" />

projectname
Enter the name of the project that has performance test assets.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123" />

suite
Enter the name of the test asset that you want to run.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" />

workspace
Enter the complete path of the Eclipse workspace.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1" />

The following table lists the optional parameters that you can provide to run the test from Ant:

Parameters Description

duration
Use this parameter to change the duration of the stages in the rate schedule.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" duration="Stage1=10s, Stage2=3m" />

The stage number specified must exist in the rate schedule.

Note: The duration parameter creates a new copy of the rate schedule that

contains the specified number of duration.

exportlog
Use this parameter to specify the path of the file directory to store the exported HTTP

test log in a .txt format.

For example,

171

HCL OneTest Performance

172

Parameters Description

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" exportlog="C:/Users/Documents/ANT/LogExp.txt" />

Note: When you do not use the exportlog parameter, then the Ant execution

output is logged into the logfile.txt file and stored in a temp directory

where you extracted the files of the Ant plugin.

exportstatreportlist
Use this parameter to specify IDs of reports that you want to export in place of the de­

fault reports.

You can provide multiple report IDs separated by a comma. You can navigate to Pref­

erences of HCL OneTest™ Performance (Window > Preferences > Test > Performance

Test Reports > Export Reports), and then select Show Report IDs checkbox to view

the report IDs.

You must use the exportstatreportlist parameter along with the exportstats or export­

statshtml parameter.

For example, you can provide the value for the exportstatreportlist parameter as fol­

lows to export the Performance Report:

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" exportstats="C:/Users/Documents/ANT"
 exportstatreportlist="http" />

exportstats
Use this parameter to provide the complete path to a directory that you can use to

store the exported report in a comma-separated values (CSV) format.

For example, you can provide the value for the exportstatreportlist parameter as fol­

lows to export the Performance Report:

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" exportstats="C:/Users/Documents/ANT" />

Note: If you do not specify a value for the exportstatreportlist parameter, then

the reports that you selected in Preferences of HCL OneTest™ Performance

Chapter 6. Administrator Guide

Parameters Description

(Window > Preferences > Test > Performance Test Reports > Export Reports)

are exported.

exportstatsformat
Use this parameter to specify a format for the result that you want to export along

with the exportstats parameter.

You must use at least one of the following options with the exportstatsformat para­

meter:

◦ simple.csv

◦ full.csv

◦ simple.json

◦ full.json

◦ csv

◦ json

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" exportstats="C:/Users/Documents/ANT"
 exportstatsformat="simple.json" />

You can add multiple options separated by a comma.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" exportstats="C:/Users/Documents/ANT"
 exportstatsformat="simple.json,full.csv" />

When you want to export both simple and full type of test results in a json or csv for­

mat, you can specify either json or csv as options.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" exportstats="C:/Users/Documents/ANT"
 exportstatsformat="json" />

When the test run completes, the test result exports to simple.json and full.json files.

Note: The values provided in the ExecutePerformanceTest.xml file al­

ways take precedence over the Export Reports options set in the Preferences

173

HCL OneTest Performance

174

Parameters Description

of HCL OneTest™ Performance (Window > Preferences > Test > Performance

Test Reports > Export Reports).

exportstatshtml
Use this parameter to provide the complete path to a directory that you can use to ex­

port web analytic results.

The results are exported to the specified directory. You can analyze the results on a

web browser without using HCL OneTest™ Performance.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" exportstatshtml="C:/Users/Documents/ANT" />

Note: When you do not use the exportstatshtml parameter, then the Perfor­

mance report is stored in a temp directory where you extracted the files of the

Ant plugin.

history
Use this parameter when you want to view a record of all events that occurred during

a test or schedule run.

You can use any of the following options:

◦ jaeger: To send test logs to the Jaeger UI during the test or schedule run.

Note: You must set the JAEGER_AGENT_HOST property as an environment

variable by using the command line before you use the jaeger option

to send test logs to the Jaeger UI.

◦ testlog: To send test logs as traditional test logs in HCL OneTest™ Perfor­

mance during the test or schedule run.

◦ null: To send no test logs either to the Jaeger UI or HCL OneTest™ Perfor­

mance during the test or schedule run.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" history="jaeger" />

You can add multiple options separated by a comma to send test logs during the test

or schedule run to HCL OneTest™ Performance and the Jaeger UI.

Chapter 6. Administrator Guide

Parameters Description

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" history="jaeger,testlog" />

For more information about how to view test logs in the Jaeger UI and HCL OneTest™

Performance, see the Related information section.

imsharedloc
Use this parameter to enter the complete path to the HCLIMShared location, if it is not

in the default location.

The default location of the IMShared directory is as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\HCLIMShared

Linux™ /opt/HCL/HCLIMShared

Mac /Application/HCL/HCLIMShared

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" imsharedloc="D:\Testtool\HCL\HCLOneTest" />

labels
Use this parameter to add labels to test results when the test run is complete.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" labels="label1, label2" />

You can add multiple labels to a test result separated by a comma. When you run test

assets, then the labels that you added are displayed on the Performance Report in

HCL OneTest™ Performance.

The Results page of HCL OneTest™ Server displays the label that you added, in the

specific test asset in the following conditions:

◦ When you set Publish result after execution as Always or Prompt in the Pref­

erences of HCL OneTest™ Performance (Windows > Preferences > Test > HCL

OneTest Server).

◦ When you use the labels parameter along with the publish parameter.

175

HCL OneTest Performance

176

Parameters Description

Note: If the value of the labels parameter contains double quotation marks

(""), for example, "100" users, then the test run fails due to non-validation of

xml file.

To work around this problem, you must create a command-line config file, and

then run the test by using the configfile parameter.

overridermlabels
Use this parameter to perform any of the following actions:

◦ Enable the Resource Monitoring from Service option for a performance sched­

ule if the Resource Monitoring from Service option is not enabled from the

schedule editor in HCL OneTest™ Performance.

◦ Ignore Resource Monitoring sources that were set in the performance sched­

ule and change for a label matching mode.

◦ Replace an existing set of Resource Monitoring labels that were set in the per­

formance schedule and run the schedule with a new set of Resource Monitor­

ing labels.

If you have added a label in HCL OneTest™ Server for a Resource Monitoring source as

rm1, then you can provide value as shown in the following example to collect data from

the source:

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" overridermlabels="rm1" />

If your label for resource monitoring contains a comma (,) then you must replace the

single comma with the double comma while providing the value. For example, if you

added a label to a Resource Monitoring source as rm1,test, then you must provide the

value as shown in the following example to collect data from source:

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" overridermlabels="rm1,,test" />

Notes:

Chapter 6. Administrator Guide

Parameters Description

◦ You can use this field only when you want to run a Rate schedule or VU

schedule.

◦ You can add multiple Resource Monitoring labels separated by a com­

ma.

◦ You must add the Resource Monitoring labels to the Resource Moni­

toring sources on the Resource Monitoring page in the HCL OneTest™

Server project.

overwrite Set this parameter value to true or false to determine whether a result file with the

same name must be overwritten or not.

The default value is false.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" overwrite="true" />

publish
Use this parameter to publish test results to HCL OneTest™ Server by using ANT.

Remember: Before you use the publish parameter, you must provide the of­

fline user token of HCL OneTest™ Server by using any of the following meth­

ods:

◦ Set the value of the HCL_ONETEST_OFFLINE_TOKEN environment

variable to the offline user token of HCL OneTest™ Server by using the

command-line interface.

◦ Provide the offline user token of HCL OneTest™ Server in the prefer­

ences of HCL OneTest™ Performance (Window > Preferences > Test >

HCL OneTest Server)

You must use one of the following values in the publish parameter:

◦ serverURL#project.name=name_of_the_project&teamspace.name=name_of_­

the _teamspace

◦ serverURL#project.name=name_of_the_project&teamspace.alias=name_of_the

_teamspace_alias

177

HCL OneTest Performance

178

Parameters Description

◦ no

The no option is useful if the product preferences are set to publish the results,

but you do not want to publish them.

For example:

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" publish=
 "URL_OF_OneTest_Server#project.name=test&teamspace.name=ts1" />

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" publish=no" />

Where:

◦ URL_OF_OneTest_Server is the URL of HCL OneTest™ Server.

◦ test is the name of the project in HCL OneTest™ Server.

◦ ts1 is the name of the team space.

Notes:

◦ If you have a project with the same name in different team spaces,

then you must append either the &teamspace.name=name_of_the _­

teamspace or &teamspace.alias=name_of_the_teamspace_alias op­

tions.

◦ If the name of the project or team space contains a special character,

then you must replace it with %<Hexvalue_of_special_character>.

For example, if the name of the team space is Initial Team Space, then

you must provide it as Intial%20Team%20Space.

Where %20 is the Hex value of Space character.

◦ The values provided in the Publish field always take precedence over

the Results options set in the product preferences (Window > Prefer­

ences > Test > HCL OneTest Server > Results).

The Reports information section on the Log file displays the names of the report

along with its corresponding URLs in the following conditions:

Chapter 6. Administrator Guide

Parameters Description

◦ When you configured the URL of HCL OneTest™ Server in Preferences of HCL

OneTest™ Performance (Window > Preferences > Test > HCL OneTest Server).

◦ When you set Publish result after execution as Always or Prompt in the Pref­

erences of HCL OneTest™ Performance (Window > Preferences > Test > HCL

OneTest Server > Results).

◦ When you used publish parameter or publish parameter along with publishre­

ports parameter.

publish_for
Use this parameter to publish test results to HCL OneTest™ Server by using ANT based

on the completion status of the tests.

You must use the publish_for parameter along with the publish parameter. You must

add multiple parameters separated by a comma. The available options that you can

use for the publish_for parameter are as follows:

◦ ALL: You can use this option irrespective of status of the test.

◦ PASS: You can use this option to publish test results for the tests that have

passed.

◦ FAIL: You can use this option to publish test results for the tests that have

failed.

◦ ERROR: You can use this option to publish test results for the tests that includ­

ed errors.

◦ INCONCLUSIVE: You can use this option to publish test results for the incon­

clusive tests.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" publish=
 "URL_OF_OneTest_Server#project.name=test&teamspace.name=ts1"
 publish_for="FAIL,ERROR" />

publishreports
Use this parameter to publish specific test results to HCL OneTest™ Server.

You must use the publishreports parameter along with the publish parameter. The op­

tions that you can use with publishreports are as follows:

◦ STATS

◦ TESTLOG

For example,

179

HCL OneTest Performance

180

Parameters Description

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" publish=
 "URL_OF_OneTest_Server#project.name=test&teamspace.name=ts1"
publishreports="STATS" />

You can prefix the publishreports value with ! to publish the reports except for the

specified one in the test script.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" publish=
 "URL_OF_OneTest_Server#project.name=test&teamspace.name=ts1"
publishreports="!TESTLOG" />

rate
Use this parameter to change the rate of the rate runner group.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" rate="Rate Runner Group1=1/s, 3/m" />

Where, Rate Runner Group1 is the name of the rate runner group that has two stages.

The desired rate for the first stage is one iteration per second and the rate for the sec­

ond stage is three iterations per minute.

Notes:

◦ The name of the Rate Runner group must match with the name in the

rate schedule.

◦ The rate parameter creates a new copy of the rate schedule that con­

tains the specified number of rate.

results
Use this parameter to provide a different name to the result file.

The default name of the result file is the name of the test or schedule with a time­

stamp appended.

swapdatasets
Use this parameter to replace the dataset values during a test or schedule run.

You must ensure that both original and new datasets are in the same workspace and

have the same column names.When you enter a value for the swapdatasets parame­

ter, you must also include the path to the dataset. You must provide the values for the

swapdatasets parameter in the following format:

Chapter 6. Administrator Guide

Parameters Description

/project_name/ds_path/original_ds.csv:/project_name/ds_­

path/new_ds.csv

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite"
 swapdatasets="/proj1023/Datasets/ds1.csv:/proj1023/Datasets/new_ds1.csv" />

You can override multiple datasets that are saved in a different project by adding mul­

tiple paths to the dataset separated by a semicolon. For a test or schedule, the default

value is the dataset specified in the test editor or schedule editor.

usercomments
Use this parameter to add text that you want to display in the user comments row of

the report.

For example,

<pt name="runtest_ant" workspace="C:\Users\HCL\hclonetest\workspace1"
 projectname="proj123"
suite="test1.testsuite" usercomments="test run with dataset" />

Note: If the value of the usercomments parameter contains double quotation

marks (""), for example, test run with "dataset", then the test run fails due to

non-validation of xml file.

To work around this problem, you must create a command-line config file, and

then run the test by using the configfile parameter.

users
Use this parameter to overrides the default number of users, if required.

For a schedule, the default is the number of users specified in the schedule editor and

for a test, the default is one user.

Note: The users parameter creates a new copy of the schedule that contains

the specified number of users.

varfile Use this parameter to provide a complete path to an XML file that contains the vari­

able name and value pairs.

vmargs
Use this parameter to specify the maximum heap size for the Java process.

181

HCL OneTest Performance

182

Parameters Description

You can add multiple VM Arguments separated by a comma.

Note: You can add multiple <pt> tasks and provide the details for each test to run multiple tests

simultaneously.

3. Save the ExecutePerformanceTest.xml file.

4. Open the command prompt, and then change the directory to a location where you downloaded the Ant plugin.

For example,

cd D:\Downloads\Ant\HOT-PERF-Ant-x.y

Where x.y is the version number of the Ant plugin.

5. Run the following command to initiate the test run:

ant -f ExecutePerformanceTest.xml

Results

You have run the test from the command-line interface by using Ant.

What to do next

You can view the Ant execution output from the logfile.txt file that is stored in a temp directory. The temp

directory is located where you extracted the files of the Ant plugin. If you provided the location for the exportlog

parameter, then the Ant execution output is stored in the specified location.

The Reports information section on the Log file displays the names of the report along with its corresponding URLs if

you publish test results to HCL OneTest™ Server.

Related information

Creating a command-line config file on page 798

Viewing test logs in Jaeger on page 285

Viewing test logs on page 1001

Generating offline user tokens

Integration with Azure DevOps
When you use Azure DevOps for continuous integration and continuous deployment of your application, you can

create tests for your application in HCL OneTest™ Performance and run those tests in Azure DevOps pipelines.

You must use the IBM Rational Test Workbench extension from the Visual Studio Marketplace portal to integrate HCL

OneTest™ Performance with Azure DevOps.

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html

Chapter 6. Administrator Guide

The following table lists the tasks that you must perform to run performance test assets from Azure DevOps:

Tasks Go to...

Install HCL OneTest™ Performance. Installation of the product by using the stand-alone in­

staller on page 95.

Create any or all the following types of test assets in

HCL OneTest™ Performance to test your application:

• Compound tests

• Performance tests

• Schedules (Rate or VU Schedules)

Test Author Guide on page 333.

Install at least one agent in Azure Pipelines. Azure DevOps documentation.

Create an Organization and a Project in Azure DevOps to

run test assets as jobs in Azure DevOps pipelines.

Azure DevOps documentation.

Install the HCL OneTest Studio extension. Installing the HCL OneTest Studio extension on

page 183

Run the test assets from an Azure DevOps pipeline. Running tests from Azure DevOps as a Pipeline job on

page 184

Installing the HCL OneTest Studio extension
You must install the HCL OneTest Studio extension for an Organization in Azure DevOps to run tests from an Azure

DevOps pipeline.

Before you begin

• You must be familiar with working with Azure DevOps.

• You must have access to the following portals:

◦ Azure DevOps

◦ Visual Studio Marketplace

1. Log in to the Visual Studio Marketplace portal, if you are not already logged in.

2. Click the Azure DevOps tab.

3. Search for the HCL OneTest Studio extension.

4. Click the HCL OneTest Studio extension.

5. Click Get it free.

Result

The Visual Studio Marketplace portal for the HCL OneTest Studio is displayed.

183

https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops&tabs=browser
https://docs.microsoft.com/en-us/azure/devops/organizations/accounts/create-organization?toc=/azure/devops/organizations/toc.json&bc=/azure/devops/organizations/breadcrumb/toc.json&view=azure-devops

HCL OneTest Performance

184

6. Select the Organization from the drop-down list.

7. Click Install.

Result

The installation process begins and after a few minutes the installation is complete.

8. Click Proceed to organization.

Result

The Organization page in Azure DevOps is displayed.

9. Click Organization settings, and then Extensions.

Result

The HCL OneTest Studio extension is displayed as an installed extension.

Results

You have installed the HCL OneTest Studio extension for the Organization in Azure DevOps.

What to do next

You can add the details of performance test assets to task, and then run the tests from an Azure DevOps pipeline.

See Running tests in an Azure DevOps Pipeline on page 184.

Running tests from Azure DevOps as a Pipeline job
You can run test assets from Azure DevOps as a Pipeline job to test the performance of your application under test.

Before you begin

• You must be familiar with working with Azure DevOps.

• You must have completed the following tasks:

◦ Been granted access to the Azure DevOps portal.

◦ Created an Organization in Azure DevOps.

◦ Created and configured the repository for the project in Azure DevOps.

◦ Started the Azure DevOps pipeline agent.

◦ Closed HCL OneTest™ Performance.

◦ Optional: Created test cases under test plans in Azure DevOps if you want to view the results of the

test runs on the Test Plans dashboard.

◦ Optional: Created encrypted secrets or environment variables for your personal access token (PAT), if

you want to use an encrypted PAT.

About this task

Chapter 6. Administrator Guide

You must provide the values for certain fields for the selected task to run tests from Azure DevOps. The minimum

fields that you need to configure along with Display name and Product Path are IMShared Path, Workspace Location,

Project Name, and Test Suite Name or Configfile. The remaining fields are optional.

For example, if you provide a complete path of a configuration file that contains the parameters for a test or schedule

run in the Configfile field, then you need not provide values for the IMShared Path, Workspace Location, Project

Name, and Test Suite Name fields.

If you have created test cases under test plans in your Azure DevOps project, you can provide the details in the Azure

DevOps URL, Test Plan Name, Test Case Name, and Azure DevOps PAT fields while you configure the job in a pipeline

so that you can view the results of the test run on your Test Plan dashboard.

1. Sign in to the Azure DevOps portal, if you are not already logged in.

2. Open the Organization page, and then select the project that you want to use to run tests.

3. Initialize the repository if you have created a new project by performing the following steps:

a. Click Repos from the left pane.

b. Select the Add a README checkbox if it is not selected.

c. Click Initialize from the Initialize <branch_name> with a README or gitignore section.

4. Click Pipelines from the left pane, and then click Create Pipeline.

Note: If your project already contains a pipeline, then you can click New Pipeline to create another

pipeline.

5. Click Use the classic editor to create a pipeline without YAML.

6. Verify the values for the Team project, Repository, and Default branch for manual and scheduled builds fields,

and then click Continue.

7. Click Empty job to add a task to the pipeline.

Note: The values for the Name, Agent pool, and Agent Specification fields are auto populated. You

can change the values for the fields, if required.

8. Perform the following steps to add a task to the Agent job:

a. Click the Add a task to Agent job icon .

Result

The Add tasks pane is displayed.

b. Search for the HCL tasks defined in the HCL OneTest Studio extension.

Result

The tasks that you can select are displayed.

c. Select the HCL OneTest Performance Task option, and then click Add.

185

HCL OneTest Performance

186

The selected task is added to the agent job and it is displayed with a warning that some settings

require attention. When you configure the details about the test run, the warning disappears.

You can also remove the tasks that are not required in your job by selecting the tasks from the list. You

can then right-click the tasks, and click Remove selected task(s) to remove them.

9. Configure HCL OneTest Performance Task to provide the details about the test run by referring to the

following table:

The following table lists the required fields that you must provide to run the test from Azure DevOps pipeline:

Fields Description

Configfile
Enter the complete path to a file that contains the parameters for a test or schedule

run.

For example, C:\Users\HCL\hclonetest\workspace\Project1\config.txt

For more information about creating a command line config file from HCL OneTest™

Performance, see the Related information section.

Display name
Enter the name for the task.

For example, testrun1

IMShared Path
Enter the complete path to the IMShared directory, if it is not in the default location.

For example, D:\Testtool\HCL\HCLIMShared

The default location of the IMShared directory is as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\HCLIMShared

Linux™ /opt/HCL/HCLIMShared

Mac /Application/HCL/HCLIMShared

Product Path Enter the complete path to the directory that contains eclipse.exe.

The default location of eclipse.exe is as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\HCLOneTest

Linux™ /opt/HCL/hclonetest

Chapter 6. Administrator Guide

Fields Description

Operating system The default path to the directory

Mac /Application/HCL/hclonetest

Project Name
Enter the name of the project that has performance test assets.

For example, testproj1

Test Suite Name
Enter the file name of the performance test assets relative to the project.

For example, test1.testsuite

Workspace Loca­

tion
Enter the complete path of the Eclipse workspace.

For example, C:\Users\HCL\hclonetest\workspace1

The following table lists the optional fields that you can provide to run the test from Azure DevOps pipeline:

Fields Description

Azure DevOps PAT
Use this field to enter the personal access token of the Azure server where the test

project is hosted.

You can also enter the variable for the encrypted PAT that you create in Azure DevOps.

The token must have read and write access.

You must use Azure DevOps PAT with the following fields:

◦ Azure DevOps Project URL

◦ Test Plan Name

◦ Test Case Name

Azure DevOps

Project URL

Use this field to enter the URL of the test project in the Azure server in the following

format:

https://<host>/<orgname>/<projectName>

Note: You must enter the URL of the Azure DevOps project if you have created

test cases under Test Plans in your Azure project and want to view the test re­

sults on the Test Plans dashboard.

You must use Azure DevOps Project URL with the following fields:

187

HCL OneTest Performance

188

Fields Description

◦ Azure DevOps PAT

◦ Test Plan Name

◦ Test Case Name

Dataset Override
Use this field to replace the dataset values during a test or schedule run.

You must ensure that both original and new datasets are in the same workspace and

have the same column names. When you enter a value for the Dataset Override field,

you must also include the path to the dataset. You must provide the values for the

Dataset Override field in the following format:

/project_name/ds_path/original_ds.csv:/project_name/ds_­

path/new_ds.csv

For example, /proj1/Datasets/ds1.csv:/proj1023/Datasets/new_ds1.csv

You can override multiple datasets that are saved in a different project by adding mul­

tiple paths to the dataset separated by a semicolon. For a test or schedule, the default

value is the dataset specified in the test editor or schedule editor.

Duration
Use this field to change the duration of the stages in the rate schedule.

For example, Stage1=10s, Stage2=3m

The stage number specified must exist in the rate schedule.

Note: The Duration field creates a new copy of the rate schedule that contains

the specified number of duration.

Exportlog
Use this field to specify the path of the file directory to store the exported HTTP test

log in a .txt format.

For example, C:/Users/Documents/tests/logexp.txt

Exportstatreportlist
Use this field to specify IDs of reports that you want to export in place of the default

reports.

You can provide multiple report IDs separated by a comma. You can navigate to Pref­

erences of HCL OneTest™ Performance (Window > Preferences > Test > Performance

Test Reports > Export Reports), and then select Show Report IDs checkbox to view

the report IDs.

Chapter 6. Administrator Guide

Fields Description

You must use the Exportstatreportlist filed along with the Exportstats or Exportstat­

shtml field.

For example, you can provide http as a value in the Exportstatreportlist field to export

a Performance Report.

Exportstats
Use this field to provide the complete path to a directory that you can use to store ex­

ported reports in a comma-separated values (CSV) format.

For example, C:/Users/Documents/tests

Note: If you do not specify a value for the Exportstatreportlist field, then the

reports that you selected in the Preferences of HCL OneTest™ Performance

(Window > Preferences > Test > Performance Test Reports > Export Reports)

are exported.

Exportstatsformat
Use this field to specify a format for the report that you want to export.

You must use at least one of the following options along with the Exportstats field:

◦ simple.csv

◦ full.csv

◦ simple.json

◦ full.json

◦ csv

◦ json

For example, json.

You can add multiple formats for the report separated by a comma. When you want to

export both simple and full type of report in a json or csv format, you can specify json

or csv as the format in the field.

The reports are saved to the location specified in the Exportstats field.

189

HCL OneTest Performance

190

Fields Description

Note: The values provided in the Exportstatsformat field always take prece­

dence over the Export Reports options set in the product preferences Window

> Preferences > Test > Performance Test Reports > Export Reports).

Exportstatshtml
Use this field to provide the complete path to a directory that you can use to export

web analytic results.

The results are exported to the specified directory. You can analyze the results on a

web browser without using HCL OneTest™ Performance.

For example, C:/Users/Documents/Reports

History
Use this field when you want to view a record of all events that occurred during a test

or schedule run.

You can use any of the following options:

◦ jaeger: To send test logs to the Jaeger UI during the test or schedule run.

Note: You must set the JAEGER_AGENT_HOST property as an environment

variable by using the command line before you use the jaeger option

to send test logs to the Jaeger UI.

◦ testlog: To send test logs as traditional test logs in HCL OneTest™ Perfor­

mance during the test or schedule run.

◦ null: To send no test logs either to the Jaeger UI or HCL OneTest™ Perfor­

mance during the test or schedule run.

For example, jaeger

You can add multiple options separated by a comma to send test logs during the test

or schedule run to HCL OneTest™ Performance and the Jaeger UI.

For example, jaeger,testlog

For more information about how to view test logs in the Jaeger UI and HCL OneTest™

Performance, see the Related information section.

Labels
Use this field to add labels to test results when the test run is complete.

For example, label1, label2

Chapter 6. Administrator Guide

Fields Description

You can add multiple labels to a test result separated by a comma. When you run test

assets, then the labels that you added are displayed on the Performance Report in

HCL OneTest™ Performance.

The Results page of HCL OneTest™ Server displays the label that you added in the La­

bels field for the specific test asset in the following conditions:

◦ When you set Publish result after execution as Always or Prompt in the pref­

erences of HCL OneTest™ Performance (Windows > Preferences > Test > HCL

OneTest Server).

◦ When you use the Labels field along with the Publish field.

Note: When you run tests by using the double quotation marks ("") for the La­

bels field, then the labels in the test result do not include double quotation

marks.

For example, if you provide the value for the Labels field as "100" users, then

the labels in the test result display as 100 users.

To work around this problem, you must create a command-line config file, and

then run the test by using the Configfile field.

Overwrite
Use this field to determine whether a result file with the same name is overwritten or

not.

The default value is false. If the value is set to true, the file is overwritten and retains

the same file name.

Publish
Use this field to publish test results to HCL OneTest™ Server from Azure DevOps.

Remember: Before you use the Publish field, you must provide the offline user

token of HCL OneTest™ Server by using any of the following methods:

191

HCL OneTest Performance

192

Fields Description

◦ Set the value of the HCL_ONETEST_OFFLINE_TOKEN environment

variable to the offline user token of HCL OneTest™ Server by using the

command-line interface.

◦ Provide the offline user token of HCL OneTest™ Server in the prefer­

ences of HCL OneTest™ Performance (Window > Preferences > Test >

HCL OneTest Server)

You must use one of the following values in the Publish field:

◦ serverURL#project.name=name_of_the_project&teamspace.name=name_of_­

the _teamspace

◦ serverURL#project.name=name_of_the_project&teamspace.alias=name_of_the

_teamspace_alias

◦ no

The no option is useful if the product preferences are set to publish the results,

but you do not want to publish them.

Note:

You must not include the double quotation marks ("") while providing the value

for the Publish field.

For example, URL_OF_OneTest_Server#project.name=test&teamspace.name=ts1

Where:

◦ URL_OF_OneTest_Server is the URL of HCL OneTest™ Server.

◦ test is the name of the project in HCL OneTest™ Server.

◦ ts1 is the name of the team space.

Notes:

◦ If you have a project with the same name in different team spaces,

then you must append either the &teamspace.name=name_of_the _­

teamspace or &teamspace.alias=name_of_the_teamspace_alias op­

tions.

Chapter 6. Administrator Guide

Fields Description

◦ If the name of the project or team space contains a special character,

then you must replace it with %<Hexvalue_of_special_character>.

For example, if the name of the team space is Initial Team Space, then

you must provide it as Intial%20Team%20Space.

Where %20 is the Hex value of Space character.

◦ The values provided in the Publish field always take precedence over

the Results options set in the product preferences (Window > Prefer­

ences > Test > HCL OneTest Server > Results).

The Reports information section on the HCL OneTest Performance Task pane dis­

plays the names of the report along with its corresponding URLs in the following con­

ditions:

◦ When you configured the URL of HCL OneTest™ Server in Preferences of HCL

OneTest™ Performance (Window > Preferences > Test > HCL OneTest Server).

◦ When you set Publish result after execution as Always or Prompt in the Pref­

erences of HCL OneTest™ Performance (Window > Preferences > Test > HCL

OneTest Server > Results).

◦ When you used the Publish field or the Publish field along with the Publishre­

ports field.

Publish_for
Use this field to publish test results to HCL OneTest™ Server from Azure DevOps

based on the completion status of the tests.

You must use the Publish_for field along with the Publish field. You can add multiple

options separated by a comma. The following are the available options that you can

use for the Publish_for field:

◦ ALL: You can use this option irrespective of status of the test.

◦ PASS: You can use this option to publish test results for the tests that have

passed.

◦ FAIL: You can use this option to publish test results for the tests that have

failed.

◦ ERROR: You can use this option to publish test results for the tests that includ­

ed errors.

◦ INCONCLUSIVE: You can use this option to publish test results for the incon­

clusive tests.

193

HCL OneTest Performance

194

Fields Description

For example, FAIL,ERROR

Publishreports
Use this field to publish specific test results to HCL OneTest™ Server.

The options that you can use with Publishreports are as follows:

◦ STATS

◦ TESTLOG

For example, STATS

You must use the Publishreports field along with the Publish field. You can prefix the

value of Publishreports with ! to publish the reports except the specified one.

For example, !STATS

Rate
Use this field to change the rate of the rate runner group.

For example, Rate Runner Group1=1/s, 3/m

Where, Rate Runner Group1 is the name of the Rate Runner group that has two stages.

The desired rate for the first stage is one iteration per second and the rate for the sec­

ond stage is three iterations per minute.

Notes:

◦ The name of the Rate Runner group must match with the name in the

rate schedule.

◦ The Rate field creates a new copy of the rate schedule that contains

the specified number of rate.

Resource Monitor­

ing Labels Override
Use this field to perform any of the following actions:

◦ Enable the Resource Monitoring from Service option for a performance sched­

ule if the Resource Monitoring from Service option is not enabled from the

schedule editor in HCL OneTest™ Performance.

◦ Ignore Resource Monitoring sources that were set in the performance sched­

ule and change for a label matching mode.

◦ Replace an existing set of Resource Monitoring labels that were set in the per­

formance schedule and run the schedule with a new set of Resource Monitor­

ing labels.

Chapter 6. Administrator Guide

Fields Description

If you have added a label in HCL OneTest™ Server for a Resource Monitoring source as

rm1, then you can provide value as shown in the following example to collect data from

the source:

rm1

If your label for resource monitoring contains a comma (,) then you must replace the

single comma with the double comma while providing the value. For example, if you

added a label to a Resource Monitoring source as rm1,test, then you must provide the

value as shown in the following example to collect data from source:

rm1,,test

Notes:

◦ You can use this field only when you want to run a Rate schedule or VU

schedule.

◦ You can add multiple Resource Monitoring labels separated by a com­

ma.

◦ You must add the Resource Monitoring labels to the Resource Moni­

toring sources on the Resource Monitoring page in the HCL OneTest™

Server project.

Results
Use this field to provide a different name to the result file.

The results file is stored in the Results directory. The default name of the result file is

the name of the test or schedule with a timestamp appended.

Test Case Name Use this field to enter the name of the test case in the Azure server.

You must use Test Case Name with the following fields:

◦ Azure DevOps Project URL

◦ Azure DevOps PAT

◦ Test Plan Name

Test Plan Name Use this field to enter the name of the test plan that is associated with the test case in

the Azure server.

You must use Test Plan Name with the following fields:

195

HCL OneTest Performance

196

Fields Description

◦ Azure DevOps Project URL

◦ Azure DevOps PAT

◦ Test Case Name

Usercomments
Use this field to add text that you want to display in the user comments row of the re­

port.

For example, test run with dataset

Note: When you run tests by using the double quotation marks ("") for the

Usercomments field, then the user comments row of a report does not con­

tain double quotation marks.

For example, if you provide the value for the Usercomments field as test run

with "dataset", then the user comments row of a report displays the value as

test run with dataset.

To work around this problem, you must create a command-line config file, and

then run the test by using the Configfile field.

Users
Use this field to override the default number of virtual users in the test or schedule run.

For a schedule, the default is the number of users specified in the schedule editor and

for a test, the default is one user.

Note: The Users field creates a new copy of the schedule that contains the

specified number of users.

Var File
Use this field to provide a complete path to an XML file that contains the variable

name and value pairs.

VM Arguments
Use this field to specify the maximum heap size for the Java process.

You can add multiple VM Arguments separated by a comma.

Note: The fields in the Control Options and Output Variables sections are from Azure DevOps that you

can use to configure your test run. You can accept the default values or change the values based on

your requirements.

Chapter 6. Administrator Guide

For more information about Control Options and Output Variables, see the Related information

section.

10. Perform any one of the following steps as per your requirement:

a. Click Save & queue to save the configurations and queue the test run in the pipeline.

Result

The Run pipeline dialog is displayed.

b. Click Save, and then provide a comment to save the configured settings for the task.

Result

The task is not queued for a run. You can save the task and run the job later. You can then click Queue

to run the job at a later time.

11. Complete the following steps to run the test:

a. Enter a comment for the test in the Save comment field.

b. Select the agent that you configured for the test from the Agent pool list.

c. Select the Agent Specification from the list.

d. Select the Branch/tag from the list.

e. Optional: Add the variables and demands for the task run from the Advanced Options pane, if

required.

f. Select the Enable system diagnostics checkbox for a detailed log view.

g. Click Save and run.

Result

The test run begins as a pipeline job and displays the progress of the job run.

Results

You have run the tests by using the HCL OneTest Studio extension in the Azure DevOps pipeline.

What to do next

You can open the job to view the task logs from the Jobs section. You must click the HCL OneTest Performance Task

to view a detailed log of the test run.

The Reports information section on the HCL OneTest Performance Task pane displays the names of the report along

with its corresponding URLs if you publish test results to HCL OneTest™ Server.

If you provided the details in the Azure DevOps URL, Test Plan Name, Test Case Name, and Azure DevOps PAT fields,

then you can view the results of the test run on your Test Plan dashboard.

197

HCL OneTest Performance

198

Related information

Creating a command-line config file on page 798

Viewing test logs in Jaeger on page 285

Viewing test logs on page 1001

Generating server offline user tokens

Test results and reports in HCL OneTest™ Server

Specify conditions in Azure DevOps

Define variables in Azure DevOps

Integration with Apache JMeter
You can use JMeter tests extension with HCL OneTest™ Performance to run JMeter tests.

In HCL OneTest™ Performance, you have the option to import JMeter tests, add tests to a schedule or compound test

to run them. Additionally, JMeter test helps to simulate a heavy load on a server, group of servers, or to investigate

overall sample response time under different load types.

JMeter samples are terminal elements in JMeter tests that inform JMeter to send requests to a server and wait for a

response. When you run a JMeter test, a JMeter performance report is generated during a run and saved after a run.

This report contains the data most significant to the run, shows the response trend of the lowest 25 samples in the

test, and graphs the response trend of each sample for a specified interval.

With JMeter test, you can load and test the performance of an application that uses the following protocols:

• HTTP/HTTPS

• SOAP/REST

• FTP

• LDAP

• MOM

• SMTP/POP3/IMAP

• TCP

JMeter installtion

To work with JMeter tests, you must download the JMeter executable from https://jmeter.apache.org/

download_jmeter.cgi and unzip it. To run the JMeter test as part of schedule, you must install JMeter on the remote

agent machine and set the JMETER_HOME environment variable to the root installation folder. To run the JMeter tests,

you must either specify the Apache JMeter path in the product Preferences or set the environment variable.

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html
https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/c_results_overview.html
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/conditions?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi

Chapter 6. Administrator Guide

Note: When you run the compound test or schedule, an error message is displayed, if you have not specified

the preferences or set the environment variable.

You can click Window > Preferences > Test > Apache JMeter to access the preference settings for Apache JMeter

and point it to the apache-jmeter-x.0 directory.

Where, x is the version number of the JMeter executable.

You can set the environment variable JMETER_HOME and point it to the apache-jmeter-x.0 directory.

Importing a JMeter test to a project
You can import your JMeter tests to HCL OneTest™ Performance to run them as part of VU schedule.

199

HCL OneTest Performance

200

About this task

If you have an existing JMeter test, you can import the test by dragging and dropping a JMeter file (JMX file) into the

project in the test navigator. Alternatively, you can use the following procedure to import the tests.

1. In the Test Navigator, right-click and click Import.

2. In the Import dialog, expand General in the source list, select File System and then click Next.

3. Specify the directory where the JMeter test resides.

Click Browse to select a directory from where you can import the JMeter test. The JMeter test assets in the

folder you selected are displayed.

4. Select the JMeter test you want to import.

5. Click Browse to choose the location to import JMeter test.

6. Click Finish. The imported JMeter test is displayed in the JMeter Tests folder.

Adding a JMeter test to an existing VU schedule
You can add a JMeter test to an existing VU schedule to test the performance of both static and dynamic resources

and web applications.

About this task

When you add a JMeter test to a VU schedule, a user group with a loop is created and this loop contains the JMeter

test invocation.

1. In the Test Navigator, browse to the schedule and double-click it. The schedule editor opens.

2. In the VU schedule editor, right-click the Schedule, and then click Add > JMeter Test.

3. In the Select Tests window, expand the project name and JMeter Tests folder and choose the test that you

want to add.

4. Click OK. A new User Group with a loop that contains the JMeter test invocation is created.

What to do next

You must run the schedule or compound test, to view the statistics on the executed sequences. See Running a local

schedule or test on page 783 or Running compound tests on page 658

Converting JMeter tests to VU schedule
You can convert a JMeter test to a VU schedule to load and test the performance of an application under test.

About this task

HCL OneTest™ Performance analyzes the selected JMeter test to add the number of users and loop iteration count in

the VU schedule. When you convert the JMeter test to a VU schedule, the following events occur:

Chapter 6. Administrator Guide

• The load information identified within the Thread Group nodes from the original JMeter test is examined to

build a new VU schedule.

• The content of each Thread Group node is extracted from the original JMeter test and copied into a new

JMeter test.

• The new JMeter test is then invoked by the VU schedule as an external test.

Note: The extracted JMeter test does not contain any load information such as the number of users

and loop count, because the VU schedule manages all the information.

Remember:

• The content of the original Thread Group is not considered during the conversion process. Therefore,

if there are any loops in the JMeter Thread Group, those cannot convert into a loop element in the new

VU schedule.

• If you have a JMeter test with more than one Thread Group node, each Thread Group is extracted to

separate the JMeter test.

• If you have a complex JMeter test, you must extract the functionalities that are included in the

Modules or Include controllers into another JMeter tests. You must then add those JMeter tests to a

VU schedule to run it.

1. Browse and select the JMeter test from the Test Navigator.

2. Right-click the selected test, and then click Convert to VU Schedule.

3. Verify that the name of the schedule is same as name of the JMeter test.

4. Click Finish.

Result

The schedule editor opens.

What to do next

You must perform the following tasks:

• Run the converted test assets against successive builds of the application under test. See Running a local

schedule or test on page 783.

• Analyze the test results that are recorded. See Running compound tests on page 658.

JMeter Performance report
The JMeter performance report summarizes the validity of the run, shows the average sample response time for the

requests in the test, and graphs the sample response time of each sample for a specified interval.

201

HCL OneTest Performance

202

Overall page

The Overall page provides a progress indicator that shows the status of the run and a bar chart that shows

percentage of passed JMeter samples.

Summary page

The Summary page provides important information about the run. This page shows the following Run Summary

information:

• The name of the test.

• The number of active users and the number of users who completed testing. This number is updated during

the run.

• The elapsed time is the run duration, which is displayed in hours, minutes, and seconds.

• The status of the run. For example, the status can be Initializing Computers, Adding Users, Running,

Transferring data to test log, Stopped, or Complete.

JMeter Samples page

JMeter samples are terminal elements in JMeter tests that informs JMeter to send requests to a server and wait for a

response. The JMeter Samples page shows the average sample response time for all the requests in the test. The bar

chart shows the average sample response time for all the requests. Each bar represents a sampler of the JMeter test.

The corresponding table provides the following additional information:

• The minimum, average, and maximum duration for each sample in the run.

• The standard deviation of the duration.

• The completed sample rate and total number of completed samples per request.

JMeter Transaction page

The JMeter Transaction page shows the average transaction response time for all the requests in the test. The bar

chart shows the average transaction response time for all the requests. Each bar represents a page that you visited

during recording. The corresponding table provides the following additional information:

• The minimum, average, and maximum duration for each transaction in the run.

• The standard deviation of the duration.

• The completed transaction rate and total number of completed transaction per request.

Chapter 6. Administrator Guide

Samples versus Time Summary page

The Samples versus Time Summary page shows the sample response trend as graphed for a specific interval. The

Sample Response versus Time graph shows the sample response time for all the requests during the run. Each point

on the graph is an average of what has occurred during that sample interval. The table after the graph lists the total

average duration for all requests in the run and the standard deviation. To set the sample interval value, open the

schedule, choose the Statistics tab from the drop-down menu, and then view or modify Statistics sample interval.

Samples versus Time Detail page

The Samples versus Time Detail page shows sample response trend for each of the request in the test. The line graph

shows the average sample response time of each requests for a specific interval. The table after the graph provides

the minimum, average, and maximum duration for the run and the standard deviation in the average sample response

time.

Sample Throughput page

The Sample Throughput page summarizes the frequency of requests that are transferred per sample interval. The line

graph on the left side shows the sample rate and passed sample rate per interval for all samples. The summary table

after the graph lists the passed rate of total samples and counts for each passed samples. The line graph on the right

side shows active users and the users who completed testing, per interval, over the course of a run. You can set the

Statistics sample interval value in the schedule, as a schedule property. As the run nears completion, the number of

active users decreases and the number of completed users increases. The summary table after the graph lists the

active and completed users for the entire run.

To set the sample interval value, open the schedule, choose the Statistics tab from the drop-down menu, and then

view or modify Statistics sample interval.

Server Throughput page

The Server Throughput page lists the rate and number of bytes that are transferred per interval and for the entire run.

The page also lists the status of the virtual users for each interval and for the entire run. The line graph on the left side

shows the rate of bytes sent and received per interval for all intervals in the run. The summary table after the graph

lists the total number of bytes sent and received and bytes sent and received throughput rate for the entire run.

The line graph on the right side shows active users and users who are completed testing, per interval, over the

course of a run. You set the Statistics sample interval value in the schedule, as a schedule property. As the run nears

completion, the number of active users decreases and the number of completed users increases. The summary table

after the graph lists the active and completed users for the entire run.

Server Health Summary page

The Server Health Summary page gives an overall indication of how well the server is responding to the load. The bar

chart shows the total number of samples and total number of passed samples for the run. The table under the bar

chart lists the same information.

203

HCL OneTest Performance

204

Server Health Detail page

The Server Health Detail page provides specific details for 25 samples with the lowest success rates. The summary

table lists the number of samples completed and passed in the run, and the passed sample percent and completion

rate.

EGit integration
You can store your test assets in the remote Git repository and use EGit for version control operations. EGit is an

Eclipse plugin for the Git version control system.

When you install HCL OneTest™ Performance, EGit is part of the product. To avoid the clutter, EGit is a separate

Eclipse perspective in HCL OneTest™ Performance. For more information about EGit, refer to EGit User Guide

documentation.

You can click Windows > Perspective > Open Perspective > Other > Git to open the Git perspective within HCL

OneTest™ Performance.

Refer to the following topics to learn more about EGit integration with HCL OneTest™ Performance.

Importing test assets from the remote Git repository
You can import the test assets from the remote Git repository to HCL OneTest™ Performance and run it to test the

performance of the application.

Before you begin

You must have completed the following tasks:

• Stored test assets of an application under test in the remote Git repository.

• Cloned the remote Git repository. For more information refer to the EGit User Guide documentation.

1. Open HCL OneTest™ Performance.

Result

The default perspective is the Performance Test.

2. Click File > Import > Git, and then click the expand icon .

3. Select Projects from Git, and then click Next.

4. Select the Existing local repository option, and then click Next.

Result

The list of all cloned remote Git repositories is displayed.

5. Select a remote Git repository from the list that has test assets, and then click Next.

6. Select one of the following options and perform the steps described in the table based on your requirement:

https://wiki.eclipse.org/EGit/User_Guide
https://wiki.eclipse.org/EGit/User_Guide#Working_with_remote_Repositories

Chapter 6. Administrator Guide

Options Descriptions Steps

Import existing

Eclipse projects
Select this option to choose projects that

you want to import from the remote Git

repository to HCL OneTest™ Performance.

Note: If your project folder con­

tains the .project file, only then

the wizard displays the project

that is available for the selection.

Perform the following steps:

a. Select Import existing Eclipse

projects, and then click Next.

b. Select the checkbox to choose the

projects from the list.

c. Click Finish to import the projects.

The imported project is displayed in the

Test Navigator pane.

Import as general

project
Select this option to choose a project that

does not have a .project file in your

project folder. When you select this op­

tion, a .project file is created within the

project folder.

Perform the following steps:

a. Click Import as general project,

and then click Next.

b. Enter a name for the project in the

Project name field.

c. Click Finish.

Results

You have imported test assets from the remote Git repository.

Pulling the changes from the remote Git repository
You must make your local repository up-to-date by pulling the latest changes in the remote Git repository before you

committ and push your updated test assets to the Git repository.

Before you begin

You must have completed the following tasks:

• Cloned the remote Git repository. For more information refer to the EGit User Guide documentation.

• Ensured that any of your team members have updated the test assets and committed those files to the

remote Git repository.

About this task

When you updated any of the test assets in your project, you might see merge conflicts errors while pulling the

changes, if other members are also working on the same project.

205

https://wiki.eclipse.org/EGit/User_Guide#Working_with_remote_Repositories

HCL OneTest Performance

206

1. Open HCL OneTest™ Performance.

Result

The default perspective is the Performance Test.

2. Go to Windows > Perspective > Open Perspective > Other.

Result

The Open Perspective window is displayed.

3. Select the Git option from the list, and then click Open.

Result

The Git perspective view is displayed.

4. Right-click the remote Git repository from the list, and then select Pull.

Results

You have pulled the new changes from the remote Git repository to your existing local Git repository.

What to do next

You can publish your changes to the remote Git repository. See Publishing test assets to the remote Git repository on

page 206.

Publishing test assets to the remote Git repository
When you create or update any test assets in HCL OneTest™ Performance, you can publish your changes to the

remote Git repository. Therefore, when you publish test assets, other members in the project can use your test assets

in their test run, if required.

Before you begin

You must have completed the following tasks:

• Created or updated test assets in HCL OneTest™ Performance.

• Made the local repository up-to-date by pulling the changes from the remote Git repository. See Pulling the

changes from the remote Git repository on page 205.

About this task

You can either publish only the updated test asset files or entire project to the remote Git repository.

1. Open HCL OneTest™ Performance.

Result

The default perspective is the Performance Test.

2. Locate the test assets files or projects that you updated from the Test Navigator pane.

3. Right-click the test assets or project, and then click Team > Commit.

Result

The Git Staging view is displayed.

4. Select the updated test asset files from the Unstaged Changes pane.

Chapter 6. Administrator Guide

5. Click or to select a specific file or all the files from the Unstaged Changes pane to the Staged

Changes pane.

6. Enter a message in the Commit Message pane.

7. Click Commit and Push.

Result

The Push Result dialog is displayed with the status of the commit to the remote Git repository.

Results

You have published test assets to the remote Git repository.

Techniques for troubleshooting issues in EGit
You might encounter issues while working with EGit in HCL OneTest™ Performance. You can find the information

about certain issues and how to resolve them.

Warning: When you initialize a new Git repository for a project in an Eclipse perspective, a .gitignore

file is created in the project folder. While you commit the contents of a project to the Git repository, the

.gitignore file ignores the report files. You can specify additional file types in the .gitignore file so that

those file types are ignored when you commit the project contents to the Git repository.

The following topics provide more information about EGit integration issues, their causes, and the resolutions to fix

the issues while you work with the Git perspective in HCL OneTest™ Performance.

Error: Missing library files in the project
After you pull a project in the Git perspective, Project is missing the required Library error is displayed in the

Verify Problems tab. This error occurs due to the .classpath file which is specific to a workspace or system. The

.classpath file needs to be pointed to the newly imported location.

You can perform the following steps to resolve the missing library issue:

1. Go to Windows > Perspective > Open Perspective > Other.

2. Select the Java perspective.

3. Expand the project from the Test Navigator pane.

4. Navigate to Java Build Path > Libraries.

5. Delete all the jar files that are missing after you pull the changes.

207

HCL OneTest Performance

208

Note: The files are marked with a red cross.

6. Play back the project.

The required jar files are added to the project.

Git merge conflicts
Performance test projects contain certain metafiles and test assets in binary form. When you work in a collaborative

test creation environment, you might encounter Git merge conflicts while you commit test assets to the remote Git

repository.

When you view a project in the File Explorer, the folder structure is displayed as follows:

The metafiles such as .project, .classpath, assets.xml, and the test assets must be committed to the remote Git

repository for seamless collaboration. Due to the specialized format of information in the metafiles and test assets

being binary files, the Git merges cannot happen automatically. You must resolve the resulting merge conflicts

manually, if any.

Chapter 6. Administrator Guide

Best practices to minimize the merge conflicts

You must adhere to the following best practices to minimize the merge conflicts when you commit test assets to the

remote Git repository:

• Refrain from working on the same test assets to the extent, if possible.

• Ensure that the team members coordinate and work closely with other members while making changes on the

same test assets. Thereby, if there are any merge conflicts on binary files, those errors can be identified and

addressed at the earliest.

• Keep the local Git repository up-to-date with the remote upstream branch by pulling in changes periodically.

The local Git branch must be made up-to-date with the master branch by re-basing frequently.

• Use the descriptive messages for your commits, so that other members can refer to those messages to

resolve merge conflicts efficiently.

Conflict management: errors in assets.xml
In a collaborative work environment, the merge conflicts in assets.xml arise despite best efforts when you pull the

changes from the remote upstream.

The project includes a metafile called assets.xml that contains a list of all test asset files in a project along with

their dependencies in an XML format. The assets.xml file is automatically generated by HCL OneTest™ Performance

from the contents of the project. The assets.xml file is refreshed each time you modify the files in the project. These

changes in the assets.xml file are the most common source of merge conflicts.

The following image displays the merge conflicts when you attempt to perform a pull request on the local Git

repository by using the Git perspective:

209

HCL OneTest Performance

210

You can perform the following steps to resolve the merge conflicts in the assets.xml file:

1. Click Close to dismiss the merge conflict result dialog.

2. Click Window > Show View > Other.

3. Expand Git, and then select Git Staging.

4. Click Open.

The conflicting files are displayed in the Unstaged Changes pane.

5. Right-click the project from the Test Navigator pane, and then click Refresh.

When you refresh the project, the assets.xml file is updated to include the local files in the project and also

files that were pulled down from the remote upstream.

Chapter 6. Administrator Guide

6. Go to the Git Staging view, and then move the files from Unstaged Changes to Staged Changes by using the

Add selected files to the index or icon.

7. Enter a message in the Commit Message pane, and then click Commit and Push.

The Push Result dialog is displayed with the status of the commit to the remote Git repository.

Conflict management: errors in test assets
When multiple users edit and commit the same set of test assets, then while you pull or push changes to the remote

Git repository, a merge conflict occurs.

Consider two users are working on the same VU Schedule called MyVUSchedule1.testsuite. One of the users

committed and pushed changes to the remote Git repository. Later, when the other user tries to commit and push

changes, the commit fails with the following error message:

211

HCL OneTest Performance

212

The error occurs because the remote Git repository contains changes pushed by the other user that are not present

in the local branch. To push the changes, the changes in the remote Git repository must be pulled down to the local

repository.

You can perform the following steps to resolve the merge conflicts in test assets:

1. Go to the Git perspective view, and then right-click the remote Git repository from the list.

2. Select Pull from the list to make your local Git repository up-to-date.

The Pull Request window is displayed.

3. Expand the commits fetched from the remote Git repository, and then expand each commit to view the list of

changed files in them.

Chapter 6. Administrator Guide

Note: You must make a note of the test assets listed in the Pull Request window that were modified

locally.

4. Examine the Git Staging view to find the conflicting or unmerged files.

Note: The conflicting files are marked with a red icon.

5. Right-click the conflicted test assets, and then select the Replace With option.

6. Select one of the following options based on your requirement:

◦ Theirs:commitID commitmessage

◦ Ours:commitID commitmessage

Since MyVUSchedule1.testsuite is binary, the remote and local changes must have to be merged manually. If

necessary, you must first discuss with the user who authored or committed the changes. If their changes are

extensive and the locally performed changes are relatively minor, you can overwrite the local version with the

remote by selecting Theirs:commit ID commit message. You can then do the local changes again.

Alternatively, if the local changes are extensive when compared to the changes in the remote branch, then you

can overwrite the remote version by selecting the Ours:commit ID commit message option. Later, you must

manually redo the remote changes on the local copy.

213

HCL OneTest Performance

214

7. Redo the changes that were broken because of the replace action.

8. Move the files from Unstaged Changes to Staged Changes by using the Add selected files to the index or

 icon.

9. Enter a message in the Commit Message pane, and then click Commit and Push.

The Push Result dialog is displayed with the status of the commit to the remote Git repository.

Integration with Engineering Test Management
You can integrate IBM® Engineering Test Management (formerly known as IBM® Rational® Quality Manager) with

HCL OneTest™ Performance to initiate test runs from Engineering Test Management.

To run tests from Engineering Test Management, you must configure the default adapter that is installed when you

install HCL OneTest™ Performance.

You can run the adapter in the following modes:

• GUI

• CLI

• Windows™ service

Engineering Test Management reports

When you run a test script from Engineering Test Management, the default report that is displayed during a test run is

attached to the results of Engineering Test Management. You can customize the reports based on your requirements.

See Customizing reports on page 975.

If you use Engineering Test Management 4.0 or later, you can view and analyze the test reports in Engineering Test

Management. You can analyze the test reports while the test is in running state and after the test run is complete.

Chapter 6. Administrator Guide

You can click the Analyze Results Interactively using HCL OneTest Performance option from the Execution Results

dialog to view the test reports in Engineering Test Management.

Note: To access reports from outside of HCL OneTest™ Performance, you must enable the remote access

from HCL OneTest™ Performance. See Access reports remotely on page .

The result completion state that is reported to Engineering Test Management reflects the overall verdict of the

test log that is associated with the run. See Logs overview on page 1000. In many cases, a test might contain a

failed verification point, but still is considered as passed. You can view the attached report in the execution result of

Engineering Test Management, and then set the execution results status accordingly.

You can view the full run results from within HCL OneTest™ Performance by opening HCL OneTest™ Performance in

the workspace that is configured to be used by the adapter.

If the adapter is running from the command line or as a Windows™ service, you must stop the adapter before opening

HCL OneTest™ Performance. When HCL OneTest™ Performance is opened, you can access the full test reporting and

test log capabilities. The test results for the runs that are initiated from Engineering Test Management are under the

Engineering Test Management Results page.

For HCL OneTest™ Performance schedules, the result completion state that is reported to Engineering Test

Management is based on the overall Requirements status. Only performance requirements for the last user stage

that is defined in the schedule are covered by the report. If no requirements are specified, the result completion state

in Engineering Test Management is set to inconclusive. In this case, you can view the attached performance reports

and manually set the completion state in Engineering Test Management. See Defining requirements in schedules on

page 731.

Known limitations

• You cannot run tests from Engineering Test Management with encrypted datasets. When using such datasets,

a password prompt is not displayed in the adapter service or in the command-line interface. The use of

encrypted datasets are not recommended in the GUI mode, because it requires user interaction with HCL

OneTest™ Performance to initiate test runs from Engineering Test Management.

• You can start only one adapter per product installation on a given computer. If you use multiple adapters on

the same computer, it requires you to install each product as its own software package in its own directory. If

you want to run multiple adapters on the same computer, you must ensure that adapters are using different

workspaces.

For information about using Engineering Test Management, refer to the IBM Engineering Lifecycle Management

documentation.

Refer to the following topics to learn more about integrating Engineering Test Management with HCL OneTest™

Performance.

215

../topics/t_rem_acces_web_rep.html
../topics/t_rem_acces_web_rep.html
../topics/t_rem_acces_web_rep.html
../topics/t_rem_acces_web_rep.html
https://www.ibm.com/docs/en/elm/7.0.3?topic=engineering-test-management

HCL OneTest Performance

216

Configuring the Engineering Test Management adapter
You must configure the Engineering Test Management adapter to establish a successful connection between HCL

OneTest™ Performance and Engineering Test Management.

Before you begin

• You must have the following information:

◦ The URL of the Engineering Test Management server.

◦ A user credential and valid license to access Engineering Test Management.

◦ The user account must be added to the project area that is being accessed by the adapter with write

permissions to the project.

• You must have added -Dhptcostconfirm to the eclipse.ini file before you run a test from Engineering

Test Management.

The eclipse.ini file must be available at the installation directory of HCL OneTest™ Performance.

For more information about Engineering Test Management, refer to the IBM Engineering Lifecycle Management

documentation.

1. Open HCL OneTest™ Performance.

2. Click Window > Preferences > Quality Manager Adapter.

3. Enter the following information of the Engineering Test Management:

Fields Actions

Server URL
Enter the URL of Engineering Test Management.

For example, https://<hostname>:<portnumber>/qm

Note: If you rename the Engineering Test Management server, you must per­

form the following tasks:

https://www.ibm.com/docs/en/elm/7.0.3?topic=engineering-test-management

Chapter 6. Administrator Guide

Fields Actions

a. Update the Engineering Test Management server name in the hosts

file with a new name.

b. Update the Server URL field with the new name.

c. Configure the adapter to point to the new URL.

Adapter name
Enter a unique name to identify the Engineering Test Management adapter. The En­

gineering Test Management adapter uses the name of the computer as the default

name of the adapter.

Project area
Enter the name of the project area in Engineering Test Management.

4. Select one of the following Authentication type from the drop-down list to connect to Engineering Test

Management:

Authentication type Actions

Username and

Password
Perform the following steps:

a. Enter the username associated with Engineering Test Management in the User

ID field.

b. Enter the password associated with the username of Engineering Test Man­

agement in the Password field.

KERBEROS
Click Browse to locate and select the kerberos.ini file in the Configuration File

field.

Note: The kerberos.ini file is automatically created when you set up Ker­

beros.

For example, on Windows systems, you can locate the file in the c:\windows\kr­

b5.ini. The file name and the location might change based on the operating sys­

tems.

SSLCERT
Perform the following steps:

217

HCL OneTest Performance

218

Authentication type Actions

a. Enter the location of the SSL certificate keystore in the Certificate Location

filed.

b. Enter the keystore password in the Password field.

Note: The expected format of the keystore is p12. The keystore must contain

the client certificate that the adapter uses when you authenticate with Engi­

neering Test Management.

SMARTCARD Select a certificate from the drop-down list from the Certificate Selection field.

5. Optional: Select the Enable Proxy checkbox to connect through a proxy computer and perform the following

steps to enter the Proxy Details of the computer:

a. Enter the hostname of the proxy computer in the Host field.

b. Enter the port number of the proxy computer in the Port field.

c. Enter the username and password of the proxy computer in the User and Password fields.

6. Click Apply and Close to save and close the configuration.

Results

You have configured the details of Engineering Test Management on HCL OneTest™ Performance.

What to do next

You must start the adapter from HCL OneTest™ Performance, command-line interface, or as a Windows service.

Related information

Connecting and disconnecting the Engineering Test Management adapter from the GUI mode on

page 219

Starting and stopping the Engineering Test Management adapter from the command line on page 221

Starting and stopping the Engineering Test Management adapter as a Windows service on page 222

Importing test assets into Engineering Test Management on page 223

Configuring the workspace directory of the adapter
You must configure the workspace directory of the adapter to start or stop the Engineering Test Management adapter

either from command-line interface or as a Windows service.

About this task

Chapter 6. Administrator Guide

If the Use resources that are local to a test machine option is set in Engineering Test Management, then the

WORKSPACE_DIR must be set to the same workspace where your test assets are located.

1. Locate the adapter.config file in the product_install_dir \HOT-PERF_RQMAdapter\config\

directory.

Where product_install_dir is the directory where HCL OneTest™ Performance is installed.

For example, C:\Program Files\HCL\HCLOneTest.

2. Edit the WORKSPACE_DIR variable in the adapter.config file to point to the same test workspace that you

want the adapter to use.

For example, WORKSPACE_DIR= C:\Users\username\HCL\HCLOneTest\my_adapter_workspace.

Results

You have configured the workspace directory of the adapter.

What to do next

You can start or stop the Engineering Test Management adapter either from command-line interface or as a Windows

service.

Connecting and disconnecting the Engineering Test Management adapter from the
GUI mode
You can use the Quality Manager Adapter view to connect, disconnect, and view adapter activities from HCL

OneTest™ Performance.

Before you begin

You must have configured the Engineering Test Management adapter. See Configuring the Engineering Test

Management adapter on page 216.

About this task

In the GUI mode, when a script is run from Engineering Test Management, you can see the test run in progress inside

HCL OneTest™ Performance as though the test were run manually in HCL OneTest™ Performance.

Push buttons to connect and disconnect to the Engineering Test Management server are located in the upper-right

corner of Quality Manager Adapter view. This view also has a local preferences menu that you can use to control

some behavior of the GUI mode adapter. If you see errors or warnings, use the Error Log view for further investigation.

Note: You must not use HCL OneTest™ Performance while the adapter is running. If you do so, you might

interfere with the ability of the adapter to run test scripts. You must stop the adapter before you open HCL

OneTest™ Performance.

The following image displays the activities of the adapter in the Quality Manager Adapter view:

219

HCL OneTest Performance

220

1. Open HCL OneTest™ Performance.

2. Click Window > Show View > Quality Manager Adapter.

3. Perform the following actions either to connect or disconnect the adapter:

◦ Click the Connect to RQM icon to connect the adapter.

◦ Click the Disconnect from RQM icon to disconnect the adapter.

Results

You have connected or disconnected the Engineering Test Management adapter from HCL OneTest™ Performance.

Related information

IBM Engineering Test Management overview on page 53

Configuring the Engineering Test Management adapter on page 216

Starting and stopping the Engineering Test Management adapter from the command line on page 221

Starting and stopping the Engineering Test Management adapter as a Windows service on page 222

Importing test assets into Engineering Test Management on page 223

Chapter 6. Administrator Guide

Starting and stopping the Engineering Test Management adapter from the
command line
You can use the command-line interface to start, stop, and view activities of the Engineering Test Management

adapter that you configured in HCL OneTest™ Performance.

Before you begin

You must have performed the following tasks:

• Configured the adapter in HCL OneTest™ Performance. See Configuring the Engineering Test Management

adapter on page 216.

• Configured the workspace directory of the adapter. See Configuring the workspace directory of the adapter on

page 218.

About this task

When you run test assets from the command-line interface, the adapter activities are printed to the adapter.log file

that can be accessed from product_install_dir\HOT-PERF_RQMAdapter\logs.

To print the current status of the adapter, you must navigate to the product_install_dir\HOT-

PERF_RQMAdapter\bin directory, and then you can run the RQMAdapter.bat STATUS command.

Where, product_install_dir is the installation directory of HCL OneTest™ Performance.

Warning: You must not use HCL OneTest™ Performance while the adapter is running. You must stop the

adapter before you open HCL OneTest™ Performance for any reason.

1. Open a command-line interface.

2. Navigate to the product_install_dir\HOT-PERF_RQMAdapter\bin\ directory.

3. Perform the following step either to start or stop the adapter:

◦ Run the following command to start the adapter from the command line:

Operating system Command to be run

Windows™ RQMAdapter.bat START

Linux™ RQMAdapter.sh START

◦ Run the following command to stop the adapter from the command line:

Operating system Command to be run

Windows™ RQMAdapter.bat STOP

Linux™ RQMAdapter.sh STOP

221

HCL OneTest Performance

222

Results

You have started or stopped the Engineering Test Management adapter from the command-line interface.

Related information

IBM Engineering Test Management overview on page 53

Configuring the Engineering Test Management adapter on page 216

Connecting and disconnecting the Engineering Test Management adapter from the GUI mode on

page 219

Starting and stopping the Engineering Test Management adapter as a Windows service on page 222

Importing test assets into Engineering Test Management on page 223

Starting and stopping the Engineering Test Management adapter as a Windows™
service
You can use the Windows™ service to start, stop, and view adapter activities.

Before you begin

You must have completed the following tasks:

• Configured the adapter in HCL OneTest™ Performance. See Configuring the Engineering Test Management

adapter on page 216.

• Installed Microsoft™ .NET Framework 3.5.x in Windows systems for the adapter service.

• Configured the workspace directory of the adapter. See Configuring the workspace directory of the adapter on

page 218.

About this task

When you install HCL OneTest™ Performance, you must install the adapter as a Windows™ service. The default status

of Startup Type is set to Manual.

Optionally, to configure the service to start automatically, you can right-click the adapter listing, and then select

Properties. You can then select Automatic from the drop-down list in the Startup Type field. Therefore, the adapter

can start automatically when you restart your computer and does not require you to log in.

Notes:

Chapter 6. Administrator Guide

• When you start the adapter as a service, you cannot run the Web UI tests of HCL OneTest™ Studio

from IBM® Engineering Test Management.

• You must not open HCL OneTest™ Performance in the same workspace while the adapter is running

as a Windows™ service. You must stop the adapter before you open HCL OneTest™ Performance in

the configured workspace.

When you run the adapter as a service, the status of the adapter is printed to the adapter.log file that can be

accessed from product_install_dir\HOT-PERF_RQMAdapter\logs.

You can also print the current status of the adapter by navigating to the product_install_dir\HOT-

PERF_RQMAdapter\bin\ directory, and then run the RQMAdapter.bat STATUS command.

1. Open the Windows™ services.

2. Perform the following step either to start or stop the adapter:

◦ Right-click HCL OneTest Performance adapter for RQM and, then click Start to start the service.

◦ Right-click HCL OneTest Performance adapter for RQM and, then click Stop to stop the service.

Results

You have started or stopped the Engineering Test Management adapter as a Windows service.

Related information

IBM Engineering Test Management overview on page 53

Configuring the Engineering Test Management adapter on page 216

Connecting and disconnecting the Engineering Test Management adapter from the GUI mode on

page 219

Starting and stopping the Engineering Test Management adapter from the command line on page 221

Importing test assets into Engineering Test Management on page 223

Importing test assets into Engineering Test Management
You can import the performance and service tests into Engineering Test Management by using an adapter.

Before you begin

The adapter must be running on a computer where the test assets are located.

About this task

The names of script types, HCL OneTest™ Performance, HCL OneTest™ UI, and HCL OneTest™ Studio, are compatible

with HCL OneTest™ Performance, HCL OneTest™ UI, and HCL OneTest™ Studio products.

223

HCL OneTest Performance

224

1. Log in to Engineering Test Management.

2. Click Construction > Import Test Scripts.

3. Select one of the following test scripts in the Script Type field:

a. HCL OneTest Performance to import a performance test or schedule from HCL OneTest™

Performance.

b. HCL OneTest UI to import a functional test from HCL OneTest™ UI.

c. HCL OneTest Studio to import a Web UI test from HCL OneTest™ UI or import a test from HCL

OneTest™ Studio.

4. Select Use test resources that are local to a test machine, and click Select Adapter.

5. Select the computer on which the adapter is running, and click Next.

6. Enter the name of the project in the Project Path field, and then click Go.

Note: You must specify only the project name and not the entire path to the project.

7. Select the test assets that you want to import, and then click Finish.

8. Select those test assets to import again, and then click Import.

Results

You have imported the test assets to Engineering Test Management by using the adapter.

Related information

IBM Engineering Test Management overview on page 53

Configuring the Engineering Test Management adapter on page 216

Connecting and disconnecting the Engineering Test Management adapter from the GUI mode on

page 219

Starting and stopping the Engineering Test Management adapter from the command line on page 221

Starting and stopping the Engineering Test Management adapter as a Windows service on page 222

Testing shared assets with Engineering Test Management on page 224

Testing shared assets with Engineering Test Management
You can make test projects and assets shareable in Engineering Test Management. By sharing assets, any computer

with your product, that is connected to Engineering Test Management can execute a test or schedule.

Before you begin

When you are working with tests or schedules from a remote shared location, HCL OneTest™ Performance uses a

local workspace for the Engineering Test Management adapter. This adapter workspace is different from normal

workspaces because the test assets are stored remotely. This means that every asset that is related to the test or

schedule is downloaded from the shared location into the local workspace before execution. The following limitations

apply:

Chapter 6. Administrator Guide

• Assets in the adapter workspace might be deleted or overwritten with newer versions when updates are made

to the shared location.

• If you change the shared location in the adapter workspace, the entire project is removed from the adapter

workspace.

• Test results are stored in a different project, called RQM_Results, and are never deleted. The Engineering

Test Management test result page links to the correct location.

Note: Do not edit test assets in the adapter workspace because you might lose your work. You must use

these assets only for running tests and schedules.

If you are using source control and want to include only the minimum required assets, then include the following files:

• All *.testsuite tests and schedule files

• The /src directory if you use custom code

• All *.dp dataset files

• All *.location location files

• All digital certificates

• All WSDL and SOA security files

Note: All other assets, such as test results, are not required.

Custom code Java™ classes in the shared assets cannot use libraries that are outside the workspace. If your custom

code must use such a library, then copy the library into the project, and update the classpath to use the local copy.

1. Create a shared directory on the computer that hosts the UNC file system that contains the test projects to

share.

Example

For example, create a directory called: C:\MyRemoteWorkspace.

2. Copy the test projects to share into the shared directory.

If a project is stored in source control software, then copy it from there.

3. Check that the Engineering Test Management server can access the shared directory by using UNC paths.

Example

For example, the \\MyServer\RPTRemoteAssets\ path must be mapped to the C:

\MyRemoteWorkspace directory.

4. In Engineering Test Management, specify the directory that contains the actual test projects that are located

in the shared directory.

225

HCL OneTest Performance

226

5. Verify that you have correctly specified the UNC shared directory by browsing for the shared resource. Ensure

that the first dialog contains the projects at the first level.

You must not have intermediate directories between the UNC shared directory and the project directory.

Related information

IBM Engineering Test Management overview on page 53

Configuring the Engineering Test Management adapter on page 216

Importing test assets into Engineering Test Management on page 223

Integration with IBM® Engineering Workflow Management
You can integrate Engineering Workflow Management (formerly known as Rational® Team Concert™) to create and

track defects (bugs) or other work items, as a defect tracking tool in HCL OneTest™ Performance.

You can use HCL OneTest™ Performance to record and play back tests for the application that you develop and view

their results. When you discover that you might want to raise defects, issues, or other types of work items for the

test assets, you can create defects, issues, or other work items without the need to open Engineering Workflow

Management.

For more information about Engineering Workflow Management, refer to the IBM® Engineering Workflow

Management documentation.

The following table lists the tasks that you must perform to integrate HCL OneTest™ Performance with Engineering

Workflow Management:

Tasks Go to...

Install HCL OneTest™ Performance. Installation of the product by using the stand-alone in­

staller on page 95.

Create any or all of the following types of test assets in

HCL OneTest™ Performance to test your application:

• Compound tests

• Performance tests

• Schedules (Rate or VU Schedules)

Test Author Guide on page 333.

Install Engineering Workflow Management and gain ac­

cess to it.

IBM® Engineering Workflow Management documenta­

tion.

Note: The System Requirements on page 27 pro­

vide more information about specific versions

https://www.ibm.com/docs/en/elm/7.0.3?topic=engineering-workflow-management
https://www.ibm.com/docs/en/elm/7.0.3?topic=engineering-workflow-management
https://www.ibm.com/docs/en/elm/7.0.3?topic=engineering-workflow-management
https://www.ibm.com/docs/en/elm/7.0.3?topic=engineering-workflow-management
https://www.ibm.com/docs/en/elm/7.0.3?topic=installing-change-configuration-management-application
https://www.ibm.com/docs/en/elm/7.0.3?topic=installing-change-configuration-management-application
https://www.ibm.com/docs/en/elm/7.0.3?topic=installing-change-configuration-management-application

Chapter 6. Administrator Guide

Tasks Go to...

of Engineering Workflow Management require­

ments.

Run the test assets.
Running a local schedule or test on page 783.

Configure the Engineering Workflow Management serv­

er URL in HCL OneTest™ Performance.

Configuring the URL of Engineering Workflow Manage­

ment on page 227.

Create defects from HCL OneTest™ Performance. Creating defects in Engineering Workflow Management

on page 228.

Configuring the URL of Engineering Workflow Management
You must configure the URL of the Engineering Workflow Management server to use it as defect tracking tool in HCL

OneTest™ Performance.

Before you begin

You must have the URL of the Engineering Workflow Management server.

About this task

Bugzilla is configured as the default defect tracking tool in the Preferences window of HCL OneTest™ Performance.

You can provide the URL of the Engineering Workflow Management server to search, submit, or add work items to

test results from HCL OneTest™ Performance.

1. Open HCL OneTest™ Performance.

2. Click Window > Preferences > Test > Test Log Editor.

3. Enter the URL of the Engineering Workflow Management server in the following fields:

Fields Format of the URL

Submit URL https://ewm.example.com:9443/ccm/web/projects/projectname#ac­

tion=com.ibm.team.workitem.newWorkItem

Search URL https://ewm.example.com:9443/ccm/web/projects/projectname#ac­

tion=com.ibm.team.workitem.newWorkItem

Open URL https://ewm.example.com:9443/ccm/web/projects/projectname#ac­

tion=com.ibm.team.workitem.newWorkItem&id=

Where,

◦ ewm.example.com:9443 is the URL of the Engineering Workflow Management server.

◦ projectname is the name of the project in the Engineering Workflow Management server.

227

HCL OneTest Performance

228

Note: You must update the URL, if there is a change in the name of the project in Engineering

Workflow Management.

4. Click Apply and Close to save the configuration and close the Preferences window.

Results

You have configured the URL of Engineering Workflow Management in HCL OneTest™ Performance.

What to do next

You can create defects for the test results that are available in your project in HCL OneTest™ Performance. See

Creating defects in Engineering Workflow Management on page 228.

Creating defects in Engineering Workflow Management
You can create a defect in Engineering Workflow Management for the test result from the Test Log view in HCL

OneTest™ Performance when the test results differ from the expected results. You can create a defect after the test

run is complete.

Before you begin

• You must be familiar with working with Engineering Workflow Management.

• You must have performed the following tasks:

◦ Gained access to the Engineering Workflow Management server.

◦ Added user account to the project area with write permissions to the project.

◦ Completed a test run. The test results must be available in HCL OneTest™ Performance.

1. Open HCL OneTest™ Performance.

2. Identify the test results from the Test Navigator pane for which you want to create a defect.

3. Right-click the test result, and then click Display Test Log.

4. Click the Events tab, and then click User.

5. Perform the following steps to create a defect:

a. Click Submit from the Defects section.

Result

The Login page is displayed only if you are not logged in to Engineering Workflow Management.

b. Click Work Items, and then select the type of work item from the list.

c. Enter the required information in the Details, Description, and Discussion sections.

d. Click Save.

Chapter 6. Administrator Guide

Results

You have created the defect for the test result in Engineering Workflow Management from HCL OneTest™

Performance.

What to do next

You can perform the following actions from the Defect section:

• Enter the defect number to associate the defect with the test result by clicking Add.

• Find the existing defects in Engineering Workflow Management by clicking Search.

Integration with HCL® Launch
You can integrate HCL OneTest™ Performance with HCL® Launch to run performance test assets as a Process from

HCL® Launch.

When you use HCL® Launch for automating the deployments of your applications to an environment during the

development cycle, you can create performance test assets for your application in HCL OneTest™ Performance. You

can then run those tests from HCL® Launch.

You must use the HCL® Launch plugin to integrate HCL OneTest™ Performance with HCL® Launch. Integrating HCL

OneTest™ Performance with HCL® Launch automates the process of test runs. If you have many tests to run at

regular intervals, you can use HCL® Launch to initiate test runs automatically.

The following table lists the tasks that you must perform to run performance test assets from HCL® Launch:

Tasks Go to...

Install HCL OneTest™ Performance. Installation of HCL OneTest Performance on page 81.

If you installed HCL OneTest™ Performance on the Mac

operating system, you must have added TEST_WORK­

BENCH_HOME as an environment variable. You must have

pointed that environment variable to the installation di­

rectory of HCL OneTest™ Performance.

Note: On Windows® and Linux™ operating sys­

tems, the TEST_WORKBENCH_HOME environment vari­

able is set after the installation of HCL OneTest™

Performance is complete.

Create any or all the following types of test assets in

HCL OneTest™ Performance to test your application:

Test Author Guide on page 333.

229

HCL OneTest Performance

230

Tasks Go to...

• Compound tests

• Performance tests

• Schedules (Rate or VU Schedules)

Install HCL® Launch with at least one agent. HCL® Launch documentation.

System requirements on page 28 for information about

specific versions of HCL® Launch requirements.

Install the HCL OneTest™ Performance Launch plugin on

HCL® Launch.

Installing the plugin on HCL Launch on page 230.

Create a Component in HCL® Launch. Creating a component in HCL Launch on page 231.

Create a Process for the component in HCL® Launch. Creating a process in HCL Launch on page 232.

Configure the Process that you created for the compo­

nent in HCL® Launch.

Configuring the process on page 233.

Create a Resource in HCL® Launch. Creating a resource in HCL Launch on page 244.

Configure the Resource in HCL® Launch. Configuring the resource on page 245.

Create an Application in HCL® Launch. Creating an application in HCL Launch on page 246.

Configure the Application that you use to run perfor­

mance test assets in HCL® Launch.

Configuring the application on page 247.

Run the test assets from HCL® Launch. Running tests from HCL Launch on page 249.

Installing the plugin on HCL® Launch
You must install the HCL OneTest™ Performance Launch plugin to run performance test assets from HCL® Launch.

Before you begin

• You must be familiar with working with HCL® Launch.

• You must have performed the following tasks:

◦ Installed HCL® Launch. For more information about the installation, refer to the HCL Launch

documentation.

◦ Been granted access to HCL® Launch.

◦ Downloaded the HCL OneTest™ Performance Launch plugin from the HCL® License & Delivery portal.

For more information about specific versions of plugin, see Integration plugin compatibility matrix on

page 168.

https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.install.doc/topics/install_ch_launch/
https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.install.doc/topics/install_ch_launch/
https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.install.doc/topics/install_ch_launch/
https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.install.doc/topics/install_ch_launch/
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

1. Log in to HCL® Launch, if you are not already logged in.

Result

The HCL® Launch dashboard is displayed.

2. Click Settings.

3. Click Automation Plugins from the Automation pane.

4. Click Load Plugin.

5. Click Choose File to locate and open the compressed HCL OneTest™ Performance Launch plugin file.

Remember: You must not extract the HCL OneTest™ Performance Launch plugin compressed file

contents.

6. Click Submit.

Result

The installed plugin is displayed on the Automation Plugins tab.

Results

You have installed the HCL OneTest™ Performance Launch plugin on HCL® Launch.

What to do next

You must create a Component in HCL® Launch. See Creating a component in HCL Launch on page 231.

Creating a component in HCL® Launch
You must create a component to include artifacts and processes. The artifacts include runnable files, images,

databases, configuration instructions. Whereas the processes define the activities that components can perform.

Before you begin

• You must be familiar with working with HCL® Launch.

• You must have been granted access to HCL® Launch.

1. Log in to HCL® Launch, if you are not already logged in.

Result

The HCL® Launch dashboard is displayed.

2. Click Components, and then click Create Component.

3. Enter a name for the component in the Name field.

4. Enter the details in the other optional fields based on your requirement, and then click Save.

Result

The component that you created is displayed.

Results

You have created the component in HCL® Launch.

231

HCL OneTest Performance

232

What to do next

You must create a process for the component in HCL® Launch. See Creating a process in HCL Launch on

page 232.

Related information

HCL Launch Documentation

Creating a process in HCL® Launch
You must create a process for the component to include step properties for the test that you want to run from HCL®

Launch.

Before you begin

• You must be familiar with working with HCL® Launch.

• You must have performed the following tasks:

◦ Been granted access to HCL® Launch.

◦ Created a component in HCL® Launch. See Creating a component in HCL Launch on page 231.

1. Log in to HCL® Launch, if you are not already logged in.

Result

The HCL® Launch dashboard is displayed.

2. Click Components.

Result

A list of components that are available in HCL® Launch is displayed.

3. Select the component from the list for which you want to create a process.

4. Click the Processes tab, and then click Create Process.

Result

The Create Process dialog is displayed.

5. Enter a name for the process in the Name field.

6. Select Operational (No Version Needed) from Process Type drop-down list.

7. Verify the Default Working Directory field.

The Default Working Directory field defines the location that the agent uses to run the process. The default

value is ${p:resource/work.dir}/${p:component.name}.

Where ${p:resource/work.dir} is the default working directory for the agent and ${p:component.name} is the

name of the component.

8. Click Save.

Result

The process that you created is listed in the Processes tab and the Design tab for the process is displayed.

https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.doc/topics/comp_create/

Chapter 6. Administrator Guide

Results

You have created the process for the component in HCL® Launch.

What to do next

You must configure the process in HCL® Launch. See Configuring the process on page 233.

Related information

HCL Launch Documentation

Configuring the process
You must configure the process that you created for the component to organize the steps in the process, specify the

properties of the steps, and connect them.

Before you begin

• You must be familiar with working with HCL® Launch.

• You must have performed the following tasks:

◦ Been granted access to HCL® Launch.

◦ Created a component in HCL® Launch. See Creating a component in HCL Launch on page 231.

◦ Created a process for the component in HCL® Launch. See Creating a process in HCL Launch on

page 232.

About this task

When you open any process to configure, the process is displayed in the process editor. The process editor lists the

plugins and steps. The required Start and Finish steps represent the beginning and the end of the process and are

automatically placed on the design area.

You must provide the values for certain fields in the properties for the selected test step to run tests from HCL®

Launch. The minimum fields that you need to configure are Name, Workspace, Project, and Test Suite Name or

Config File. The remaining fields are optional.

For example, if you provide a complete path of a configuration file that contains the parameters for a test or schedule

run in the Config File field, then you need not provide values for the Workspace, Project, and Test Suite Name fields.

Note: If HCL OneTest™ Performance is not installed in default location, then you must provide the value for

the IMShared Location field along with other mandatory fields.

1. Log in to HCL® Launch, if you are not already logged in.

Result

233

https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.doc/topics/comp_process/

HCL OneTest Performance

234

The HCL® Launch dashboard is displayed.

2. Click Components.

Result

A list of components that are available in UrbanCode™ Deploy is displayed.

3. Select the component from the list in which you created the process.

4. Click the Processes tab.

Result

A list of processes that are available for the component is displayed.

5. Select the process from the list that you want to configure.

Result

The Design tab for the process is displayed.

6. Click HCL OneTest Studio, and then HCL OneTest Performance from the left menu.

7. Drag the Run an HCL OneTest Performance test step, and then drop it into the design area.

Note: The selected test must be placed between Start and Finish steps.

8. Specify the properties for the selected test by performing the following steps:

a. Click the Edit icon.

Result

The Edit Properties for Run an HCL OneTest Performance test dialog is displayed.

b. Specify the properties for the selected test step by referring to the following table:

The following table lists the required fields that you must provide to run the test from Launch:

Fields Description

Config File
Enter the complete path to a file that contains the parameters for a test or

schedule run.

For example, C:\Users\HCL\hclonetest\workspace\Project1\config.txt

For more information about creating a command line config file from HCL

OneTest™ Performance, see the Related information section.

Name
Enter the name for the test step.

For example, testrun1

Project
Enter the name of the project that has performance test assets.

For example, testproj1

Chapter 6. Administrator Guide

Fields Description

Test Suite Name
Enter the file name of the performance test assets relative to the project.

For example, test1.testsuite

Workspace
Enter the complete path of the Eclipse workspace.

For example, C:\Users\HCL\hclonetest\workspace1

The following table lists the optional fields that you can provide to run the test from Launch:

Fields Description

Custom Report

Format Files
Use this field to specify IDs of reports that you want to export in place of the de­

fault reports.

You can provide multiple report IDs separated by a comma. You can navigate

to Preferences of HCL OneTest™ Performance (Window > Preferences > Test >

Performance Test Reports > Export Reports), and then select Show Report IDs

checkbox to view the report IDs.

You must use the Custom Report Format Files field along with the Exported

Statistical Report Data File or Exportstatshtml field.

For example, you can provide http as a value in the Custom Report Format Files

field to export a Performance Report.

Dataset Override
Use this field to replace the dataset values during a test or schedule run.

You must ensure that both original and new datasets are in the same work­

space and have the same column names. When you enter a value for the

Dataset Override field, you must also include the path to the dataset. You must

provide the values for the Dataset Override field in the following format:

/project_name/ds_path/original_ds.csv:/project_name/ds_­

path/new_ds.csv

For example, /proj1/Datasets/ds1.csv:/proj1023/Datasets/new_ds1.csv

You can override multiple datasets that are saved in a different project by

adding multiple paths to the dataset separated by a semicolon. For a test or

schedule, the default value is the dataset specified in the test editor or schedule

editor.

235

HCL OneTest Performance

236

Fields Description

Duration
Use this field to change the duration of the stages in the rate schedule.

For example, Stage1=10s, Stage2=3m

The stage number specified must exist in the rate schedule.

Note: The Duration field creates a new copy of the rate schedule that

contains the specified number of duration.

Exported HTTP

Test log file
Use this field to specify the path of the file directory to store the exported HTTP

test log in a .txt format.

For example, C:/Users/Documents/tests/logexp.txt

Exported Statis­

tical Report Data

File

Use this field to provide the complete path to a directory that you can use to

store exported reports in a comma-separated values (CSV) format.

For example, C:/Users/Documents/tests

Note: If you do not specify a value for the Custom Report Format Files

field, then the reports that you selected in Preferences of HCL OneTest™

Performance (Window > Preferences > Test > Performance Test Re­

ports > Export Reports) are exported.

Exportstatsformat
Use this field to specify a format for the report that you want to export.

You must use at least one of the following options along with the Exported Sta­

tistical Report Data File field:

▪ simple.csv

▪ full.csv

▪ simple.json

▪ full.json

▪ csv

▪ json

For example, json.

Chapter 6. Administrator Guide

Fields Description

You can add multiple formats for the report separated by a comma. When you

want to export both simple and full type of report in a json or csv format, you

can specify json or csv as the format in the field.

The reports are saved to the location specified in the Exported Statistical Re­

port Data File field.

Note: The values provided in the Exportstatsformat field always take

precedence over the Export Reports options set in the Preferences of

HCL OneTest™ Performance (Window > Preferences > Test > Perfor­

mance Test Reports > Export Reports).

Exportstatshtml
Use this field to provide the complete path to a directory that you can use to ex­

port web analytic results.

The results are exported to the specified directory. You can analyze the results

on a web browser without using HCL OneTest™ Performance.

For example, C:/Users/Documents/Reports

History
Use this field when you want to view a record of all events that occurred during

a test or schedule run.

You can use any of the following options:

▪ jaeger: To send test logs to the Jaeger UI during the test or schedule run.

Note: You must set the JAEGER_AGENT_HOST property as an envi­

ronment variable by using the command line before you use the

jaeger option to send test logs to the Jaeger UI.

▪ testlog: To send test logs as traditional test logs in HCL OneTest™ Per­

formance during the test or schedule run.

▪ null: To send no test logs either to the Jaeger UI or HCL OneTest™ Per­

formance during the test or schedule run.

For example, jaeger

You can add multiple options separated by a comma to send test logs during

the test or schedule run to HCL OneTest™ Performance and the Jaeger UI.

237

HCL OneTest Performance

238

Fields Description

For example, jaeger,testlog

For more information about how to view test logs in the Jaeger UI and HCL

OneTest™ Performance, see the Related information section.

IMShared Loca­

tion
Enter the complete path to the IMShared directory, if it is not in the default lo­

cation.

For example, D:\Testtool\HCL\HCLIMShared

The default location of the IMShared directory is as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\HCLIMShared

Linux™ /opt/HCL/HCLIMShared

Mac /Application/HCL/HCLIMShared

Labels
Use this field to add labels to test results when the test run is complete.

For example, label1, label2

You can add multiple labels to a test result separated by a comma. When you

run test assets, then the labels that you added are displayed on the Perfor­

mance Report in HCL OneTest™ Performance.

The Results page of HCL OneTest™ Server displays the label that you added in

the Labels field for the specific test asset in the following conditions:

▪ When you set Publish result after execution as Always or Prompt in the

Preferences of HCL OneTest™ Performance (Windows > Preferences >

Test > HCL OneTest Server).

▪ When you use the Labels field along with the Publish field.

Note: When you run tests by using the double quotation marks ("") for

the Labels field, then the labels in the test result do not include double

quotation marks.

For example, if you provide the value for the Labels field as "100" users,

then the labels display 100 users in the test result.

Chapter 6. Administrator Guide

Fields Description

To work around this problem, you must create a command-line config

file, and then run the test by using the Config File field.

Number of Virtual

Users
Use this field to override the default number of virtual users in the test or sched­

ule run.

For a schedule, the default is the number of users specified in the schedule edi­

tor and for a test, the default is one user.

Note: The Number of Virtual Users field creates a new copy of the

schedule that contains the specified number of users.

Overwrite Results

file
Select or clear this field to determine whether a result file with the same name

must be overwritten or not.

The default status of the field is selected. Therefore, the file is overwritten and

retains the same file name.

Publish
Use this field to publish test results to HCL OneTest™ Server from HCL®

Launch.

Remember: Before you use the Publish field, you must provide the of­

fline user token of HCL OneTest™ Server by using any of the following

methods:

▪ Set the value of the HCL_ONETEST_OFFLINE_TOKEN environ­

ment variable to the offline user token of HCL OneTest™ Server

by using the command-line interface.

▪ Provide the offline user token of HCL OneTest™ Server in the

preferences of HCL OneTest™ Performance (Window > Prefer­

ences > Test > HCL OneTest Server)

You must use one of the following values in the Publish field:

239

HCL OneTest Performance

240

Fields Description

▪ serverURL#project.name=name_of_the_project&teamspace­

.name=name_of_the _teamspace

▪ serverURL#project.name=name_of_the_project&teamspace­

.alias=name_of_the _teamspace_alias

▪ no

The no option is useful if the product preferences are set to publish the

results, but you do not want to publish them.

For example, URL_OF_OneTest_Server#project.name=test&teamspace.name=ts1

Where:

▪ URL_OF_OneTest_Server is the URL of HCL OneTest™ Server.

▪ test is the name of the project in HCL OneTest™ Server.

▪ ts1 is the name of the team space.

Notes:

▪ If you have a project with the same name in different

team spaces, then you must append either the &team­

space.name=name_of_the _teamspace or &team­

space.alias=name_of_the_teamspace_alias options.

▪ If the name of the project or team space contains a special char­

acter, then you must replace it with %<Hexvalue_of_special_char­

acter>.

For example, if the name of the team space is Initial Team

Space, then you must provide it as Intial%20Team%20Space.

Where %20 is the Hex value of Space character.

▪ The values provided in the Publish field always take precedence

over the Results options set in the product preferences (Window

> Preferences > Test > HCL OneTest Server > Results).

The Reports information section on the Log file displays the names of the re­

port along with its corresponding URLs in the following conditions:

Chapter 6. Administrator Guide

Fields Description

▪ When you configured the URL of HCL OneTest™ Server in Preferences

of HCL OneTest™ Performance (Window > Preferences > Test > HCL

OneTest Server).

▪ When you set Publish result after execution as Always or Prompt in the

Preferences of HCL OneTest™ Performance (Window > Preferences >

Test > HCL OneTest Server > Results).

▪ When you used the Publish field or the Publish field along with the Pub­

lishreports field.

Publish_for
Use this field to publish test results to HCL OneTest™ Server from HCL® Launch

based on the completion status of the tests.

You must use the Publish_for field along with the Publish field. You can add

multiple options separated by a comma. The following are the available options

that you can use for the Publish_for field:

▪ ALL: You can use this option irrespective of status of the test.

▪ PASS: You can use this option to publish test results for the tests that

have passed.

▪ FAIL: You can use this option to publish test results for the tests that

have failed.

▪ ERROR: You can use this option to publish test results for the tests that

included errors.

▪ INCONCLUSIVE: You can use this option to publish test results for the

inconclusive tests.

For example, FAIL,ERROR

Publishreports
Use this field to publish specific test results to HCL OneTest™ Server.

The options that you can use with Publishreports are as follows:

▪ STATS

▪ TESTLOG

For example, STATS

You must use the Publishreports field along with the Publish field. You can pre­

fix the value of Publishreports with ! to publish the reports except the specified

one.

241

HCL OneTest Performance

242

Fields Description

For example, !STATS

Rate
Use this field to change the rate of the rate runner group.

For example, Rate Runner Group1=1/s, 3/m

Where, Rate Runner Group1 is the name of the Rate Runner group that has two

stages. The desired rate for the first stage is one iteration per second and the

rate for the second stage is three iterations per minute.

Notes:

▪ The name of the Rate Runner group must match with the name

in the rate schedule.

▪ The Rate field creates a new copy of the rate schedule that con­

tains the specified number of rate.

Resource Mon­

itoring Labels

Override

Use this field to perform any of the following actions:

▪ Enable the Resource Monitoring from Service option for a performance

schedule if the Resource Monitoring from Service option is not enabled

from the schedule editor in HCL OneTest™ Performance.

▪ Ignore Resource Monitoring sources that were set in the performance

schedule and change for a label matching mode.

▪ Replace an existing set of Resource Monitoring labels that were set in

the performance schedule and run the schedule with a new set of Re­

source Monitoring labels.

If you have added a label in HCL OneTest™ Server for a Resource Monitoring

source as rm1, then you can provide value as shown in the following example to

collect data from the source:

rm1

If your label for resource monitoring contains a comma (,) then you must re­

place the single comma with the double comma while providing the value. For

example, if you added a label to a Resource Monitoring source as rm1,test, then

you must provide the value as shown in the following example to collect data

from source:

rm1,,test

Chapter 6. Administrator Guide

Fields Description

Notes:

▪ You can use this field only when you want to run a Rate schedule

or VU schedule.

▪ You can add multiple Resource Monitoring labels separated by a

comma.

▪ You must add the Resource Monitoring labels to the Resource

Monitoring sources on the Resource Monitoring page in the HCL

OneTest™ Server project.

Results File
Use this field to provide a different name to the result file.

The results file is stored in the Results directory. The default name of the result

file is the name of the test or schedule with a timestamp appended.

User Comments
Use this field to add text that you want to display in the user comments row of

the report.

For example, test run with dataset

Note: When you run tests by using the double quotation marks ("") for

the User Comments field, then the user comments row of a report does

not contain double quotation marks.

For example, if you provide the value for the User Comments field as

test run with "dataset", then the user comments row of a report dis­

plays the value as test run with dataset.

To work around this problem, you must create a command-line config

file, and then run the test by using the Config File field.

Var File
Use this field to provide a complete path to an XML file that contains the vari­

able name and value pairs.

VM Args
Use this field to specify the maximum heap size for the Java process.

You can add multiple VM Arguments separated by a comma.

243

HCL OneTest Performance

244

Note: The following fields are from HCL® Launch:

▪ Working Directory

▪ Precondition

▪ Post Processing Script

▪ Use Impersonation

▪ Auth Token Restriction

You can accept the default values or change the values based on your requirements. For more

information about these fields, see the related links.

c. Click OK to save the properties for the test.

9. Click Save in the design area.

Results

You have configured the process for the component in HCL® Launch.

What to do next

You must create a resource in HCL® Launch. See Creating a resource in HCL Launch on page 244.

Related information

Creating a command-line config file on page 798

Viewing test logs in Jaeger on page 285

Viewing test logs on page 1001

Generating offline user tokens

HCL Launch Documentation

Process step preconditions

Post-processing scripts

User impersonation for process steps

Restricting authentication tokens

Creating a resource in HCL® Launch
You must create a resource to associate agents with components that you created in HCL® Launch.

Before you begin

• You must be familiar with working with HCL® Launch.

• You must have been granted access to HCL® Launch.

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html
https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.doc/topics/comp_process/
https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.doc/topics/comp_process_step_precondition/
https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.doc/topics/comp_postProcess/
https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.doc/topics/arch_appx_sudo/
https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.admin.doc/topics/security_token_restrict/

Chapter 6. Administrator Guide

1. Log in to HCL® Launch, if you are not already logged in.

Result

The HCL® Launch dashboard is displayed.

2. Click Resources, and then click Create Top-Level Group.

Result

The Create Resource dialog is displayed.

3. Enter a name for the resource in the Name field.

4. Click Save.

Results

You have created the resource in HCL® Launch.

What to do next

You must configure the resource. See Configuring the resource on page 245.

Related information

HCL Launch Documentation

Configuring the resource
You must configure the resource to add an agent and associate the agent with the component.

Before you begin

• You must be familiar with working with HCL® Launch.

• You must have performed the following tasks:

◦ Been granted access to HCL® Launch.

◦ Created a component in HCL® Launch. See Creating a component in HCL Launch on page 231.

◦ Created a resource in HCL® Launch. See Creating a resource in HCL Launch on page 244.

1. Log in to HCL® Launch, if you are not already logged in.

Result

The HCL® Launch dashboard is displayed.

2. Click Resources.

Result

A list of resources that are available in HCL® Launch is displayed.

3. Perform the following steps to add an agent to the resource:

a. Click the resource from the list for which you want to add an agent.

b. Click the Actions icon from the last column, and then click Add Agent.

245

https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.doc/topics/resources_ch/

HCL OneTest Performance

246

c. Select the agent from the drop-down list.

Note: The Name field is auto populated with the name of the agent.

d. Click Save.

Result

The selected agent is added to the resource and you can view the status of the agent in the Status

column.

4. Perform the following steps to add a component to the agent:

a. Click the agent from the list for which you want to add a component.

b. Click the Actions icon from the last column, and then click Add Component.

c. Select the component from the drop-down list.

Note: The Name field is auto populated with the name of the component.

d. Click Save.

Result

The selected component is added to the agent.

Results

You have configured the resource in HCL® Launch.

What to do next

You must create an application. See Creating an application in HCL Launch on page 246.

Related information

HCL Launch Documentation

Creating an application in HCL® Launch
You must create an application to fetch all the components together that you want to deploy.

Before you begin

• You must be familiar with working with HCL® Launch.

• You must have been granted access to HCL® Launch.

1. Log in to HCL® Launch, if you are not already logged in.

Result

https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.doc/topics/resources_ch/

Chapter 6. Administrator Guide

The HCL® Launch dashboard is displayed.

2. Click Applications.

3. Click Create Applications, and then New Applications.

4. Enter a name for the application in the Name field.

Result

The Environments page for the application that you created is displayed.

Results

You have created the application in HCL® Launch.

What to do next

You must configure the application. See Configuring the application on page 247.

Related information

HCL Launch Documentation

Configuring the application
You must configure the application to associate resources with environments and define processes to run test

assets.

Before you begin

• You must be familiar with working with HCL® Launch.

• You must have performed the following tasks:

◦ Been granted access to HCL® Launch.

◦ Created a component in HCL® Launch. See Creating a component in HCL Launch on page 231.

◦ Created a process for the component in HCL® Launch. See Creating a process in HCL Launch on

page 232.

◦ Configure the process for the component in HCL® Launch. See Configuring the process on

page 233.

◦ Created a resource in HCL® Launch. See Creating a resource in HCL Launch on page 244.

◦ Configured the resource in HCL® Launch. See Configuring the resource on page 245.

◦ Created an application in HCL® Launch. See Creating an application in HCL Launch on page 246.

1. Log in to HCL® Launch, if you are not already logged in.

Result

The HCL® Launch dashboard is displayed.

247

https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.doc/topics/applications_ch/

HCL OneTest Performance

248

2. Click Applications.

Result

A list of applications that are available in HCL® Launch is displayed.

3. Click the application that you want to configure from the Name column.

Result

The Environments page for the selected application is displayed.

4. Perform the following steps to create an environment for the application that you selected:

a. Click Create Environment.

b. Enter a name for the environment in the Name field.

c. Click Save.

5. Perform the following steps to configure resources to the environment:

a. Click the environment that you created.

b. Click Add Base Resources.

Result

A list of resources that are available in HCL® Launch is displayed.

c. Select the checkbox to add resources to the environment.

d. Click Save.

Result

You can view the corresponding agent and the component that you added for the resource by using

the Expand icon.

6. Perform the following steps to add the component to the application:

a. Click Applications, and then select your application from the list.

b. Click the Components tab, and then Add Components.

c. Select the checkbox from the drop-down list to add components to the application.

d. Click Save.

7. Perform the following steps to create a process for the application:

a. Click the Processes tab, and then Create Process.

b. Enter a name for the process in the Name field.

c. Click Save.

Result

The Design tab for the process that you created is displayed.

8. Drag the component process listed under the Component Process Steps option from the left navigation pane

and drop it into the design area.

9. Select the component process from the drop-down list in the Operational (No Version Needed) Process field.

10. Click Save.

Chapter 6. Administrator Guide

11. Click the Edit icon, and then change the name of the properties.

12. Click OK, and then click Save.

Results

You have configured the application to run test assets from HCL® Launch.

What to do next

You can run test assets from HCL® Launch. See Running tests from HCL Launch on page 249.

Related information

HCL Launch Documentation

Running tests from HCL® Launch
You can run test assets from HCL® Launch as a Process to test the performance of your application under test.

Before you begin

• You must be familiar with working with HCL® Launch.

• You must have performed the following tasks:

◦ Been granted access to HCL® Launch.

◦ Created a component in HCL® Launch. See Creating a component in HCL Launch on page 231.

◦ Created a process for the component in HCL® Launch. See Creating a process in HCL Launch on

page 232.

◦ Configure the process for the component in HCL® Launch. See Configuring the process on

page 233.

◦ Created a resource in HCL® Launch. See Creating a resource in HCL Launch on page 244.

◦ Configured the resource in HCL® Launch. See Configuring the resource on page 245.

◦ Created an application in HCL® Launch. See Creating an application in HCL Launch on page 246.

◦ Configured the application in HCL® Launch. See Configuring the application on page 247.

◦ Started the HCL® Launch agent. For more information, refer to the HCL Launch documentation.

◦ Closed HCL OneTest™ Performance.

1. Log in to HCL® Launch, if you are not already logged in.

Result

The HCL® Launch dashboard is displayed.

249

https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.doc/topics/applications_ch/
https://devops.hcldoc.com/launch/7.2.1/#com.udeploy.install.doc/topics/run_agent/

HCL OneTest Performance

250

2. Click Applications.

Result

A list of applications that are available in HCL® Launch is displayed.

3. Click the application that you configured for the test run.

4. Click the Request Process icon.

Result

The Create Deployment page is displayed.

5. Select the process that you created for the application which contains the test assets from the Process drop-

down list.

6. Click Next, and then select the specific version of component, if any.

Note: If you have multiple versions for your component, then only you can choose the required version

by clicking the Add option.

7. Click Next, and then verify the properties for the test run.

8. Click Next, and then verify that the status of the Run Now option is enabled.

You can disable the Run Now option, and then use the Date, Time, and Recurrence Pattern fields to run tests

as Process at the scheduled time.

9. Click Next, and then verify the details about the Process.

10. Click Submit Deployment to initiate the test run.

Results

You have run the performance test assets as Process from HCL® Launch.

What to do next

You can view the status of the process as follows:

• Success: When the test run is successful

• Failed: When the test run fails

You can view the details of the test run in the Log tab. The Reports information section on the Log file displays the

names of the report along with its corresponding URLs if you publish test results to HCL OneTest™ Server.

Integration with HCL OneTest™ API
You can use HCL OneTest™ API extension to run API tests from HCL OneTest™ Performance. You can either

import the projects from HCL OneTest™ API or manage them from HCL OneTest™ Performance by establishing the

connection between the products. You can also create a schedule or compound test to run the tests by using the

Agents.

Before you begin

You must have completed the following tasks:

Chapter 6. Administrator Guide

• Installed HCL OneTest™ API Extension for HCL OneTest™ API.

• Installed HCL OneTest™ Performance Agent and HCL OneTest™ API Agent to run tests remotely. When you

install HCL OneTest™ API Agent, you must have selected the This Agent will only run probes option.

• Defined the environment variable INTEGRATION_TESTER_AGENT_HOME on each location where the Agent is

installed, and have pointed to the root installation directory of HCL OneTest™ API Agent.

Note: The environment variables INTEGRATION_TESTER_HOME and

INTEGRATION_TESTER_AGENT_HOME are automatically created when you install HCL OneTest™ API

10.2.2 or later.

Setting environment variable

You must set the environment variable INTEGRATION_TESTER_AGENT_HOME and point it to the HCL OneTest™ API

Agent installation directory if you are using HCL OneTest™ API 10.2.1 or earlier.

1. Run the following command to set the environment variable on Windows:

INTEGRATION_TESTER_AGENT_HOME = C:\Program Files\HCL\HCLProducts\Agent

2. Run the following commands to set the environment variable on Linux:

INTEGRATION_TESTER_AGENT_HOME=/opt/HCL/HOT-API-Agent
export INTEGRATION_TESTER_AGENT_HOME
echo $INTEGRATION_TESTER_AGENT_HOME

If the environment variable is not set, the compound or schedule test run fails with an error message as depicted in

the following image:

Connecting to an existing API project

When you connect both the products any change or delete action made in one product workspace is reflected on the

other product workspace, if both the products are installed on your machine.

Warning: If you delete a project from the Test Navigator, be sure that the option Delete project contents on

disk is not selected in the Delete Resources dialog, otherwise the project would be deleted in HCL OneTest™

API if it is connected.

251

HCL OneTest Performance

252

• In HCL OneTest™ Performance, right-click on the Test Navigator, select New > Other > HCL OneTest API >

Connect to an HCL OneTest API Project and click Next.

• In the wizard page, click Browse and select the root folder that contains the project.

If the path contains a project, its name should automatically appear in Project Name and the Finish button

should be enabled.

Chapter 6. Administrator Guide

• In When project is connected, you have to perform one of the following actions:

◦ Click Do nothing to only import the project.

◦ Click Open Create Rate Schedule wizard to select the test, create a Rate Schedule, and add the test to

it.

◦ Click Open Create VU Schedule wizard to select the test, create a VU Schedule, and add the test to it.

◦ Click Open Create Compound Test Wizard to select the test, create a Compound test, and add the

test to the Compound test. For more details, see Creating a compound test on page 656 and Adding

tests into a compound test on page 657.

For example: select the Open Create VU Schedule wizard action and click Next.

The Create Rate Schedule for Integration Tester or Create VU Schedule for HCL OneTest API wizard

displays the list of tests contained in your project.

◦ Select one or more tests and click Next.

◦ In Schedule File Name and Location wizard, select a schedule in an existing project, or create it from

this window. You just need to enter a name for the new schedule and click Finish. The procedure is the

same for the compound test.

253

HCL OneTest Performance

254

◦ The Test Navigator displays the projects:

▪ The HCL OneTest™ API project you are connected to, or that you imported, with the tests.

▪ The HCL OneTest™ Performance project containing the schedule or compound test. If HCL

OneTest™ API is installed, Connected is indicated near the name of the project in the Test

Navigator. The Schedule or compound test automatically opens in the dedicated editor.

Setting HCL OneTest™ API preferences

To be able to open an HCL OneTest™ API project from HCL OneTest™ Performance Test Navigator, you need to have

both the products installed on the same computer, and you must set the path to the execution file in the Preferences.

• In HCL OneTest™ Performance, click Window > Preferences > Test > HIT Integration.

• Click Browse and set the installation path to HCL OneTest™ API execution file. On Windows, the default

location would be C:\Program Files\HCL\IntegrationTester.exe.

• Click Apply and OK.

Chapter 6. Administrator Guide

Opening HCL OneTest™ API resources from the Test Navigator

• Once the preferences are set, you can open an HCL OneTest™ API project.

• In the Test Navigator, open the project root node and children nodes, and at any level, right-click and select

Open in HCL OneTest API Workbench.

255

HCL OneTest Performance

256

If HCL OneTest™ API is automatically detected, the workspace opens for the selected resources.

If HCL OneTest™ API is not detected, a dialog opens on a Preference page where you need to verify the path to

the execution file.

• Warning: HCL OneTest™ API cannot open more than one project at a time. If you have another project

open, you will get an error. In that case, close HCL OneTest™ API and try to open the project again.

Importing HCL OneTest™ API project

If both the products are not installed on the same machine, you can import an HCL OneTest™ API project in your

workspace. Another reason for the import is when you have HCL OneTest™ API installed but you do not want

to connect to the HCL OneTest™ API project. In that case, the project is duplicated, any updates in one product

workspace will not be reflected in the other product's workspace.

• To import an HCL OneTest™ API project:

• Right-click on the Test Navigator, choose Import and select Existing project into workspace.

• Choose Select root directory or Select archive file; select a project to import and click Finish.

The selected project appears in the Test Navigator and the compound test or schedule editor automatically

opens.

Modifying HCL OneTest™ API environments in HCL OneTest™ Performance

In the schedule or compound test, you can select HCL OneTest™ API tests and change the environment of each

test. The environments are set in HCL OneTest™ API, you can only change the selection from the edited schedule or

compound test.

• Open the schedule or compound editor and select a test.

• In the HCL OneTest™ API details, you can browse and change the properties of the selected test. The Test

path, the Environments and Decription are automatically updated accordingly.

Chapter 6. Administrator Guide

• To select another environment for the Integration Tester test, use the dropdown menu.

Alternatively, you can change the environment selection for a test for a collection of tests:

• Right-click on the tree at any level under a node in the schedule or compound test and select Replace HCL

OneTest API Environments.

• In the Set Invocation Tester Environments wizard, the first page displays the list of projects that use the

selected environment and the number of tests from project that use this environment in the schedule or

compound test.

• Select another used environment in the dropdown list. Click Finish. The new choice applies to the selected

node and its children.

Next step is to create a compound test or schedule in HCL OneTest™ Performance to run the Integration tests on

page 258.

257

HCL OneTest Performance

258

You can add a dataset mapper in the compound test or schedule for tests that are using multiple tags. See Adding

Dataset Mapper on page 563 to map tags in the HCL OneTest™ API tests with the variable values of HCL OneTest™

Performance.

Running HCL OneTest™ API tests
You can use HCL OneTest™ Performance Extension for HCL OneTest™ API to run API tests.

You also have the option to just import the projects to HCL OneTest™ Performance from HCL OneTest™ API, add the

tests to a schedule or compound test to run them. You can either use HCL OneTest™ Performance Agent or HCL

OneTest™ API Agent to generate the load. You need a compound test or schedule that contains the HCL OneTest™

API tests.

If you update API tests in HCL OneTest™ Performance and want to apply the updates back to HCL OneTest™ API, you

must install HCL OneTest™ API and define the path to its installation directory to set the connection.

You can find the following use cases to work with API tests in HCL OneTest™ Performance:

• You have installed both the products and then you connect to the API project. Alternatively, you open the API

resource directly from the Test Navigator view, and then work directly with the sources files.

• HCL OneTest™ API is not installed and you import the projects in the workspace of HCL OneTest™

Performance.

Note: The imported tests must be edited in HCL OneTest™ API. Similarly, the schedules and

compounds tests must be edited in HCL OneTest™ Performance.

Running the compound test or schedule

• Click Run Compound Test or Run VU Schedule or Run Rate Schedule.

Note: When you execute the integration tests as part of compound tests, the integration test log is

generated and it is available in the Extended Properties section.

API Performance Report

The report contains the following pages.

OVERALL

The Overall page provides this information:

Chapter 6. Administrator Guide

• A progress indicator that shows the state of the run.

• A bar chart on the left shows the overall percentage of passed sequences for the entire run. A

sequence corresponds to a test run.

• A bar chart on the right shows the overall percentage of passed timed sections, which are

corresponding to individual sections within the steps of the tests.

SUMMARY

This page displays information about the run:

• The number of users that are active and the number of users that have completed testing. This

number is updated during the run.

• The elapsed time (run duration)

• The status of the run.

• The Performance Requirements: validates the performance requirements that you set in a

schedule.

The summary page also summarizes the data about the sequence run and timed sections: Total

number of sequences that were started and the total number that have been completed, or failed, with a

minimum and maximum rate.

259

HCL OneTest Performance

260

SEQUENCE THROUGHPUT SUMMARY

This page shows a bar chart of average throughput in seconds for each sequence.

It provides times section throughput for each sequence. You can use the filters to have displayed results

for one sequence only.

And if you add filters, you can see the timed sections throughput for each sequence.

Chapter 6. Administrator Guide

SEQUENCE THROUGHPUT

This page shows the average throughput for all combined sequences during the last recorded interval

over the time period. Click on one of the Total rate boxed to have one graph displayed at a time or click

Select All to see all rates on the same graph.

The User Load graph shows active users compared to users that have completed testing. The table

after the graph lists the number of active users, the number of users that have completed testing, and

the total user count for the entire run.

261

HCL OneTest Performance

262

SEQUENCE PERFORMANCE

The chart displays the response time of the sequences as the test progresses. You can apply a filter to

see the timed sections of all sequences or the timed sections of a particular sequence.

The table under the chart shows the average duration for each section of a sequence, the standard

deviation of the average response time, the passed rate.

Chapter 6. Administrator Guide

Integration with IBM® UrbanCode™ Deploy
You can integrate HCL OneTest™ Performance with IBM® UrbanCode™ Deploy to run performance test assets as a

Process from UrbanCode™ Deploy.

When you use UrbanCode™ Deploy for automating the deployments of your applications to an environment during the

development cycle, you can create performance test assets for your application in HCL OneTest™ Performance. You

can then run those tests from UrbanCode™ Deploy.

You must use the HCL OneTest™ Performance UCD plugin to integrate HCL OneTest™ Performance with UrbanCode™

Deploy. Integrating HCL OneTest™ Performance with UrbanCode™ Deploy automates the process of test runs. If you

have many tests to run at regular intervals, you can use UrbanCode™ Deploy to initiate test runs automatically.

The following table lists the tasks that you must perform to run performance test assets from UrbanCode™ Deploy:

Tasks Go to...

Install HCL OneTest™ Performance. Installing HCL OneTest Performance on page 86.

If you installed HCL OneTest™ Performance on the Mac

operating system, you must have added TEST_WORK­

BENCH_HOME as an environment variable. You must have

pointed that environment variable to the installation di­

rectory of HCL OneTest™ Performance.

Note: On Windows® and Linux™ operating sys­

tems, the TEST_WORKBENCH_HOME environment vari­

able is set after the installation of HCL OneTest™

Performance is complete.

Create any or all the following types of test assets in

HCL OneTest™ Performance to test your application:

• Compound tests

• Performance tests

• Schedules (Rate or VU Schedules)

Test Author Guide on page 333.

Install UrbanCode™ Deploy with at least one agent. IBM UrbanCode™ Deploy documentation.

System requirements on page 28 for information about

specific versions of UrbanCode™ Deploy requirements.

Install the HCL OneTest™ Performance UCD plugin on Ur­

banCode™ Deploy.

Installing the plugin on UrbanCode Deploy on

page 264.

263

https://www.ibm.com/docs/en/urbancode-deploy/7.2.0?topic=installing
https://www.ibm.com/docs/en/urbancode-deploy/7.2.0?topic=installing
https://www.ibm.com/docs/en/urbancode-deploy/7.2.0?topic=installing
https://www.ibm.com/docs/en/urbancode-deploy/7.2.0?topic=installing

HCL OneTest Performance

264

Tasks Go to...

Create a Component in UrbanCode™ Deploy. Creating a component in UrbanCode Deploy on

page 265.

Create a Process for the component in UrbanCode™ De­

ploy.

Creating a process in UrbanCode Deploy on page 266.

Configure the Process that you created for the compo­

nent in UrbanCode™ Deploy.

Configuring the process on page 267.

Create a Resource in UrbanCode™ Deploy. Creating a resource in UrbanCode Deploy on page 278.

Configure the Resource. Configuring the resource on page 279.

Create an Application in UrbanCode™ Deploy. Creating an application in UrbanCode Deploy on

page 280.

Configure the Application that you want to use to run

performance test assets from UrbanCode™ Deploy.

Configuring the application on page 281.

Run the test assets from UrbanCode™ Deploy. Running tests from UrbanCode Deploy on page 283.

Installing the plugin on UrbanCode™ Deploy
You must install the HCL OneTest™ Performance UCD plugin to run performance test assets from UrbanCode™

Deploy.

Before you begin

• You must be familiar with working with UrbanCode™ Deploy.

• You must have performed the following tasks:

◦ Installed UrbanCode™ Deploy. For more information about the installation, refer to the IBM Urban Code

documentation.

◦ Been granted access to UrbanCode™ Deploy.

◦ Downloaded the HCL OneTest™ Performance UCD plugin from the HCL® License & Delivery portal.

For more information about specific versions of plugin, see Integration plugin compatibility matrix on

page 168.

1. Log in to UrbanCode™ Deploy, if you are not already logged in.

Result

The UrbanCode™ Deploy dashboard is displayed.

2. Click Settings.

3. Click Automation Plugins from the Automation pane.

4. Click Load Plugin.

https://www.ibm.com/docs/en/urbancode-deploy/7.2.0?topic=installing
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

5. Click Choose File to locate and open the compressed HCL OneTest™ Performance UCD plugin file.

Remember: You must not extract the HCL OneTest™ Performance UCD plugin compressed file

contents.

6. Click Submit.

Result

The installed plugin is displayed on the Automation Plugins tab.

Results

You have installed the HCL OneTest™ Performance UCD plugin on UrbanCode™ Deploy.

What to do next

You must create a Component in UrbanCode™ Deploy. See Creating a component in UrbanCode Deploy on

page 265.

Creating a component in UrbanCode™ Deploy
You must create a component to include artifacts and processes. The artifacts include runnable files, images,

databases, configuration instructions. Whereas the processes define the activities that components can perform.

Before you begin

• You must be familiar with working with UrbanCode™ Deploy.

• You must have been granted access to UrbanCode™ Deploy.

1. Log in to UrbanCode™ Deploy, if you are not already logged in.

Result

The UrbanCode™ Deploy dashboard is displayed.

2. Click Components, and then click Create Component.

3. Enter a name for the component in the Name field.

4. Enter the details in the other optional fields based on your requirement, and then click Save.

Result

The component that you created is displayed.

Results

You have created the component in UrbanCode™ Deploy.

What to do next

You must create a process for the component in UrbanCode™ Deploy. See Creating a process in UrbanCode Deploy on

page 266.

265

HCL OneTest Performance

266

Related information

IBM UrbanCode Deploy Documentation

Creating a process in UrbanCode™ Deploy
You must create a process for the component to include step properties for the test that you want to run from

UrbanCode™ Deploy.

Before you begin

• You must be familiar with working with UrbanCode™ Deploy.

• You must have performed the following tasks:

◦ Been granted access to UrbanCode™ Deploy.

◦ Created a component in UrbanCode™ Deploy. See Creating a component in UrbanCode Deploy on

page 265.

1. Log in to UrbanCode™ Deploy, if you are not already logged in.

Result

The UrbanCode™ Deploy dashboard is displayed.

2. Click Components.

Result

A list of components that are available in UrbanCode™ Deploy is displayed.

3. Select the component from the list for which you want to create a process.

4. Click the Processes tab, and then click Create Process.

Result

The Create Process dialog is displayed.

5. Enter a name for the process in the Name field.

6. Select Operational (No Version Needed) from Process Type drop-down list.

7. Verify the Default Working Directory field.

The Default Working Directory field defines the location that the agent uses to run the process. The default

value is ${p:resource/work.dir}/${p:component.name}.

Where ${p:resource/work.dir} is the default working directory for the agent and ${p:component.name} is the

name of the component.

8. Click Save.

Result

The process that you created is listed in the Processes tab and the Design tab for the process is displayed.

Results

You have created the process for the component in UrbanCode™ Deploy.

https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=components-creating

Chapter 6. Administrator Guide

What to do next

You must configure the process in UrbanCode™ Deploy. See Configuring the process on page 267.

Related information

IBM UrbanCode Deploy Documentation

Configuring the process
You must configure the process that you created for the component to organize the steps in the process, specify the

properties of the steps, and connect them.

Before you begin

• You must be familiar with working with UrbanCode™ Deploy.

• You must have performed the following tasks:

◦ Been granted access to UrbanCode™ Deploy.

◦ Created a component in UrbanCode™ Deploy. See Creating a component in UrbanCode Deploy on

page 265.

◦ Created a process for the component in UrbanCode™ Deploy. See Creating a process in UrbanCode

Deploy on page 266.

About this task

When you open any process to configure, the process is displayed in the process editor. The process editor lists the

plugins and steps. The required Start and Finish steps represent the beginning and the end of the process and are

automatically placed on the design area.

You must provide the values for certain fields in the properties for the selected test step to run tests from

UrbanCode™ Deploy. The minimum fields that you need to configure are Name, Workspace, Project, and Test Suite

Name or Config File. The remaining fields are optional.

For example, if you provide a complete path of a configuration file that contains the parameters for a test or schedule

run in the Config File field, then you need not provide values for the Workspace, Project, and Test Suite Name fields.

Note: If HCL OneTest™ Performance is not installed in default location, then you must provide the value for

the IMShared Location field along with other mandatory fields.

1. Log in to UrbanCode™ Deploy, if you are not already logged in.

Result

The UrbanCode™ Deploy dashboard is displayed.

2. Click Components.

267

https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=components-component-processes

HCL OneTest Performance

268

Result

A list of components that are available in UrbanCode™ Deploy is displayed.

3. Select the component from the list in which you created the process.

4. Click the Processes tab.

Result

A list of processes that are available for the component is displayed.

5. Select the process from the list that you want to configure.

Result

The Design tab for the process is displayed.

6. Click HCL OneTest Studio, and then HCL OneTest Performance from the left menu.

7. Drag the Run an HCL OneTest Performance test step, and then drop it into the design area.

Note: The selected test must be placed between Start and Finish steps.

8. Specify the properties for the selected test by performing the following steps:

a. Click the Edit icon.

Result

The Edit Properties for Run an HCL OneTest Performance test dialog is displayed.

b. Specify the properties for the selected test step by referring to the following table:

The following table lists the required fields that you must provide to run the test from UCD:

Fields Description

Config File
Enter the complete path to a file that contains the parameters for a test or

schedule run.

For example, C:\Users\HCL\hclonetest\workspace\Project1\config.txt

For more information about creating a command line config file from HCL

OneTest™ Performance, see the Related information section.

Name
Enter the name for the test step.

For example, testrun1

Project
Enter the name of the project that has performance test assets.

For example, testproj1

Test Suite Name
Enter the file name of the performance test assets relative to the project.

Chapter 6. Administrator Guide

Fields Description

For example, test1.testsuite

Workspace
Enter the complete path of the Eclipse workspace.

For example, C:\Users\HCL\hclonetest\workspace1

The following table lists the optional fields that you can provide to run the test from UCD:

Fields Description

Custom Report

Format Files
Use this field to specify IDs of reports that you want to export in place of the de­

fault reports.

You can provide multiple report IDs separated by a comma. You can navigate

to Preferences of HCL OneTest™ Performance (Window > Preferences > Test >

Performance Test Reports > Export Reports), and then select Show Report IDs

checkbox to view the report IDs.

You must use the Custom Report Format Files field along with the Exported

Statistical Report Data File or Exportstatshtml field.

For example, you can provide http as a value in the Custom Report Format Files

field to export a Performance Report.

Dataset Override
Use this field to replace the dataset values during a test or schedule run.

You must ensure that both original and new datasets are in the same work­

space and have the same column names. When you enter a value for the

Dataset Override field, you must also include the path to the dataset. You must

provide the values for the Dataset Override field in the following format:

/project_name/ds_path/original_ds.csv:/project_name/ds_­

path/new_ds.csv

For example, /proj1/Datasets/ds1.csv:/proj1023/Datasets/new_ds1.csv

You can override multiple datasets that are saved in a different project by

adding multiple paths to the dataset separated by a semicolon. For a test or

schedule, the default value is the dataset specified in the test editor or schedule

editor.

Duration
Use this field to change the duration of the stages in the rate schedule.

269

HCL OneTest Performance

270

Fields Description

For example, Stage1=10s, Stage2=3m

The stage number specified must exist in the rate schedule.

Note: The Duration field creates a new copy of the rate schedule that

contains the specified number of duration.

Exported HTTP

Test log file
Use this field to specify the path of the file directory to store the exported HTTP

test log in a .txt format.

For example, C:/Users/Documents/tests/logexp.txt

Exported Statis­

tical Report Data

File

Use this field to provide the complete path to a directory that you can use to

store exported reports in a comma-separated values (CSV) format.

For example, C:/Users/Documents/tests

Note: If you do not specify a value for the Custom Report Format Files

field, then the reports that you selected in Preferences of HCL OneTest™

Performance (Window > Preferences > Test > Performance Test Re­

ports > Export Reports) are exported.

Exportstatsformat
Use this field to specify a format for the report that you want to export.

You must use at least one of the following options along with the Exported Sta­

tistical Report Data File field:

▪ simple.csv

▪ full.csv

▪ simple.json

▪ full.json

▪ csv

▪ json

For example, json.

Chapter 6. Administrator Guide

Fields Description

You can add multiple formats for the report separated by a comma. When you

want to export both simple and full type of report in a json or csv format, you

can specify json or csv as the format in the field.

The reports are saved to the location specified in the Exported Statistical Re­

port Data File field.

Note: The values provided in the Exportstatsformat field always take

precedence over the Export Reports options set in the Preferences of

HCL OneTest™ Performance (Window > Preferences > Test > Perfor­

mance Test Reports > Export Reports).

Exportstatshtml
Use this field to provide the complete path to a directory that you can use to ex­

port web analytic results.

The results are exported to the specified directory. You can analyze the results

on a web browser without using HCL OneTest™ Performance.

For example, C:/Users/Documents/Reports

History
Use this field when you want to view a record of all events that occurred during

a test or schedule run.

You can use any of the following options:

▪ jaeger: To send test logs to the Jaeger UI during the test or schedule run.

Note: You must set the JAEGER_AGENT_HOST property as an envi­

ronment variable by using the command line before you use the

jaeger option to send test logs to the Jaeger UI.

▪ testlog: To send test logs as traditional test logs in HCL OneTest™ Per­

formance during the test or schedule run.

▪ null: To send no test logs either to the Jaeger UI or HCL OneTest™ Per­

formance during the test or schedule run.

For example, jaeger

You can add multiple options separated by a comma to send test logs during

the test or schedule run to HCL OneTest™ Performance and the Jaeger UI.

271

HCL OneTest Performance

272

Fields Description

For example, jaeger,testlog

For more information about how to view test logs in the Jaeger UI and HCL

OneTest™ Performance, see the Related information section.

IMShared Loca­

tion
Enter the complete path to the IMShared directory, if it is not in the default lo­

cation.

For example, D:\Testtool\HCL\HCLIMShared

The default location of the IMShared directory is as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\HCLIMShared

Linux™ /opt/HCL/HCLIMShared

Mac /Application/HCL/HCLIMShared

Labels
Use this field to add labels to test results when the test run is complete.

For example, label1, label2

You can add multiple labels to a test result separated by a comma. When you

run test assets, then the labels that you added are displayed on the Perfor­

mance Report in HCL OneTest™ Performance.

The Results page of HCL OneTest™ Server displays the label that you added in

the Labels field for the specific test asset in the following conditions:

▪ When you set Publish result after execution as Always or Prompt in the

Preferences of HCL OneTest™ Performance (Windows > Preferences >

Test > HCL OneTest Server).

▪ When you use the Labels field along with the Publish field.

Note: When you run tests by using the double quotation marks ("") for

the Labels field, then the labels in the test result do not include double

quotation marks.

For example, if you provide the value for the Labels field as "100" users,

then the labels display 100 users in the test result.

Chapter 6. Administrator Guide

Fields Description

To work around this problem, you must create a command-line config

file, and then run the test by using the Config File field.

Number of Virtual

Users
Use this field to override the default number of virtual users in the test or sched­

ule run.

For a schedule, the default is the number of users specified in the schedule edi­

tor and for a test, the default is one user.

Note: The Number of Virtual Users field creates a new copy of the

schedule that contains the specified number of users.

Overwrite Results

file
Select or clear this field to determine whether a result file with the same name

must be overwritten or not.

The default status of the field is selected. Therefore, the file is overwritten and

retains the same file name.

Publish
Use this field to publish test results to HCL OneTest™ Server from UrbanCode™

Deploy.

Remember: Before you use the Publish field, you must provide the of­

fline user token of HCL OneTest™ Server by using any of the following

methods:

▪ Set the value of the HCL_ONETEST_OFFLINE_TOKEN environ­

ment variable to the offline user token of HCL OneTest™ Server

by using the command-line interface.

▪ Provide the offline user token of HCL OneTest™ Server in the

preferences of HCL OneTest™ Performance (Window > Prefer­

ences > Test > HCL OneTest Server)

You must use one of the following values in the Publish field:

273

HCL OneTest Performance

274

Fields Description

▪ serverURL#project.name=name_of_the_project&teamspace­

.name=name_of_the _teamspace

▪ serverURL#project.name=name_of_the_project&teamspace­

.alias=name_of_the _teamspace_alias

▪ no

The no option is useful if the product preferences are set to publish the

results, but you do not want to publish them.

For example, URL_OF_OneTest_Server#project.name=test&teamspace.name=ts1

Where:

▪ URL_OF_OneTest_Server is the URL of HCL OneTest™ Server.

▪ test is the name of the project in HCL OneTest™ Server.

▪ ts1 is the name of the team space.

Notes:

▪ If you have a project with the same name in different

team spaces, then you must append either the &team­

space.name=name_of_the _teamspace or &team­

space.alias=name_of_the_teamspace_alias options.

▪ If the name of the project or team space contains a special char­

acter, then you must replace it with %<Hexvalue_of_special_char­

acter>.

For example, if the name of the team space is Initial Team

Space, then you must provide it as Intial%20Team%20Space.

Where %20 is the Hex value of Space character.

▪ The values provided in the Publish field always take precedence

over the Results options set in the product preferences (Window

> Preferences > Test > HCL OneTest Server > Results).

The Reports information section on the Log file displays the names of the re­

port along with its corresponding URLs in the following conditions:

Chapter 6. Administrator Guide

Fields Description

▪ When you configured the URL of HCL OneTest™ Server in Preferences

of HCL OneTest™ Performance (Window > Preferences > Test > HCL

OneTest Server).

▪ When you set Publish result after execution as Always or Prompt in the

Preferences of HCL OneTest™ Performance (Window > Preferences >

Test > HCL OneTest Server > Results).

▪ When you used the Publish field or the Publish field along with the Pub­

lishreports field.

Publish_for
Use this field to publish test results to HCL OneTest™ Server from UrbanCode™

Deploy based on the completion status of the tests.

You must use the Publish_for field along with the Publish field. You can add

multiple options separated by a comma. The following are the available options

that you can use for the Publish_for field:

▪ ALL: You can use this option irrespective of status of the test.

▪ PASS: You can use this option to publish test results for the tests that

have passed.

▪ FAIL: You can use this option to publish test results for the tests that

have failed.

▪ ERROR: You can use this option to publish test results for the tests that

included errors.

▪ INCONCLUSIVE: You can use this option to publish test results for the

inconclusive tests.

For example, FAIL,ERROR

Publishreports
Use this field to publish specific test results to HCL OneTest™ Server.

The options that you can use with Publishreports are as follows:

▪ STATS

▪ TESTLOG

For example, STATS

You must use the Publishreports field along with the Publish field. You can pre­

fix the value of Publishreports with ! to publish the reports except the specified

one.

275

HCL OneTest Performance

276

Fields Description

For example, !STATS

Rate
Use this field to change the rate of the rate runner group.

For example, Rate Runner Group1=1/s, 3/m

Where, Rate Runner Group1 is the name of the Rate Runner group that has two

stages. The desired rate for the first stage is one iteration per second and the

rate for the second stage is three iterations per minute.

Notes:

▪ The name of the Rate Runner group must match with the name

in the rate schedule.

▪ The Rate field creates a new copy of the rate schedule that con­

tains the specified number of rate.

Resource Mon­

itoring Labels

Override

Use this field to perform any of the following actions:

▪ Enable the Resource Monitoring from Service option for a performance

schedule if the Resource Monitoring from Service option is not enabled

from the schedule editor in HCL OneTest™ Performance.

▪ Ignore Resource Monitoring sources that were set in the performance

schedule and change for a label matching mode.

▪ Replace an existing set of Resource Monitoring labels that were set in

the performance schedule and run the schedule with a new set of Re­

source Monitoring labels.

If you have added a label in HCL OneTest™ Server for a Resource Monitoring

source as rm1, then you can provide value as shown in the following example to

collect data from the source:

rm1

If your label for resource monitoring contains a comma (,) then you must re­

place the single comma with the double comma while providing the value. For

example, if you added a label to a Resource Monitoring source as rm1,test, then

you must provide the value as shown in the following example to collect data

from source:

rm1,,test

Chapter 6. Administrator Guide

Fields Description

Notes:

▪ You can use this field only when you want to run a Rate schedule

or VU schedule.

▪ You can add multiple Resource Monitoring labels separated by a

comma.

▪ You must add the Resource Monitoring labels to the Resource

Monitoring sources on the Resource Monitoring page in the HCL

OneTest™ Server project.

Results File
Use this field to provide a different name to the result file.

The results file is stored in the Results directory. The default name of the result

file is the name of the test or schedule with a timestamp appended.

User Comments
Use this field to add text that you want to display in the user comments row of

the report.

For example, test run with dataset

Note: When you run tests by using the double quotation marks ("") for

the User Comments field, then the user comments row of a report does

not contain double quotation marks.

For example, if you provide the value for the User Comments field as

test run with "dataset", then the user comments row of a report dis­

plays the value as test run with dataset.

To work around this problem, you must create a command-line config

file, and then run the test by using the Config File field.

Var File
Use this field to provide a complete path to an XML file that contains the vari­

able name and value pairs.

VM Args
Use this field to specify the maximum heap size for the Java process.

You can add multiple VM Arguments separated by a comma.

277

HCL OneTest Performance

278

Note: The following fields are from UrbanCode™ Deploy:

▪ Working Directory

▪ Precondition

▪ Post Processing Script

▪ Use Impersonation

▪ Auth Token Restriction

You can accept the default values or change the values based on your requirements. For more

information about these fields, see the related links.

c. Click OK to save the properties for the test.

9. Click Save in the design area.

Results

You have configured the process for the component in UrbanCode™ Deploy.

What to do next

You must create a resource in UrbanCode™ Deploy. See Creating a resource in UrbanCode Deploy on page 278.

Related information

Creating a command-line config file on page 798

Viewing test logs in Jaeger on page 285

Viewing test logs on page 1001

Generating offline user tokens

IBM UrbanCode Deploy Documentation

Process step preconditions

Post-processing scripts

User impersonation for process steps

Restricting authentication tokens

Creating a resource in UrbanCode™ Deploy
You must create a resource to associate agents with components that you created in UrbanCode™ Deploy.

Before you begin

• You must be familiar with working with UrbanCode™ Deploy.

• You must have been granted access to UrbanCode™ Deploy.

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html
https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=processes-component#intro_component_processes
https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=logic-process-step-preconditions
https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=logic-post-processing-scripts
https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=processes-user-impersonation-process-steps
https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=tokens-restricting-authentication

Chapter 6. Administrator Guide

1. Log in to UrbanCode™ Deploy, if you are not already logged in.

Result

The UrbanCode™ Deploy dashboard is displayed.

2. Click Resources, and then click Create Top-Level Group.

Result

The Create Resource dialog is displayed.

3. Enter a name for the resource in the Name field.

4. Click Save.

Results

You have created the resource in UrbanCode™ Deploy.

What to do next

You must configure the resource. See Configuring the resource on page 279.

Related information

IBM UrbanCode Deploy Documentation

Configuring the resource
You must configure the resource to add an agent and associate the agent with the component.

Before you begin

• You must be familiar with working with UrbanCode™ Deploy.

• You must have performed the following tasks:

◦ Been granted access to UrbanCode™ Deploy.

◦ Created a component in UrbanCode™ Deploy. See Creating a component in UrbanCode Deploy on

page 265.

◦ Created a resource in UrbanCode™ Deploy. See Creating a resource in UrbanCode Deploy on

page 278.

1. Log in to UrbanCode™ Deploy, if you are not already logged in.

Result

The UrbanCode™ Deploy dashboard is displayed.

2. Click Resources.

Result

A list of resources that are available in UrbanCode™ Deploy is displayed.

3. Perform the following steps to add an agent to the resource:

279

https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=deployment-resources

HCL OneTest Performance

280

a. Click the resource from the list for which you want to add an agent.

b. Click the Actions icon from the last column, and then click Add Agent.

c. Select the agent from the drop-down list.

Note: The Name field is auto populated with the name of the agent.

d. Click Save.

Result

The selected agent is added to the resource and you can view the status of the agent in the Status

column.

4. Perform the following steps to add a component to the agent:

a. Click the agent from the list for which you want to add a component.

b. Click the Actions icon from the last column, and then click Add Component.

c. Select the component from the drop-down list.

Note: The Name field is auto populated with the name of the component.

d. Click Save.

Result

The selected component is added to the agent.

Results

You have configured the resource in UrbanCode™ Deploy.

What to do next

You must create an application. See Creating an application in UrbanCode Deploy on page 280.

Related information

IBM UrbanCode Deploy Documentation

Creating an application in UrbanCode™ Deploy
You must create an application to fetch all the components together that you want to deploy.

Before you begin

• You must be familiar with working with UrbanCode™ Deploy.

• You must have been granted access to UrbanCode™ Deploy.

https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=deployment-resources

Chapter 6. Administrator Guide

1. Log in to UrbanCode™ Deploy, if you are not already logged in.

Result

The UrbanCode™ Deploy dashboard is displayed.

2. Click Applications.

3. Click Create Applications, and then New Applications.

4. Enter a name for the application in the Name field.

Result

The Environments page for the application that you created is displayed.

Results

You have created the application in UrbanCode™ Deploy.

What to do next

You must configure the application. See Configuring the application on page 281.

Related information

IBM UrbanCode Deploy Documentation

Configuring the application
You must configure the application to associate resources with environments and define processes to run test

assets.

Before you begin

• You must be familiar with working with UrbanCode™ Deploy.

• You must have performed the following tasks:

◦ Been granted access to UrbanCode™ Deploy.

◦ Created a component in UrbanCode™ Deploy. See Creating a component in UrbanCode Deploy on

page 265.

◦ Created a process for the component in UrbanCode™ Deploy. See Creating a process in UrbanCode

Deploy on page 266.

◦ Configure the process for the component in UrbanCode™ Deploy. See Configuring the process on

page 267.

◦ Created a resource in UrbanCode™ Deploy. See Creating a resource in UrbanCode Deploy on

page 278.

281

https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=deployment-applications

HCL OneTest Performance

282

◦ Configured the resource in UrbanCode™ Deploy. See Configuring the resource on page 279.

◦ Created an application in UrbanCode™ Deploy. See Creating an application in UrbanCode Deploy on

page 280.

1. Log in to UrbanCode™ Deploy, if you are not already logged in.

Result

The UrbanCode™ Deploy dashboard is displayed.

2. Click Applications.

Result

A list of applications that are available in UrbanCode™ Deploy is displayed.

3. Click the application that you want to configure from the Name column.

Result

The Environments page for the selected application is displayed.

4. Perform the following steps to create an environment for the application that you selected:

a. Click Create Environment.

b. Enter a name for the environment in the Name field.

c. Click Save.

5. Perform the following steps to configure resources to the environment:

a. Click the environment that you created.

b. Click Add Base Resources.

Result

A list of resources that are available in UrbanCode™ Deploy is displayed.

c. Select the checkbox to add resources to the environment.

d. Click Save.

Result

You can view the corresponding agent and the component that you added for the resource by using

the Expand icon.

6. Perform the following steps to add the component to the application:

a. Click Applications, and then select your application from the list.

b. Click the Components tab, and then Add Components.

c. Select the checkbox from the drop-down list to add components to the application.

d. Click Save.

7. Perform the following steps to create a process for the application:

a. Click the Processes tab, and then Create Process.

b. Enter a name for the process in the Name field.

c. Click Save.

Chapter 6. Administrator Guide

Result

The Design tab for the process that you created is displayed.

8. Drag the component process listed under the Component Process Steps option from the left navigation pane

and drop it into the design area.

9. Select the component process from the drop-down list in the Operational (No Version Needed) Process field.

10. Click Save.

11. Click the Edit icon, and then change the name of the properties.

12. Click OK, and then click Save.

Results

You have configured the application to run test assets from UrbanCode™ Deploy.

What to do next

You can run test assets from UrbanCode™ Deploy. See Running tests from UrbanCode Deploy on page 283.

Related information

IBM UrbanCode Deploy Documentation

Running tests from UrbanCode™ Deploy
You can run test assets from UrbanCode™ Deploy as a Process to test the performance of your application under test.

Before you begin

• You must be familiar with working with UrbanCode™ Deploy.

• You must have performed the following tasks:

◦ Been granted access to UrbanCode™ Deploy.

◦ Created a component in UrbanCode™ Deploy. See Creating a component in UrbanCode Deploy on

page 265.

◦ Created a process for the component in UrbanCode™ Deploy. See Creating a process in UrbanCode

Deploy on page 266.

◦ Configure the process for the component in UrbanCode™ Deploy. See Configuring the process on

page 267.

◦ Created a resource in UrbanCode™ Deploy. See Creating a resource in UrbanCode Deploy on

page 278.

◦ Configured the resource in UrbanCode™ Deploy. See Configuring the resource on page 279.

283

https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=deployment-applications

HCL OneTest Performance

284

◦ Created an application in UrbanCode™ Deploy. See Creating an application in UrbanCode Deploy on

page 280.

◦ Configured the application in UrbanCode™ Deploy. See Configuring the application on page 281.

◦ Started the UrbanCode™ Deploy agent. For more information, refer to the IBM UrbanCode Deployment

documentation.

◦ Closed HCL OneTest™ Performance.

1. Log in to UrbanCode™ Deploy, if you are not already logged in.

Result

The UrbanCode™ Deploy dashboard is displayed.

2. Click Applications.

Result

A list of applications that are available in UrbanCode™ Deploy is displayed.

3. Click the application that you configured for the test run.

4. Click the Request Process icon.

Result

The Run Application Process page is displayed.

5. Select the process that you created for the application which contains the test assets from the Process drop-

down list.

6. Click Submit.

Result

The UrbanCode™ Deploy dashboard shows the progress of the process request.

Results

You have run the performance test assets as Process from UrbanCode™ Deploy.

What to do next

After the process completes, you can view the status of the process displayed as follows:

• Success: When the test run is successful

• Failed: When the test run is failed

You can view the details of the test run in the Execution Log section. The Reports information section on the Log

file displays the names of the report along with its corresponding URLs if you publish test results to HCL OneTest™

Server.

Integration of Jaeger with the product
Jaeger is software for tracing transactions between distributed services. You can use Jaeger to monitor and

troubleshoot complex microservices environments.

https://www.ibm.com/docs/en/urbancode-deploy/7.2.1?topic=deploy-starting-agents

Chapter 6. Administrator Guide

You can set up the Jaeger UI in your local environment by using one of the following methods:

• One Jaeger agent shared by all HCL OneTest™ Performance agents

• One Jaeger agent for each HCL OneTest™ Performance agent

One Jaeger agent shared by all HCL OneTest™ Performance agents

When you use this method, ensure that the Jaeger agent is accessible by HCL OneTest™ Performance

and all the HCL OneTest™ Performance agents. You must set the JAEGER_AGENT_HOST property as an

environment variable by using the command line before running the schedule.

You must also ensure that the Jaeger agent ports 6831, 6832, and 5778 are accessible from other

computers to communicate with the HCL OneTest™ Performance agent via the User Datagram Protocol

(UDP). If you want to define any other Jaeger environment variables, set those environment variables

only on HCL OneTest™ Performance.

One Jaeger agent for each HCL OneTest™ Performance agent

When you use this method, you must install the Jaeger agent in the same location where you installed

HCL OneTest™ Performance and on all the HCL OneTest™ Performance agents.

You must also ensure that the Jaeger agent ports 6831, 6832, and 5778 are accessible from other

processes on the same computer to communicate with the HCL OneTest™ Performance agent via the

UDP. If you want to define any other Jaeger environment variables, set those environment variables on

all the computers where the Jaeger agent is installed.

For more information about Jaeger, refer to Jaeger documentation.

Related information

Viewing test logs in Jaeger on page 285

Running a test or schedule from a command line on page 823

Viewing test logs in Jaeger
You can use the Jaeger UI to view the test logs of the tests or schedules that you run from the command-line interface

to analyze traces of transactions between distributed services.

Before you begin

You must have completed the following tasks:

• Downloaded Jaeger components from the Jaeger website.

• Created a test or schedule to run it from the command-line interface. See Recording HTTP tests on

page 335 or Creating a VU Schedule on page 696.

About this task

285

https://www.jaegertracing.io/docs/1.16/client-features/
https://www.jaegertracing.io/download/

HCL OneTest Performance

286

While running tests or schedules by using the command-line interface, you must include the command -history jaeger

in your test or schedule run. Adding the -history jaeger enables you to view the test log of the completed test or

schedule from the Jaeger UI in a web browser.

1. Run a test or schedule from the command-line interface by adding the -history jaeger option.

For example: cmdline.bat -workspace workspace_full_path -project proj_rel_path -suite suite_rel_path -

stdout -history jaeger

Result

The test or schedule runs and the result of the run is displayed.

2. Open the Jaeger UI in a browser.

For example: http://<host IP>:<port>.

3. Select HCL OneTest Product from the Service list.

4. Click Find Traces.

In the Jaeger UI, you can view the entire test log of the test or schedule that you ran from the command-line.

What to do next

• You can use the Jaeger traces to analyze test results.

• You can compare the traces in the Jaeger UI with test logs in HCL OneTest™ Performance to confirm that they

are the same.

Related information

Running a test or schedule from a command line on page 823

Viewing test logs on page 1001

Integration of Jaeger with the product on page 284

Integration with Jenkins
You can use the HCL OneTest™ Performance Jenkins plugin to run tests on a Jenkins server.

To automate testing with Jenkins, you must configure Jenkins primary server and Jenkins secondary server.

This configuration provides a single Jenkins installation on the Jenkins primary server to host multiple Jenkins

secondary server for building and running tests. For more information about the Jenkins primary and secondary

server relationship, refer to the Jenkins documentation.

You must install the required version of the HCL OneTest™ Performance Jenkins plugin on the Jenkins primary server,

and install the product on the Jenkins secondary server, where you create tests.

You can use either the Jenkins Freestyle project or the Pipeline project to run test assets from Jenkins. With

Freestyle project, you can create a build step from the Jenkins UI to run the test assets. Whereas the Pipeline project

uses a simple text scripts based on the Groovy programming language. You can define pipeline scripts during the

configuration of the Pipeline project by using any of the following methods:

https://www.jenkins.io/doc/book/managing/nodes/#components-of-distributed-builds

Chapter 6. Administrator Guide

• Pipeline script: In this method, you can directly enter a script in the field provided within the Jenkins UI or you

can select a sample Pipeline script from the drop-down list.

• Pipeline script from SCM: In this method, you can create a script with a Groovy editor and then commit the

script file into the Git repository.

For more information about the Jenkins Pipeline, refer to the Jenkins documentation.

Refer to the following topics to learn more about integrating Jenkins with HCL OneTest™ Performance.

Environment variables for Jenkins
You can add environment variables on the Jenkins server to run the Jenkins build by referring to environment

variables.

You can add an environment variable on the Jenkins server by navigating to Manage Jenkins > Configure System >

Global properties. You can enter the variable name by using any of the following methods for the corresponding text

fields in the Run HCL OneTest Performance test step:

• Use the dollar sign ($) followed by the variable name.

For example, $workspace

• Use the dollar sign ($) followed by the variable name between braces.

For example, ${workspace}

The HCL OneTest™ Performance Jenkins plugin uses the actual value while running the job.

For example, if you add the environment variable named workspace with the value C:\Users\HCL\workspace1,

then you can use $workspace or ${workspace} as input to the Workspace field when running tests. During the run time,

$workspace or ${workspace} is substituted with its corresponding value C:\Users\HCL\workspace1.

Task flows for running test assets from Jenkins
You can perform certain tasks to run test assets from the Jenkins Freestyle project or the Pipeline project.

The following table lists the task flows for running test assets from the Jenkins Freestyle project:

Tasks More information

Install the HCL OneTest™ Performance Jenkins plugin.
Installing the plugin on the Jenkins primary server on

page 288

Configure the Freestyle project.
Configuring the Freestyle project on page 289

Run HCL OneTest™ Performance tests on Jenkins.
Running tests from Jenkins on page 313

287

https://www.jenkins.io/pipeline/getting-started-pipelines/

HCL OneTest Performance

288

You can perform the following tasks to run test assets from the Jenkins Pipeline project by using the sample script:

Tasks More information

Install the HCL OneTest™ Performance Jenkins plugin.
Installing the plugin on the Jenkins primary server on

page 288

Create a pipeline script from the Jenkins UI.
Creating a pipeline script from Jenkins on page 300

Configure the Pipeline project.
Configuring the Pipeline project by using the sample

script on page 311

Run HCL OneTest™ Performance tests on Jenkins.
Running tests from Jenkins on page 313

You can perform the following tasks to run test assets from the Jenkins Pipeline project by using the script from

Source Code Management (SCM):

Tasks More information

Install the HCL OneTest™ Performance Jenkins plugin.
Installing the plugin on the Jenkins primary server on

page 288

Create a pipeline script and commit the script to the Git

repository.

For more information, refer to the Jenkins documenta­

tion.

Configure the Pipeline project.
Configuring the Pipeline project by using the script from

SCM on page 312

Run HCL OneTest™ Performance tests on Jenkins.
Running tests from Jenkins on page 313

Installing the plugin on the Jenkins primary server
You must install the HCL OneTest™ Performance Jenkins plugin to run performance test assets from the Jenkins

server.

Before you begin

You must have completed the following tasks:

• Verified that you have a Jenkins primary server and secondary server.

• Downloaded the HCL OneTest™ Performance from the HCL® License & Delivery portal.

For more information about specific versions of plugin, see Integration plugin compatibility matrix on

page 168.

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do
https://hclsoftware.flexnetoperations.com/flexnet/operations/logon.do

Chapter 6. Administrator Guide

1. Log in to the Jenkins server.

Result

The Jenkins dashboard is displayed.

2. Click Manage Jenkins > Manage plugins, and then click Advanced tab.

3. Click Choose File and then locate and open the HCL OneTest™ Performance Jenkins plugin.

4. Click Upload.

Result

The HCL OneTest™ Performance Jenkins plugin is displayed in the Installed tab.

5. Perform the following steps to provide Random TCP Ports for Java™ Network Launch Protocol (JNLP) agents:

a. Click Manage Jenkins from the Jenkins dashboard.

b. Click Configure Global Security from the Security section.

c. Click Random from the Agents section.

d. Click Save to save and apply the changes.

Results

You have installed the HCL OneTest™ Performance Jenkins plugin on the Jenkins primary server.

What to do next

You can run the test from the Jenkins server. See Running tests from Jenkins on page 313.

Configuring the Freestyle project
You must configure a Freestyle project to add a build step, and then run test assets from Jenkins.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest™ Performance Jenkins plugin on the Jenkins primary server. See Installing the

plugin on the Jenkins primary server on page 288.

• Created an Agent in Jenkins. For more information about creating Agents, refer to the Jenkins documentation.

• Copied the name of the labels that you provided in the Labels field when you created the Agent.

• Created a Jenkins Freestyle project.

About this task

When you create a Freestyle project in the Jenkins server, you must select the Restrict where this project can be run

checkbox and enter the name of the labels that you provided during the creation of Agent in the Label Expression

field.

You must provide the values for certain fields in the Jenkins UI to run tests from Jenkins. The minimum fields that

you need to configure are, Name, Workspace, Project, and Test Suite Name or Config File. The remaining fields are

optional.

289

https://www.jenkins.io/doc/book/managing/nodes/#creating-agents

HCL OneTest Performance

290

For example, if you provide a complete path of a configuration file that contains the parameters for a test or schedule

run in the Config File field, then you need not provide values for the Name, Workspace, Project, and Test Suite Name

fields.

Note: If HCL OneTest™ Performance is not installed in default location, then you must provide the value for

the IMShared Location field along with other mandatory fields.

1. Open the Jenkins Freestyle project, and then click Configure.

2. Click the Build tab, and then click Add build step.

3. Select the Run HCL OneTest Performance test option from the drop-down list.

4. Provide the details about the test run for the fields by referring to the following table:

The following table lists the optional fields that you can provide to run the test from Jenkins:

Fields Description

Config File
Enter the complete path to a file that contains the parameters for a test or schedule

run.

For example, C:\Users\HCL\hclonetest\workspace\Project1\config.txt

For more information about creating a command line config file from HCL OneTest™

Performance, see the Related information section.

Name
Enter the name for the Jenkins build step.

For example, testrun1

Project
Enter the name of the project that has performance test assets.

For example, testproj1

Test Suite Name
Enter the file name of the performance test assets relative to the project.

For example, test1.testsuite

Workspace
Enter the complete path of the Eclipse workspace.

For example, C:\Users\HCL\hclonetest\workspace1

The following table lists the optional fields that you can provide to run the test from Jenkins:

Chapter 6. Administrator Guide

Fields Description

Custom Report For­

mat Files
Use this field to specify IDs of reports that you want to export in place of the default

reports.

You can provide multiple report IDs separated by a comma. You can navigate to Pref­

erences of HCL OneTest™ Performance (Window > Preferences > Test > Performance

Test Reports > Export Reports), and then select Show Report IDs checkbox to view

the report IDs.

You must use the Custom Report Format Files filed along with the Exported Statisti­

cal Report Data File or Exported Statistical Report in html field.

For example, you can provide http as a value in the Custom Report Format Files field

to export a Performance Report.

Dataset Override
Use this field to replace the dataset values during a test or schedule run.

You must ensure that both original and new datasets are in the same workspace and

have the same column names. When you enter a value for the Dataset Override field,

you must also include the path to the dataset. You must provide the values for the

Dataset Override field in the following format:

/project_name/ds_path/original_ds.csv:/project_name/ds_­

path/new_ds.csv

For example, /proj1/Datasets/ds1.csv:/proj1023/Datasets/new_ds1.csv

You can override multiple datasets that are saved in a different project by adding mul­

tiple paths to the dataset separated by a semicolon. For a test or schedule, the default

value is the dataset specified in the test editor or schedule editor.

Duration
Use this field to change the duration of the stages in the rate schedule.

For example, Stage1=10s, Stage2=3m

The stage number specified must exist in the rate schedule.

Note: The Duration field creates a new copy of the rate schedule that contains

the specified number of duration.

Exported HTTP

Test log File
Use this field to specify the path of the file directory to store the exported HTTP test

log in a .txt format.

291

HCL OneTest Performance

292

Fields Description

For example, C:/Users/Documents/Jenkins/logexp.txt

Note: If you do not specify a value for the Exported HTTP Test log File, then

no logs for the test run is stored in the Jenkins workspace/temp directory.

Exported Statistical

Report Data File
Use this field to provide the complete path to a directory that you can use to store ex­

ported reports in a comma-separated values (CSV) format.

For example, C:/Users/Documents/tests

Note: If you do not specify a value for the Custom Report Format Files field,

then the reports that you selected in Preferences of HCL OneTest™ Perfor­

mance (Window > Preferences > Test > Performance Test Reports > Export

Reports) are exported.

Exported Statistical

Report Format
Use this field to specify a format for the report that you want to export.

You must use at least one of the following options along with the Exported Statistical

Report Data File field:

◦ simple.csv

◦ full.csv

◦ simple.json

◦ full.json

◦ csv

◦ json

For example, json.

You can add multiple formats for the report separated by a comma. When you want to

export both simple and full type of report in a json or csv format, you can specify json

or csv as the format in the field.

The reports are saved to the location specified in the Exported Statistical Report Data

File field.

Chapter 6. Administrator Guide

Fields Description

Note: The values provided in the Exported Statistical Report Format field al­

ways take precedence over the Export Reports options set in the product pref­

erences (Window > Preferences > Test > Performance Test Reports > Export

Reports).

Exported Statistical

Report in html
Use this field to provide the complete path to a directory that you can use to export

web analytic results.

The results are exported to the specified directory. You can analyze the results on a

web browser without using HCL OneTest™ Performance.

For example, C:/Users/Documents/Reports

Note: When you do not use the Exported Statistical Report in html field, then

the Performance report is stored in a workspace/temp directory.

History
Use this field when you want to view a record of all events that occurred during a test

or schedule run.

You can use any of the following options:

◦ jaeger: To send test logs to the Jaeger UI during the test or schedule run.

Note: You must set the JAEGER_AGENT_HOST property as an environment

variable by using the command line before you use the jaeger option

to send test logs to the Jaeger UI.

◦ testlog: To send test logs as traditional test logs in HCL OneTest™ Perfor­

mance during the test or schedule run.

◦ null: To send no test logs either to the Jaeger UI or HCL OneTest™ Perfor­

mance during the test or schedule run.

For example, jaeger

You can add multiple options separated by a comma to send test logs during the test

or schedule run to HCL OneTest™ Performance and the Jaeger UI.

For example, jaeger,testlog

293

HCL OneTest Performance

294

Fields Description

For more information about how to view test logs in the Jaeger UI and HCL OneTest™

Performance, see the Related information section.

IMShared Location
Enter the complete path to the IMShared directory, if it is not in the default location.

For example, D:\Testtool\HCL\HCLIMShared

The default location of the IMShared directory is as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\HCLIMShared

Linux™ /opt/HCL/HCLIMShared

Mac /Application/HCL/HCLIMShared

Labels
Use this field to add labels to test results when the test run is complete.

For example, label1, label2

You can add multiple labels to a test result separated by a comma. When you run test

assets, then the labels that you added are displayed on the Performance Report in

HCL OneTest™ Performance.

The Results page of HCL OneTest™ Server displays the label that you added in the La­

bels field for the specific test asset in the following conditions:

◦ When you set Publish result after execution as Always or Prompt in the Pref­

erences of HCL OneTest™ Performance (Windows > Preferences > Test > HCL

OneTest Server).

◦ When you use the Labels field along with the Publish field.

Note: When you run tests by using the double quotation marks ("") for the La­

bels field, then the labels in the test result do not include double quotation

marks.

For example, if you provide the value for the Labels field as "100" users, then

the labels display 100 users in the test result.

Chapter 6. Administrator Guide

Fields Description

To work around this problem, you must create a command-line config file, and

then run the test by using the Config File field.

Number of Virtual

Users
Use this field to override the default number of virtual users in the test or schedule run.

For a schedule, the default is the number of users specified in the schedule editor and

for a test, the default is one user.

Note: The Number of Virtual Users field creates a new copy of the schedule

that contains the specified number of users.

Overwrite Results

File
Select or clear this field to determine whether a result file with the same name must

be overwritten or not.

The default status of the field is selected. Therefore, the file is overwritten and retains

the same file name.

Publish
Use this field to publish test results to HCL OneTest™ Server from Jenkins.

Remember: Before you use the Publish field, you must provide the offline user

token of HCL OneTest™ Server by using any of the following methods:

◦ Set the value of the HCL_ONETEST_OFFLINE_TOKEN environment

variable to the offline user token of HCL OneTest™ Server by using the

command-line interface.

◦ Provide the offline user token of HCL OneTest™ Server in the prefer­

ences of HCL OneTest™ Performance (Window > Preferences > Test >

HCL OneTest Server)

You must use one of the following values in the Publish field:

◦ serverURL#project.name=name_of_the_project&teamspace.name=name_of_­

the _teamspace

◦ serverURL#project.name=name_of_the_project&teamspace.alias=name_of_the

_teamspace_alias

295

HCL OneTest Performance

296

Fields Description

◦ no

The no option is useful if the product preferences are set to publish the results,

but you do not want to publish them.

For example, URL_OF_OneTest_Server#project.name=test&teamspace.name=ts1

Where:

◦ URL_OF_OneTest_Server is the URL of HCL OneTest™ Server.

◦ test is the name of the project in HCL OneTest™ Server.

◦ ts1 is the name of the team space.

Notes:

◦ If you have a project with the same name in different team spaces,

then you must append either the &teamspace.name=name_of_the _­

teamspace or &teamspace.alias=name_of_the_teamspace_alias op­

tions.

◦ If the name of the project or team space contains a special character,

then you must replace it with %<Hexvalue_of_special_character>.

For example, if the name of the team space is Initial Team Space, then

you must provide it as Intial%20Team%20Space.

Where %20 is the Hex value of Space character.

◦ The values provided in the Publish field always take precedence over

the Results options set in the product preferences (Window > Prefer­

ences > Test > HCL OneTest Server > Results).

The Reports information section on the Console Output page displays the names of

the report along with its corresponding URLs in the following conditions:

◦ When you configured the URL of HCL OneTest™ Server in Preferences of HCL

OneTest™ Performance (Window > Preferences > Test > HCL OneTest Server).

◦ When you set Publish result after execution as Always or Prompt in the Pref­

erences of HCL OneTest™ Performance (Window > Preferences > Test > HCL

OneTest Server > Results).

◦ When you used the Publish field or the Publish field along with the Publishre­

ports field.

Chapter 6. Administrator Guide

Fields Description

Publish_for
Use this field to publish test results to HCL OneTest™ Server from Jenkins based on

the completion status of the tests.

You must use the Publish_for field along with the Publish field. You can add multiple

options separated by a comma. The following are the available options that you can

use for the Publish_for field:

◦ ALL: You can use this option irrespective of status of the test.

◦ PASS: You can use this option to publish test results for the tests that have

passed.

◦ FAIL: You can use this option to publish test results for the tests that have

failed.

◦ ERROR: You can use this option to publish test results for the tests that includ­

ed errors.

◦ INCONCLUSIVE: You can use this option to publish test results for the incon­

clusive tests.

For example, FAIL,ERROR

Publishreports
Use this field to publish specific test results to HCL OneTest™ Server.

The options that you can use with Publishreports are as follows:

◦ STATS

◦ TESTLOG

For example, STATS

You must use the Publishreports field along with the Publish field. You can prefix the

value of Publishreports with ! to publish the reports except the specified one.

For example, !STATS

Rate
Use this field to change the rate of the rate runner group.

For example, Rate Runner Group1=1/s, 3/m

Where, Rate Runner Group1 is the name of the Rate Runner group that has two stages.

The desired rate for the first stage is one iteration per second and the rate for the sec­

ond stage is three iterations per minute.

297

HCL OneTest Performance

298

Fields Description

Notes:

◦ The name of the Rate Runner group must match with the name in the

rate schedule.

◦ The Rate field creates a new copy of the rate schedule that contains

the specified number of rate.

Resource Monitor­

ing Labels Override
Use this field to perform any of the following actions:

◦ Enable the Resource Monitoring from Service option for a performance sched­

ule if the Resource Monitoring from Service option is not enabled from the

schedule editor in HCL OneTest™ Performance.

◦ Ignore Resource Monitoring sources that were set in the performance sched­

ule and change for a label matching mode.

◦ Replace an existing set of Resource Monitoring labels that were set in the per­

formance schedule and run the schedule with a new set of Resource Monitor­

ing labels.

If you have added a label in HCL OneTest™ Server for a Resource Monitoring source as

rm1, then you can provide value as shown in the following example to collect data from

the source:

rm1

If your label for resource monitoring contains a comma (,) then you must replace the

single comma with the double comma while providing the value. For example, if you

added a label to a Resource Monitoring source as rm1,test, then you must provide the

value as shown in the following example to collect data from source:

rm1,,test

Notes:

Chapter 6. Administrator Guide

Fields Description

◦ You can use this field only when you want to run a Rate schedule or VU

schedule.

◦ You can add multiple Resource Monitoring labels separated by a com­

ma.

◦ You must add the Resource Monitoring labels to the Resource Moni­

toring sources on the Resource Monitoring page in the HCL OneTest™

Server project.

Results File
Use this field to provide a different name to the result file.

The results file is stored in the Results directory. The default name of the result file is

the name of the test or schedule with a timestamp appended.

User Comments
Use this field to add text that you want to display in the user comments row of the re­

port.

For example, test run with dataset

Note: When you run tests by using the double quotation marks ("") for the User

Comments field, then the user comments row of a report does not contain

double quotation marks.

For example, if you provide the value for the User Comments field as test run

with "dataset", then the user comments row of a report displays the value as

test run with dataset.

To work around this problem, you must create a command-line config file, and

then run the test by using the Config File field.

Var File
Use this field to provide a complete path to an XML file that contains the variable

name and value pairs.

VM Args
Use this field to specify the maximum heap size for the Java process.

You can add multiple VM Arguments separated by a comma.

299

HCL OneTest Performance

300

5. Optional: Click Add build step again, and provide details for the next test to run multiple tests under the same

job.

6. Click Save.

Results

You have configured the Freestyle project by adding the build step.

What to do next

You can run test assets from the Jenkins server. See Running tests from Jenkins on page 313.

Related information

Creating a command-line config file on page 798

Viewing test logs in Jaeger on page 285

Viewing test logs on page 1001

Generating offline user tokens

Creating a pipeline script from Jenkins
You must create a pipeline script to run test assets from the Jenkins Pipeline project.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest™ Performance Jenkins plugin on the Jenkins primary server. See Installing the

plugin on the Jenkins primary server on page 288.

• Created a Jenkins Pipeline project.

About this task

You must provide the values for certain fields in the Jenkins UI to run tests from Jenkins. The minimum fields that

you need to configure are, Name, Workspace, Project, and Test Suite Name or Config File. The remaining fields are

optional.

For example, if you provide a complete path of a configuration file that contains the parameters for a test or schedule

run in the Config File field, then you need not provide values for the Name, Workspace, Project, and Test Suite Name

fields.

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html

Chapter 6. Administrator Guide

Note: If HCL OneTest™ Performance is not installed in default location, then you must provide the value for

the IMShared Location field along with other mandatory fields.

1. Open your Jenkins Pipeline project from the list.

2. Click Configure, and then select the Pipeline tab.

3. Click Pipeline Syntax to generate a pipeline script.

4. Select the step: General Build Step option from the drop-down list in the Sample Step field.

5. Select the Run HCL OneTest Performance test option from the drop-down list in the Build Step field.

6. Provide the details about the test run for the fields by referring to the following table:

The following table lists the optional fields that you can provide to run the test from Jenkins:

Fields Description

Config File
Enter the complete path to a file that contains the parameters for a test or schedule

run.

For example, C:\Users\HCL\hclonetest\workspace\Project1\config.txt

For more information about creating a command line config file from HCL OneTest™

Performance, see the Related information section.

Name
Enter the name for the Jenkins build step.

For example, testrun1

Project
Enter the name of the project that has performance test assets.

For example, testproj1

Test Suite Name
Enter the file name of the performance test assets relative to the project.

For example, test1.testsuite

Workspace
Enter the complete path of the Eclipse workspace.

For example, C:\Users\HCL\hclonetest\workspace1

The following table lists the optional fields that you can provide to run the test from Jenkins:

301

HCL OneTest Performance

302

Fields Description

Custom Report For­

mat Files
Use this field to specify IDs of reports that you want to export in place of the default

reports.

You can provide multiple report IDs separated by a comma. You can navigate to Pref­

erences of HCL OneTest™ Performance (Window > Preferences > Test > Performance

Test Reports > Export Reports), and then select Show Report IDs checkbox to view

the report IDs.

You must use the Custom Report Format Files filed along with the Exported Statisti­

cal Report Data File or Exported Statistical Report in html field.

For example, you can provide http as a value in the Custom Report Format Files field

to export a Performance Report.

Dataset Override
Use this field to replace the dataset values during a test or schedule run.

You must ensure that both original and new datasets are in the same workspace and

have the same column names. When you enter a value for the Dataset Override field,

you must also include the path to the dataset. You must provide the values for the

Dataset Override field in the following format:

/project_name/ds_path/original_ds.csv:/project_name/ds_­

path/new_ds.csv

For example, /proj1/Datasets/ds1.csv:/proj1023/Datasets/new_ds1.csv

You can override multiple datasets that are saved in a different project by adding mul­

tiple paths to the dataset separated by a semicolon. For a test or schedule, the default

value is the dataset specified in the test editor or schedule editor.

Duration
Use this field to change the duration of the stages in the rate schedule.

For example, Stage1=10s, Stage2=3m

The stage number specified must exist in the rate schedule.

Note: The Duration field creates a new copy of the rate schedule that contains

the specified number of duration.

Exported HTTP

Test log File
Use this field to specify the path of the file directory to store the exported HTTP test

log in a .txt format.

Chapter 6. Administrator Guide

Fields Description

For example, C:/Users/Documents/Jenkins/logexp.txt

Note: If you do not specify a value for the Exported HTTP Test log File, then

no logs for the test run is stored in the Jenkins workspace/temp directory.

Exported Statistical

Report Data File
Use this field to provide the complete path to a directory that you can use to store ex­

ported reports in a comma-separated values (CSV) format.

For example, C:/Users/Documents/tests

Note: If you do not specify a value for the Custom Report Format Files field,

then the reports that you selected in Preferences of HCL OneTest™ Perfor­

mance (Window > Preferences > Test > Performance Test Reports > Export

Reports) are exported.

Exported Statistical

Report Format
Use this field to specify a format for the report that you want to export.

You must use at least one of the following options along with the Exported Statistical

Report Data File field:

◦ simple.csv

◦ full.csv

◦ simple.json

◦ full.json

◦ csv

◦ json

For example, json.

You can add multiple formats for the report separated by a comma. When you want to

export both simple and full type of report in a json or csv format, you can specify json

or csv as the format in the field.

The reports are saved to the location specified in the Exported Statistical Report Data

File field.

303

HCL OneTest Performance

304

Fields Description

Note: The values provided in the Exported Statistical Report Format field al­

ways take precedence over the Export Reports options set in the product pref­

erences (Window > Preferences > Test > Performance Test Reports > Export

Reports).

Exported Statistical

Report in html
Use this field to provide the complete path to a directory that you can use to export

web analytic results.

The results are exported to the specified directory. You can analyze the results on a

web browser without using HCL OneTest™ Performance.

For example, C:/Users/Documents/Reports

Note: When you do not use the Exported Statistical Report in html field, then

the Performance report is stored in a workspace/temp directory.

History
Use this field when you want to view a record of all events that occurred during a test

or schedule run.

You can use any of the following options:

◦ jaeger: To send test logs to the Jaeger UI during the test or schedule run.

Note: You must set the JAEGER_AGENT_HOST property as an environment

variable by using the command line before you use the jaeger option

to send test logs to the Jaeger UI.

◦ testlog: To send test logs as traditional test logs in HCL OneTest™ Perfor­

mance during the test or schedule run.

◦ null: To send no test logs either to the Jaeger UI or HCL OneTest™ Perfor­

mance during the test or schedule run.

For example, jaeger

You can add multiple options separated by a comma to send test logs during the test

or schedule run to HCL OneTest™ Performance and the Jaeger UI.

For example, jaeger,testlog

Chapter 6. Administrator Guide

Fields Description

For more information about how to view test logs in the Jaeger UI and HCL OneTest™

Performance, see the Related information section.

IMShared Location
Enter the complete path to the IMShared directory, if it is not in the default location.

For example, D:\Testtool\HCL\HCLIMShared

The default location of the IMShared directory is as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\HCLIMShared

Linux™ /opt/HCL/HCLIMShared

Mac /Application/HCL/HCLIMShared

Labels
Use this field to add labels to test results when the test run is complete.

For example, label1, label2

You can add multiple labels to a test result separated by a comma. When you run test

assets, then the labels that you added are displayed on the Performance Report in

HCL OneTest™ Performance.

The Results page of HCL OneTest™ Server displays the label that you added in the La­

bels field for the specific test asset in the following conditions:

◦ When you set Publish result after execution as Always or Prompt in the Pref­

erences of HCL OneTest™ Performance (Windows > Preferences > Test > HCL

OneTest Server).

◦ When you use the Labels field along with the Publish field.

Note: When you run tests by using the double quotation marks ("") for the La­

bels field, then the labels in the test result do not include double quotation

marks.

For example, if you provide the value for the Labels field as "100" users, then

the labels display 100 users in the test result.

305

HCL OneTest Performance

306

Fields Description

To work around this problem, you must create a command-line config file, and

then run the test by using the Config File field.

Number of Virtual

Users
Use this field to override the default number of virtual users in the test or schedule run.

For a schedule, the default is the number of users specified in the schedule editor and

for a test, the default is one user.

Note: The Number of Virtual Users field creates a new copy of the schedule

that contains the specified number of users.

Overwrite Results

File
Select or clear this field to determine whether a result file with the same name must

be overwritten or not.

The default status of the field is selected. Therefore, the file is overwritten and retains

the same file name.

Publish
Use this field to publish test results to HCL OneTest™ Server from Jenkins.

Remember: Before you use the Publish field, you must provide the offline user

token of HCL OneTest™ Server by using any of the following methods:

◦ Set the value of the HCL_ONETEST_OFFLINE_TOKEN environment

variable to the offline user token of HCL OneTest™ Server by using the

command-line interface.

◦ Provide the offline user token of HCL OneTest™ Server in the prefer­

ences of HCL OneTest™ Performance (Window > Preferences > Test >

HCL OneTest Server)

You must use one of the following values in the Publish field:

◦ serverURL#project.name=name_of_the_project&teamspace.name=name_of_­

the _teamspace

◦ serverURL#project.name=name_of_the_project&teamspace.alias=name_of_the

_teamspace_alias

Chapter 6. Administrator Guide

Fields Description

◦ no

The no option is useful if the product preferences are set to publish the results,

but you do not want to publish them.

For example, URL_OF_OneTest_Server#project.name=test&teamspace.name=ts1

Where:

◦ URL_OF_OneTest_Server is the URL of HCL OneTest™ Server.

◦ test is the name of the project in HCL OneTest™ Server.

◦ ts1 is the name of the team space.

Notes:

◦ If you have a project with the same name in different team spaces,

then you must append either the &teamspace.name=name_of_the _­

teamspace or &teamspace.alias=name_of_the_teamspace_alias op­

tions.

◦ If the name of the project or team space contains a special character,

then you must replace it with %<Hexvalue_of_special_character>.

For example, if the name of the team space is Initial Team Space, then

you must provide it as Intial%20Team%20Space.

Where %20 is the Hex value of Space character.

◦ The values provided in the Publish field always take precedence over

the Results options set in the product preferences (Window > Prefer­

ences > Test > HCL OneTest Server > Results).

The Reports information section on the Console Output page displays the names of

the report along with its corresponding URLs in the following conditions:

◦ When you configured the URL of HCL OneTest™ Server in Preferences of HCL

OneTest™ Performance (Window > Preferences > Test > HCL OneTest Server).

◦ When you set Publish result after execution as Always or Prompt in the Pref­

erences of HCL OneTest™ Performance (Window > Preferences > Test > HCL

OneTest Server > Results).

◦ When you used the Publish field or the Publish field along with the Publishre­

ports field.

307

HCL OneTest Performance

308

Fields Description

Publish_for
Use this field to publish test results to HCL OneTest™ Server from Jenkins based on

the completion status of the tests.

You must use the Publish_for field along with the Publish field. You can add multiple

options separated by a comma. The following are the available options that you can

use for the Publish_for field:

◦ ALL: You can use this option irrespective of status of the test.

◦ PASS: You can use this option to publish test results for the tests that have

passed.

◦ FAIL: You can use this option to publish test results for the tests that have

failed.

◦ ERROR: You can use this option to publish test results for the tests that includ­

ed errors.

◦ INCONCLUSIVE: You can use this option to publish test results for the incon­

clusive tests.

For example, FAIL,ERROR

Publishreports
Use this field to publish specific test results to HCL OneTest™ Server.

The options that you can use with Publishreports are as follows:

◦ STATS

◦ TESTLOG

For example, STATS

You must use the Publishreports field along with the Publish field. You can prefix the

value of Publishreports with ! to publish the reports except the specified one.

For example, !STATS

Rate
Use this field to change the rate of the rate runner group.

For example, Rate Runner Group1=1/s, 3/m

Where, Rate Runner Group1 is the name of the Rate Runner group that has two stages.

The desired rate for the first stage is one iteration per second and the rate for the sec­

ond stage is three iterations per minute.

Chapter 6. Administrator Guide

Fields Description

Notes:

◦ The name of the Rate Runner group must match with the name in the

rate schedule.

◦ The Rate field creates a new copy of the rate schedule that contains

the specified number of rate.

Resource Monitor­

ing Labels Override
Use this field to perform any of the following actions:

◦ Enable the Resource Monitoring from Service option for a performance sched­

ule if the Resource Monitoring from Service option is not enabled from the

schedule editor in HCL OneTest™ Performance.

◦ Ignore Resource Monitoring sources that were set in the performance sched­

ule and change for a label matching mode.

◦ Replace an existing set of Resource Monitoring labels that were set in the per­

formance schedule and run the schedule with a new set of Resource Monitor­

ing labels.

If you have added a label in HCL OneTest™ Server for a Resource Monitoring source as

rm1, then you can provide value as shown in the following example to collect data from

the source:

rm1

If your label for resource monitoring contains a comma (,) then you must replace the

single comma with the double comma while providing the value. For example, if you

added a label to a Resource Monitoring source as rm1,test, then you must provide the

value as shown in the following example to collect data from source:

rm1,,test

Notes:

309

HCL OneTest Performance

310

Fields Description

◦ You can use this field only when you want to run a Rate schedule or VU

schedule.

◦ You can add multiple Resource Monitoring labels separated by a com­

ma.

◦ You must add the Resource Monitoring labels to the Resource Moni­

toring sources on the Resource Monitoring page in the HCL OneTest™

Server project.

Results File
Use this field to provide a different name to the result file.

The results file is stored in the Results directory. The default name of the result file is

the name of the test or schedule with a timestamp appended.

User Comments
Use this field to add text that you want to display in the user comments row of the re­

port.

For example, test run with dataset

Note: When you run tests by using the double quotation marks ("") for the User

Comments field, then the user comments row of a report does not contain

double quotation marks.

For example, if you provide the value for the User Comments field as test run

with "dataset", then the user comments row of a report displays the value as

test run with dataset.

To work around this problem, you must create a command-line config file, and

then run the test by using the Config File field.

Var File
Use this field to provide a complete path to an XML file that contains the variable

name and value pairs.

VM Args
Use this field to specify the maximum heap size for the Java process.

You can add multiple VM Arguments separated by a comma.

Chapter 6. Administrator Guide

7. Click Generate Pipeline Script and copy the script that you created for the build step to use it in the sample

script.

Note:

You need this generated script to enter in step 5.c on page 312 in the following topic:

Configuring the Pipeline project by using the sample script

Results

You have created the pipeline script.

What to do next

You can configure the Pipeline project by using the Pipeline script option. See Configuring the Pipeline project by

using the sample script on page 311.

Configuring the Pipeline project by using the sample script
You can configure a Pipeline project directly from the Jenkins UI by using the sample pipeline scripts to run test

assets from Jenkins.

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest™ Performance Jenkins plugin on the Jenkins primary server. See Installing the

plugin on the Jenkins primary server on page 288.

• Created a pipeline script. See Creating a pipeline script from Jenkins on page 300.

• Created an Agent in Jenkins. For more information about creating Agents, refer to the Jenkins documentation.

• Copied the name of the labels that you provided in the Labels field when you created the Agent.

1. Open your Jenkins Pipeline project from the list.

2. Click Configure, and then select the Pipeline tab.

3. Select the Pipeline script option in the Definition field.

4. Select the sample script from the drop-down list.

For example, if you select Hello Word from the drop-down list, then the sample script is displayed as follows:

311

https://www.jenkins.io/doc/book/managing/nodes/#creating-agents

HCL OneTest Performance

312

5. Perform the following steps to edit the sample script:

a. Replace the agent any in the script with the name of the label that you provided when you created the

Agent.

For example, if you provided a name of the label as win10_1022, then edit the script as follows:

agent {label 'win10_1022'}

b. Provide a name for the stage in the script.

For example, stage('Run PERF Demo')

c. Specify the script that you created in step 7 on page 311 in place of “echo ‘Hello Word’”.

6. Click Save.

Results

You have configured the Pipeline project by using the Pipeline script option.

What to do next

You can run test assets from the Jenkins server. See Running tests from Jenkins on page 313.

Configuring the Pipeline project by using the script from SCM
You can configure the Pipeline project to use the pipeline script from the Source Code Management (SCM), and then

run test assets from the Jenkins Pipeline project.

Chapter 6. Administrator Guide

Before you begin

You must have completed the following tasks:

• Installed the HCL OneTest™ Performance Jenkins plugin on the Jenkins primary server. See Installing the

plugin on the Jenkins primary server on page 288.

• Created an Agent in Jenkins. For more information about creating Agents, refer to the Jenkins documentation.

• Copied the name of the labels that you provided in the Labels field when you created the Agent.

• Created a pipeline script and committed the script to the Git repository. For more information, refer to the

Jenkins documentation.

• Been granted administrator permission of the Jenkins server to add credentials into Jenkins.

• Added your GitHub credentials into Jenkins. For more information about adding global credentials, refer to the

Jenkins documentation.

• Created a Jenkins Pipeline project.

About this task

If your pipeline scripts are complex, you can then write the script outside of Jenkins UI. You must commit that script

file into your Git repository. During the Pipeline build process, Jenkins checks out the script file from the Git repository

and runs your Pipeline project.

1. Open your Jenkins Pipeline project from the list.

2. Click Configure, and then select the Pipeline tab.

3. Select the Pipeline script from SCM option in the Definition field.

4. Select the Git option from the drop-down list in the SCM field.

5. Enter the URL of the Git repository in the Repository URL field where you stored your pipeline script.

6. Select the credentials of the Git repository from the drop-down list.

7. Optional: Enter the branch name of the Git repository in the Branch Specifier field.

8. Enter the path of the script that you stored in the Git repository in the Script path field.

9. Click Save.

Results

You have configured the Pipeline project by using the Pipeline script from the SCM option.

What to do next

You can run test assets from the Jenkins server. See Running tests from Jenkins on page 313.

Running tests from Jenkins
You can run test assets either from the Jenkins Freestyle or the Pipeline project on the Jenkins server to test an

application under test.

313

https://www.jenkins.io/doc/book/managing/nodes/#creating-agents
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://www.jenkins.io/doc/book/using/using-credentials/#configuring-credentials

HCL OneTest Performance

314

Before you begin

You must have completed the following tasks:

• Verified that you have test assets residing within HCL OneTest™ Performance.

• Configured the Freestyle project, if you want to run test assets from the Freestyle project. See Configuring the

Freestyle project on page 289.

• Configured the Pipeline project either by using the Pipeline script or Pipeline script from SCM, if you want to

run test assets from the Pipeline project. See Configuring the Pipeline project by using the sample script on

page 311 or Configuring the Pipeline project by using the script from SCM on page 312.

• Closed HCL OneTest™ Performance.

1. Log in to the Jenkins server.

Result

The Jenkins dashboard is displayed.

2. Open your Jenkins Freestyle or Pipeline project from the list.

3. Click Build Now to run the test assets from Jenkins.

Results

You have run the test from the Jenkins server.

What to do next

You can view the build logs by clicking the build number from the Build History pane, and then selecting the Console

Output option.

The Reports information section on the Console Output page displays the names of the report along with its

corresponding URLs if you publish test results to HCL OneTest™ Server.

Testing with Maven
Starting from 9.2.0, you can use the Maven plug-in that is provided with the testing product to run tests as part of your

Maven build. Apache Maven is a software build tool based on the concept of a project object model (POM).

Before you begin

• You must have installed HCL OneTest™ Performance and set an environment variable that points to the

installation location.

For Mac OS, add an environment variable that points to the installation directory of the product: export

TEST_WORKBENCH_HOME=/opt/HCL/HCLOneTest

Chapter 6. Administrator Guide

For Windows™ and Linux®, this environment variable is set when you install the product.

• You must have installed Maven from V3.2.0 and set up an environment variable that points to the M2_HOME

installation directory.

Introduction

To automate testing with Maven, you must configure a pom.xml file and launch your tests from the command line

using Maven command. You can either use your own pom.file, or one that is delivered with the product.

Three files are delivered with the product installation in the <product install location>\HCLOneTest

\maven2\ folder:

• pomCustomSurefireSample.xml for Windows, Linux and macOS.

• pomMojoExecPluginSample_Linux.xml for Linux and MacOS.

• pomMojoExecPluginSample_Windows.xml for Windows.

The files contain all types of dependencies as well as arguments required to execute the test scripts. There are two

methods to run tests with Maven.

Method 1
With this method, you can run one or several tests. If you use your own pom.xml file, edit it with the following lines

and indicate which test(s) must be executed, otherwise, use the pomCustomSurefireSample.xml file as follows:

• Copy the pomCustomSurefireSample.xml to a directory.

• Edit the file and update the lines, enter the name and location of the test(s) that must be run. If the product

is installed on a different drive or a different location, or if IBMIMSharedHCLIMShared location has been

changed, enter the correct path to the HCLIMShared plug-in folder. For aftsuite attribute, you can input aft

xml file as the parameter value.

<!--test suite="testSources/Test1.testsuite"/-->
 <!--test suite="Test2.testsuite"/-->
 <test suite="C:/Runtimes/runtime-RptMvn/AA/testSources/Test2.testsuite" plugins="C:/Program
 Files/HCL/HCLIMShared/plugins"/>

 <!--test schedule="Schedule.testsuite" project="AA" workspace="C:/Runtimes/runtime-RptMvn"
 plugins="C:/Program Files/HCL/HCLIMShared/plugins"/-->
 <!--test suite="Test2.testsuite" project="AA" workspace="C:/Runtimes/runtime-RptMvn"/-->
<!--test aftsuite="Test1.xml" project="AA" workspace="C:/Runtimes/runtime-RptMvn"
 plugins="C:/Program Files/IBM/IBMIMShared/plugins"/-->

• Run Maven to update the pom file version command and use the plug-in version currently available on

delivered repositories.

mvn versions:update-properties -Dincludes=com.hcl.products.test.it -f pomCustomSurefireSample.xml

• Run the test(s).

315

HCL OneTest Performance

316

mvn clean verify -f pomCustomSurefireSample.xml

Fail safe reports are generated in the target directory, especially in target/failsafe-reports/

<ProjectName>/<TestName>_<timestamp>.txt that will contain the screen capture of the execution.

In HCL OneTest™ Performance, if the HCL OneTest™ Server URL is configured in Window > Preferences > Test > HCL

OneTest Server and Publish result after execution is set as Always in Window > Preferences > Test > HCL OneTest

Server > Results, then the Reports information section on the Console page displays the names of the report along

with its corresponding URLs. The report URLs are the HCL OneTest™ Server URLs where the reports are stored. You

can access the report URLs to view the test execution information at any point of time.

Method 2
With this method, no Maven report is generated. If you use your own pom.xml file, copy the following lines

and provide your parameter values. Otherwise, you can use the pomMojoExecPluginSample_Linux.xml

or pomMojoExecPluginSample_Windows.xml sample file. Example with the

pomMojoExecPluginSample_Windows.xml sample file:

• Copy pomMojoExecPluginSample_Windows.xml to a directory.

• Edit the file and update the arguments to reflect which test to execute. If the product is installed on a different

drive or a different location, or if IBMIMShared location has been changed, update the two last lines with the

path to the IBMIMShared plug-in folder.

<argument>/C</argument>
 <argument>${pt-plugin-cmdline}</argument>
 <argument>-workspace</argument>
 <argument>C:\Runtimes\runtime-RptMvn</argument>
 <argument>-project</argument>
 <argument>AA</argument>
 <argument>-suite</argument>
 <argument>Test1.testsuite</argument>
 <argument>-plugins</argument>
 <argument>C:/Program Files/HCL/HCLIMShared/plugins</argument>

• In the argument tags, instead of the -suite option, you can use the -aftsuite option and input the aft xml file

as the parameter value in the subsequent argument tag to run the AFT test. For example, in the preceding

template, <argument>-suite</argument> <argument>Test1.testsuite</argument> can be

replaced with <argument>-aftsuite</argument> <argument>aftfile.xml</argument>.

• Run the test.

For Windows:

mvn clean verify -f pomMojoExecPluginSample_Windows.xml

For Linux or MacOS:

mvn clean verify -f pomMojoExecPluginSample_Linux.xml

Chapter 6. Administrator Guide

Related information

https://maven.apache.org/index.html

Integration with Micro Focus ALM
You can integrate HCL OneTest™ Performance with Micro Focus Application Lifecycle Management (ALM) to run

performance test assets from Micro Focus ALM.

When you have Micro Focus ALM to manage the life cycle of your application under test, you can create test scripts

to run it from Micro Focus ALM. You must use the content of the available template from the installation directory

of HCL OneTest™ Performance to create test scripts. The template is based on Microsoft VBScript and supports

VAPI-XP test scripts. You can then run those test scripts from Micro Focus ALM and analyze the test results. For

information about Micro Focus ALM, refer to ALM Help Center.

The following table lists the tasks that you must perform to run test assets from Micro Focus ALM:

Tasks More information

Create any or all of the following types of tests in HCL

OneTest™ Performance to test your application:

• Compound tests

• Performance tests

• Schedules (Rate or VU Schedules)

See Test Author Guide on page 333.

Install Micro Focus ALM. For more information about the installation of Micro Fo­

cus ALM, refer to the ALM Help Center.

For more information about specific versions of soft­

ware requirements, see System Requirements on

page 28.

Create a test script in Micro Focus ALM. See Creating a test script in Micro Focus ALM on

page 318.

Copy the content of the template file and configure the

test script in Micro Focus ALM.

See Configuring test scripts in Micro Focus ALM on

page 319.

Run performance test assets as test scripts from Micro

Focus ALM.

See Running tests from Micro Focus ALM on

page 331.

317

https://maven.apache.org/index.html
https://admhelp.microfocus.com/alm/en/12.60/online_help/Content/UG/c_alm_roadmap.htm
https://admhelp.microfocus.com/alm/en/12.60/online_help/Content/installation_guides_main_page.htm

HCL OneTest Performance

318

Creating a test script in Micro Focus ALM
You must create a VAPI-XP-TEST type of test script on Micro Focus Application Lifecycle Management (ALM) to

provide the details of the performance test runs.

Before you begin

• You must be familiar with working with Micro Focus ALM

• You must have performed the following tasks:

◦ Installed Micro Focus ALM. For more information about installation of Micro Focus ALM, refer to the

ALM Help Center.

◦ Been granted access to the Micro Focus ALM server.

1. Log in to the Micro Focus ALM portal, if you are not already logged in.

Result

The Micro Focus ALM dashboard is displayed.

2. Create a test by performing the following steps:

a. Expand Testing from the left pane, and then click Test Plan.

b. Select a folder from the available list to create a new test.

c. Click the New Test icon to create a new test.

d. Enter a name for the test in the Test Name field.

e. Select VAPI-XP-TEST as test type from the Type drop-down list, and then click OK.

Note: HCL OneTest™ Performance does not support other types of tests at this moment.

Result

The VAPI-XP Wizard is displayed.

3. Select VBScript from the Script Language drop-down list.

4. Enter a name for the script in the Script Name field.

The default name of the script is entered as script. You can change it by entering a new name.

5. Click Next, and then select COM/DCOM Server Test as a test type.

6. Click Finish.

Results

You have created the VAPI-XP-TEST test script in Micro Focus ALM.

What to do next

https://admhelp.microfocus.com/alm/en/12.60/online_help/Content/installation_guides_main_page.htm

Chapter 6. Administrator Guide

You must configure the test script to add the required parameter values of performance test. See Configuring test

scripts in Micro Focus ALM on page 319.

Configuring test scripts in Micro Focus ALM
You must configure the test script that you created in Micro Focus Application Lifecycle Management (ALM) to run

the performance test assets.

Before you begin

You must have performed the following tasks:

• Created a test script in Micro Focus ALM. See Creating a test script in Micro Focus ALM on page 318.

• Copied the content of the template file.

About this task

You can navigate to alm directory to copy the content of the template file. The alm directory resides within the

installation directory of HCL OneTest™ Performance. The name of the template file is PT_ALM_Windows.txt and you can

access the file from the following location:

Installation_dir\HCL\HCLOneTest\alm

For example, C:\Program Files\HCL\HCLOneTest\alm

You must provide the values for certain parameters in the test script to run tests from Micro Focus ALM. The

minimum parameters that you need to configure are, Workspace, Project, and TestsuiteName or ConfigFile. The

remaining parameters are optional.

For example, if you provide a complete path of a configuration file that contains the parameters for a test or schedule

run in the Config File parameter, then you need not be required to provide values for the Workspace, Project, and

TestsuiteName parameters.

Note: If HCL OneTest™ Performance is not installed in default location, then you must provide the value for

the IMSharedLocation parameter along with other mandatory parameters.

Remember: You must enter the parameter values within the double quotation marks.

1. Log in to the Micro Focus ALM portal, if you are not already logged in.

Result

The Micro Focus ALM dashboard is displayed.

2. Expand Testing from the left pane, and then click Test Plan.

3. Select a test script from the folder that you want to configure.

4. Click the Test Script tab.

319

HCL OneTest Performance

320

5. Paste the content of the PT_ALM_Windows.txt file that you copied in the space provided in the Test Script tab.

6. Enter the parameter values that are required for your test run in the script by referring to the following table:

The following table lists the required parameters that you must provide to run the test from Micro Focus ALM:

Parameters Description

ConfigFile
Enter the complete path to a configuration file that contains the parameters for a

test or schedule run.

For example,

ConfigFile = "C:\Users\HCL\hclonetest\workspace\Project1\config.txt"

For more information about creating a command line config file from HCL

OneTest™ Performance, see the Related information section.

Project
Enter the name of the project that has performance test assets.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"

TestsuiteName
Enter the name of the test asset that you want to run.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"

Workspace
Enter the complete path of the Eclipse workspace.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"

The following table lists the optional parameters that you can provide to run the test from Micro Focus ALM:

Parameters Descriptions

DatasetOverride
Use this parameter to replace the dataset values during a test or schedule run.

You must ensure that both original and new datasets are in the same workspace

and have the same column names. When you enter a value for the Dataset Over­

Chapter 6. Administrator Guide

Parameters Descriptions

ride field, you must also include the path to the dataset. You must provide the val­

ues for the Dataset Override field in the following format:

/project_name/ds_path/original_ds.csv:/project_name/ds_­

path/new_ds.csv

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
DatasetOverride =
 "/project_name/ds_path/ds_filename.csv:/project_name/ds_path/new_ds_file
name.csv"

You can override multiple datasets that are saved in a different project by adding

multiple paths to the dataset separated by a semicolon. For a test or schedule, the

default value is the dataset specified in the test editor or schedule editor.

Duration
Use this parameter to change the duration of the stages in the rate schedule.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Schedule/ratesch.testsuite"
Duration = "Stage1=10s, Stage2=3m"

The stage number specified must exist in the rate schedule.

Note: The Duration parameter creates a new copy of the rate schedule that

contains the specified number of duration.

Exportlog
Use this parameter to specify the path of the file directory to store the exported

HTTP test log in a .txt format.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Exportlog = "C:\Users\Documents\1023\ALM\LogExp.txt"

ExportStatReportlist
Use this parameter to specify IDs of reports that you want to export in place of the

default reports.

321

HCL OneTest Performance

322

Parameters Descriptions

You can provide multiple report IDs separated by a comma. You can navigate to

Preferences of HCL OneTest™ Performance (Window > Preferences > Test > Per­

formance Test Reports > Export Reports), and then select Show Report IDs check­

box to view the report IDs.

You must use the ExportStatReportlist parameter along with the ExportStatsFile or

ExportStatsHtml parameter.

For example, to export a Performance Report, you can provide the value for the

ExportStatReportlist parameter as follows:

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
ExportStatsFile = "C:\Users\Documents\ALM"
ExportStatReportlist = "http"

ExportStatsFile
Use this parameter to provide the complete path to a directory that you can use to

store the exported report in a comma-separated values (CSV) format.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
ExportStatsFile = "C:\Users\Documents\ALM"

Note: If you do not specify a value for the ExportStatReportlist parameter,

then the reports that you selected in Preferences of HCL OneTest™ Perfor­

mance (Window > Preferences > Test > Performance Test Reports > Ex­

port Reports) are exported.

Exportstatsformat
Use this parameter to specify a format for the result that you want to export along

with the ExportStatsFile parameter.

You must use at least one of the following options with the Exportstatsformat pa­

rameter:

◦ simple.csv

◦ full.csv

◦ simple.json

◦ full.json

◦ csv

◦ json

Chapter 6. Administrator Guide

Parameters Descriptions

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
ExportStatsFile = "C:\Users\Documents\ALM"
Exportstatsformat = "simple.json"

You can add multiple options separated by a comma.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
ExportStatsFile = "C:\Users\Documents\ALM"
Exportstatsformat = "simple.json,full.csv"

When you want to export both simple and full type of test results in a json or csv

format, you can specify either json or csv as options.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
ExportStatsFile = "C:\Users\Documents\ALM"
Exportstatsformat = "json"

When the test run completes, the test result exports to simple.json and full.json

files.

Note: The values provided in the test script always take precedence over

the Export Reports options set in the Preferences of HCL OneTest™ Perfor­

mance (Window > Preferences > Test > Performance Test Reports > Ex­

port Reports).

ExportStatsHtml
Use this parameter to provide the complete path to a directory that you can use to

export web analytic results.

The results are exported to the specified directory. You can analyze the results on

a web browser without using HCL OneTest™ Performance.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
ExportStatsHtml = "C:/Users/Documents/Reports"

323

HCL OneTest Performance

324

Parameters Descriptions

IMSharedLocation
Use this parameter to enter the complete path to the HCLIMShared location, if it is

not in the default location.

The default location of IBMIMShared is C:\Program Files\HCL

\HCLIMShared.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
IMSharedLocation = "D:\Testtool\HCL\HCLOneTest"

Labels
Use this parameter to add labels to test results when the test run is complete.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Labels = "label1, label2"

You can add multiple labels to a test result separated by a comma. When you run

test assets, then the labels that you added are displayed on the Performance Re­

port in HCL OneTest™ Performance.

The Results page of HCL OneTest™ Server displays the label that you added in the

Labels field for the specific test asset in the following conditions:

◦ When you set Publish result after execution as Always or Prompt in the

Preferences of HCL OneTest™ Performance (Windows > Preferences >

Test > HCL OneTest Server).

◦ When you use the Labels field along with the Publish field.

Note: When you run tests by using the double quotation marks ("") for the

Labels parameter, then the labels in the test result do not include double

quotation marks.

For example, if you provide the value for the Labels parameter as "100"

users, then the labels display 100 users in the test result.

Chapter 6. Administrator Guide

Parameters Descriptions

To work around this problem, you must create a command-line config file,

and then run the test by using the ConfigFile parameter.

OverwriteResultsFile Set this parameter value to true or false to determine whether a result file with the

same name must be overwritten or not.

The default value is true.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
OverwriteResultsFile ="false"

Publish
Use this parameter to publish test results to HCL OneTest™ Server from Micro Fo­

cus ALM.

You must provide the offline user token in the Preferences of HCL OneTest™ Per­

formance (Window > Preferences > Test > HCL OneTest Server) before you use

the Publish parameter in the test script.

You must use one of the following values in the Publish parameter:

◦ serverURL#project.name=name_of_the_project&teamspace.name=name_­

of_the _teamspace

◦ serverURL#project.name=name_of_the_project&teamspace.alias=name_­

of_the _teamspace_alias

◦ no

The no option is useful if the product preferences are set to publish the re­

sults, but you do not want to publish them.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Publish = "URL_OF_OneTest_Server#project.name=test&teamspace.name=ts1"

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Publish = "no"

Where:

325

HCL OneTest Performance

326

Parameters Descriptions

◦ URL_OF_OneTest_Server is the URL of HCL OneTest™ Server.

◦ test is the name of the project in HCL OneTest™ Server.

◦ ts1 is the name of the team space.

Notes:

◦ If you have a project with the same name in different team spaces,

then you must append either the &teamspace.name=name_of_the

_teamspace or &teamspace.alias=name_of_the_teamspace_alias

options.

◦ If the name of the project or team space contains a special charac­

ter, then you must replace it with %<Hexvalue_of_special_character>.

For example, if the name of the team space is Initial Team Space,

then you must provide it as Intial%20Team%20Space.

Where %20 is the Hex value of Space character.

◦ The values provided in the Publish field always take precedence

over the Results options set in the product preferences (Window >

Preferences > Test > HCL OneTest Server > Results).

The Reports information section on the Output window displays the names of the

report along with its corresponding URLs in the following conditions:

◦ When you configured the URL of HCL OneTest™ Server in Preferences of

HCL OneTest™ Performance (Window > Preferences > Test > HCL OneTest

Server).

◦ When you set Publish result after execution as Always or Prompt in the

Preferences of HCL OneTest™ Performance (Window > Preferences > Test

> HCL OneTest Server > Results).

◦ When you used Publish parameter or Publishreports parameter.

Publish_for
Use this parameter to publish test results to HCL OneTest™ Server from Micro Fo­

cus ALM based on the completion status of the tests.

You must use the Publish_for parameter along with the Publish parameter. You

must add multiple parameters separated by a comma. The available options that

you can use for the Publish_for parameter are as follows:

Chapter 6. Administrator Guide

Parameters Descriptions

◦ ALL: You can use this option irrespective of status of the test.

◦ PASS: You can use this option to publish test results for the tests that have

passed.

◦ FAIL: You can use this option to publish test results for the tests that have

failed.

◦ ERROR: You can use this option to publish test results for the tests that in­

cluded errors.

◦ INCONCLUSIVE: You can use this option to publish test results for the in­

conclusive tests.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Publish = "URL_OF_OneTest_Server#project.nam=test&teamspace.name=ts1"
Publish_for = "FAIL,ERROR"

Publishreports
Use this parameter to publish specific test results to HCL OneTest™ Server.

You must use the Publishreports parameter along with the Publish parameter. The

options that you can use with Publishreports are as follows:

◦ STATS

◦ TESTLOG

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Publish = "URL_OF_OneTest_Server#project.nam=test&teamspace.name=ts1"
Publishreports = "STATS"

You can prefix the Publishreports value with ! to publish the reports except for the

specified one in the test script.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Publish = "URL_OF_OneTest_Server#project.nam=test&teamspace.name=ts1"
Publishreports = "!TESTLOG"

327

HCL OneTest Performance

328

Parameters Descriptions

Rate
Use this parameter to change the rate of the rate runner group.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Schedule/ratesch.testsuite"
Rate = "Rate Runner Group1=1/s, 3/m"

Where, Rate Runner Group1 is the name of the rate runner group that has two

stages. The desired rate for the first stage is one iteration per second and the rate

for the second stage is three iterations per minute.

Notes:

◦ The name of the Rate Runner group must match with the name in

the rate schedule.

◦ The Rate parameter creates a new copy of the rate schedule that

contains the specified number of rate.

Reporthistory
Use this parameter when you want to view a record of all events that occurred dur­

ing a test or schedule run.

You must use any of the following options:

◦ jaeger: To send test logs to the Jaeger UI during the test or schedule run.

Note: You must set the JAEGER_AGENT_HOST property as System envi­

ronment variable before you use the jaeger option to send test logs

to the Jaeger UI.

◦ testlog: To send test logs as traditional test logs in HCL OneTest™ Perfor­

mance during the test or schedule run.

◦ null: To send no test logs either to the Jaeger UI or HCL OneTest™ Perfor­

mance during the test or schedule run.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Reporthistory = "jaeger"

You can add multiple options separated by a comma to send test logs during the

test or schedule run to HCL OneTest™ Performance and the Jaeger UI.

Chapter 6. Administrator Guide

Parameters Descriptions

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
Reporthistory = "jaeger,testlog"

For more information about how to view test logs in the Jaeger UI and HCL

OneTest™ Performance, see the Related information section.

ResourceMonitoring­

LabelsOverride
Use this parameter to perform any of the following actions:

◦ Enable the Resource Monitoring from Service option for a performance

schedule if the Resource Monitoring from Service option is not enabled

from the schedule editor in HCL OneTest™ Performance.

◦ Ignore Resource Monitoring sources that were set in the performance

schedule and change for a label matching mode.

◦ Replace an existing set of Resource Monitoring labels that were set in the

performance schedule and run the schedule with a new set of Resource

Monitoring labels.

If you have added a label in HCL OneTest™ Server for a Resource Monitoring

source as rm1, then you can provide value as shown in the following example to

collect data from the source:

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
ResourceMonitoringLabelsOverride = "rm1"

If your label for resource monitoring contains a comma (,) then you must replace

the single comma with the double comma while providing the value. For example,

if you added a label to a Resource Monitoring source as rm1,test, then you must

provide the value as shown in the following example to collect data from source:

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
TestSuiteName = "Tests/testHttp.testsuite"
ResourceMonitoringLabelsOverride = "rm1,,test"

Notes:

329

HCL OneTest Performance

330

Parameters Descriptions

◦ You can use this field only when you want to run a Rate schedule or

VU schedule.

◦ You can add multiple Resource Monitoring labels separated by a

comma.

◦ You must add the Resource Monitoring labels to the Resource

Monitoring sources on the Resource Monitoring page in the HCL

OneTest™ Server project.

ResultsFile
Use this parameter to provide a different name to the result file.

The default name of the result file is the name of the test or schedule with a time­

stamp appended.

UserComments
Use this parameter to add text that you want to display in the user comments row

of the report.

For example,

Workspace = "C:\Users\HCL\hclonetest\workspace1"
Project = "proj1"
UserComments = "test run with dataset"

Note: When you run tests by using the double quotation marks ("") for the

UserComments parameter, then the user comments row of a report does

not contain double quotation marks.

For example, if you provide the value for the UserComments parameter as

test run with "dataset", then the user comments row of a report displays

the value as test run with dataset.

To work around this problem, you must create a command-line config file,

and then run the test by using the ConfigFile parameter.

Users
Use this parameter to overrides the default number of users, if required.

For a schedule, the default is the number of users specified in the schedule editor

and for a test, the default is one user.

Chapter 6. Administrator Guide

Parameters Descriptions

Note: The Users parameter creates a new copy of the schedule that con­

tains the specified number of users.

VarFile Use this parameter to provide a complete path to an XML file that contains the

variable name and value pairs.

VMArgs
Use this parameter to specify the maximum heap size for the Java process.

You can add multiple VM Arguments separated by a comma.

7. Click the Save icon.

Results

You have configured the test script by adding the required parameter values for the test run.

What to do next

You can run test assets from Micro Focus ALM. See Running tests from Micro Focus ALM on page 331.

Related information

Creating a command-line config file on page 798

Viewing test logs in Jaeger on page 285

Viewing test logs on page 1001

Generating offline user tokens

Running tests from Micro Focus ALM
You can run test assets from Micro Focus Application Lifecycle Management (ALM) to test the performance of your

application under test.

Before you begin

You must have completed the following tasks:

• Created a test script in Micro Focus ALM. See Creating a test script in Micro Focus ALM on page 318.

• Configured the test script in Micro Focus ALM. See Configuring test scripts in Micro Focus ALM on

page 319.

331

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html

HCL OneTest Performance

332

• Optional: Generated offline user token to publish test results to HCL OneTest™ Server. For more information

refer to Managing access to the server in the HCL OneTest™ Server Documentation.

• Closed HCL OneTest™ Performance.

1. Log in to the Micro Focus ALM portal, if you are not already logged in.

Result

The Micro Focus ALM dashboard is displayed.

2. Expand Testing from the left pane, and then click Test Plan.

3. Open the test script that you want to run.

4. Click the Test Script tab.

Result

The test script is displayed.

5. Click the Execute Script icon to run the test script.

Results

You have run the performance test scripts in Micro Focus ALM.

What to do next

You can view the test result details that are displayed in the Output window of Micro Focus ALM.

The Reports information section on the Output window displays the names of the report along with its corresponding

URLs if you publish test results to HCL OneTest™ Server.

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html

Chapter 7. Test Author Guide
This guide describes how to create test scripts in HCL OneTest™ Performance and enhances tests by applying

different test elements such as dataset, variables, and verification points. This guide is intended for testers.

Creating tests
To create a test, you record representative interactions with an application.

After you record a test, you can play it back to confirm that the recorded actions do what you expect.

Note: When you record a test that includes a file download, the file is not physically saved to disk. However,

you can confirm that the file was retrieved from the server by looking in the response of the request that

asked for the file. One method to locate the request for large downloaded files is to look for a request with a

large response size.

Performance testing tips
Use these tips to make HCL OneTest™ Performance run faster and more efficiently.

The following suggestions can help you to get the best performance from HCL OneTest™ Performance:

• Number of computers. Have at least two computers for a test. The user interface consumes significant

resources; therefore play back a test or schedule on a computer (agent) that is separate from the computer

that is running the workbench (UI).

• Number of virtual users at remote locations. When you assign a user group to a remote location, do not

overload the remote computer (agent). If you exceed the number of virtual users that the remote computer

can run, the performance measurements of the server will be skewed because they will be affected by the

performance of the computer. The test results will reflect the load of the computer more than the load of

the server. For best results on a computer with a 1 GHz processor and 1 GB of RAM, do not exceed 1000

concurrent virtual users.

• TCP/IP ports. Your computer must have a sufficient number of TCP/IP ports. On computers with Microsoft™

Windows™, the typical limit is 5000. Issue the netstat -a command to observe port use. If the largest

number you see is 5000, then you need to increase the number. To increase it, open the registry. Under

HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services/Tcpip/Parameters, create a new dWord named

MaxUserPort, and set its value up to 65000. Restart the computer.

• Open file limit for Linux™. Computers that are running Linux™ need a per-process open file limit higher than

1024. As root, enter ulimit -n 30000 (or another appropriate value) before starting Agent Controller.

• Looping within tests. If you are stress testing a server, your test typically contains a loop. Your connection

behavior differs depending upon whether the loop is set at the schedule level or at the test level. Setting a loop

at the test, rather than the schedule, level gives you a performance advantage, because the connections are

reused during the looping process. For more information, see Add a loop on page .

333

../topics/taddloop.html
../topics/taddloop.html
../topics/taddloop.html
../topics/taddloop.html

HCL OneTest Performance

334

• Logging levels. After the test is stable, for maximum performance, reduce the test log level and problem

determination log level and sample a small number of users. Increase the statistics sample interval to 30 or

60 seconds for long-running tests.

• Workbench heap size. The Java™ Virtual Machine (JVM) heap size on the workbench is based on the

available physical memory. Do not run the workbench on a computer with less than 768 MB of physical

memory. The maximum workbench heap size depends on your JVM. Although the heap size is not strictly

necessary for playback performance, you can increase the workbench heap size. To increase the heap size,

set the -Xmx parameter in the eclipse.ini file, which is located in the product installation directory. For

Windows™, if your physical memory is 3 GB or more, then the maximum heap size must not exceed 1200 MB.

For Linux™, the maximum heap size is approximately 3000 MB. If the workbench is sluggish or fails to start

after you increase the heap size, reset the heap size to the default by removing the VMARGS=-Xmx line from the

eclipse.ini file.

• Location (agent) heap size. To access maximum heap, after one successful test of any size, search for a

location (agent) attribute called RPT_DEFAULT_MEMORY_SIZE. If you cannot find this attribute, you can specify a

maximum heap by creating a new attribute: RPT_VMARGS=-Xmx1500m (for example, max heap 1.5 GB). For more

information, see Increasing memory allocation on page 827.

HCL OneTest™ Performance sets heap size for RPT_DEFAULT_MEMORY_SIZE based on the bit-type of the

JRE:

◦ For 32-bit Java Runtime Environment (JREs), HCL OneTest™ Performance sets 70% of the size of

physical memory to RPT_DEFAULT_MEMORY_SIZE. Typically, the maximum limit is set to 1200m.

◦ For 64-bit JREs, some workloads might perform better with a lesser heap size than 70% of physical

memory up to a maximum of 12000m.

• Disk space. Verify that there is sufficient free disk space on the workbench and agent computers. Also, verify

that there is sufficient free disk space on the drive that contains the system temporary directory.

• Recording length. If you record for a relatively long time, test generation also takes a long time. If test

generation is taking a relatively long time, try shorter recording scenarios.

Creating a project
The tests that you create, and the assets associated with the tests, reside in a project on your desktop. You can

create the project separately, or you can simply record a test, which automatically creates a project named testproj.

1. Select File > New > Performance Test Project.

Result

The Create a Project window opens.

2. In the Project Name field, enter a name for the project.

If you plan to collect response time breakdown data, do not use a project name that contains spaces.

3. Select Use default location.

4. Optional: Click Next and select the folders to create in the new project.

These folders organize your files by asset (Tests, Results, and so on).

5. Click Finish.

Chapter 7. Test Author Guide

Result

After you click finish, you are prompted to record a test.

What to do next

You can create a test from a new recording or from an existing recording, or you can click Cancel to create a test

project without recording a test.

Recording HTTP tests
When you record a test, the test creation wizard records your interactions with a web-based application, generates

a test from the recording, and opens the test for editing. You can record tests from Internet Explorer (which is the

default on Windows™) or from another browser.

Recording reliable HTTP tests
You use a web browser to capture the HTTP test. To record reliable HTTP tests, certain configuration of the web

browsers are required. Read the guidelines in this topic for robust HTTP tests.

Remove temporary files

To ensure that your recording accurately captures HTTP traffic, remove temporary files from the web browser's cache

before you record a test.

To remove temporary files from the Microsoft Internet Explorer cache:

1. Open Internet Explorer, and click Tools > Options.

2. On the General tab, click Delete.

3. In the Delete Browsing History window, click Delete, and then click OK.

To remove temporary files from the Mozilla FireFox cache:

1. Open Mozilla Firefox and click Tools > Options.

2. Click the Advanced tab and then the Network tab.

3. Click Clear Now.

4. Click OK.

Allow recorded pages to load completely

When recording, wait for each page to load completely. This wait does not affect performance results, because you

can remove extra think time when you play back the test.

Recording with IP addresses

When recording, you can enter the IP address of the website to connect to instead of entering the host name. When

you play back the test, however, make sure that the IP address can resolve to a host name. Typically, this resolution

occurs via a reverse DNS lookup.

335

HCL OneTest Performance

336

Note: While recording a test in Internet Explorer, if you use localhost in the URL, Internet Explorer does not

route the traffic through HCL OneTest™ Performance Agent. The test will not contain any recorded data. You

must use a host name or IP address to record the traffic.

To resolve the IP address, map each IP address to a host name in the /etc/hosts file. On a Windows system, the

file is typically stored in C:\windows\system32\drivers\etc\hosts.

If an address cannot be resolved, your test shows a slower connection time. This time might be delayed by as much

as 8 seconds, depending on the network configuration of the computer.

Configuring Internet Explorer for recording from a secure web site
You can suppress the security warning that Internet Explorer displays when you are recording from a secure web site.

About this task

HCL OneTest™ Performance uses a proxy recording program that intercepts all traffic between the browser and the

web server. During recording at a secure web site (with a web address that starts with https://), by default you see a

security warning before every action and must confirm your acceptance of a security risk to continue.

If you do nothing, this warning is displayed with every browser action, and you must repeatedly click Yes to continue.

Performing the following procedure installs the recorder certificate on the local host as a trusted authority and

thereby disables warnings from Internet Explorer during recording at secure web sites. This procedure does not affect

other browsers that record from secure web sites—they will display warnings before every action.

To disable security warnings when using Internet Explorer to record from a secure web site:

1. During test recording, the first time the warning is displayed, click View Certificate.

2. In the Certificate window, click Install Certificate.

3. In the Certificate Import Wizard window, click Next.

4. On the second page of the wizard, click Next.

5. On the last page of the wizard, click Finish.

6. In the Root Certificate Store confirmation window, click Yes.

7. In the window that reports that the import was successful, click OK.

8. In the Certificate window, click OK.

9. In the Security Alert window, click OK.

Recording an HTTP test
To test the performance of an application, you must first record the HTTP traffic that traverses between the client and

the server. You record the HTTP traffic of the application by initiating the recording from the product. When you record

the test, a proxy recorder intercepts the HTTP traffic between the browser and the web server.

Before you begin

Chapter 7. Test Author Guide

Certain websites require appropriate certificates to use a proxy recorder to record the site. The recorder certificate is

required to record all the secured sites. The client certificate is different and it serves as an additional layer of security

that is required by the web server to authenticate the client/browser. If some applications use Secure Sockets Layer

(SSL), the proxy recorder can cause authentication problems because SSL relays traffic between the client and the

server. Depending on the authentication method in place, the client might require the proxy recorder to authenticate

itself as the server, and the server might require the proxy recorder to authenticate as the client. If the client program

requires an authenticated server, you must either have access to the server certificate keystore and provide it to

the proxy recorder or configure the client to accept the default certificate from the proxy recorder instead of the

certificate from the actual server.

If you have recorded a test that does not use SSL, you can convert that test to be secure by adding an SSL object to

the corresponding Server Access Configuration in the test.

To record an application that requires a client-side certificate, import the client certificate to the HCL OneTest™

Performance project. To import the certificate, click File > Import > General > File System, and navigate to the folder

that contains the certificates and click Finish.

337

HCL OneTest Performance

338

About this task

The following recorders are available for recording HTTP traffic from a browser:

• SOCKS proxy recorder: Use this recorder when no proxy connections are required.

• HTTP proxy recorder: Use this recorder when proxy connections are required to connect to the network or

when the client program does not support SOCKS.

• Socket recorder: Use this recorder for low-level network traffic when the client does not support proxies.

You can record and generate a test by using REST APIs. The API documentation to record a test is located at

Install_directory\HCL\HCLIMShared\plugins\com.ibm.rational.test.lt.server.recorder.jar.

Chapter 7. Test Author Guide

The API documentation to generate a test after the recording completes is located at C:\Program Files

\HCL\HCLIMShared\plugins\com.ibm.rational.test.lt.server.testgen.jar.

1. In the Performance Test perspective, on the toolbar, click the New Test From Recording icon or click File >

New > Test From Recording.

2. In the New Test From Recording wizard, click Create a test from a new recording, select HTTP Test, and click

Next.

If you are recording sensitive data, click Recording encryption level and select the encryption level to record.

3. On the Select Location page, select the project and folder to create the test in, type a name for the test, and

click Next.

If necessary, click the Create the parent folder icon to create a performance test project or folder.

4. On the Select Client Application page, select the web browser to use.

The type of application defines the recorder that can be used. The following client application types are

supported for recording a service test:

Choose from:

◦ Microsoft Internet Explorer: This option records traffic that is sent and received with Internet Explorer.

◦ Mozilla Firefox: This option records traffic that is sent and received with Firefox.

◦ Google Chrome: This option records traffic that is sent and received with Chrome.

◦ Apple Safari: This option records traffic that is sent and received with Safari.

◦ Opera: This option records traffic that is sent and received with Opera.

◦ Managed Application: This option starts a browser that is not on the list.

◦ Microsoft Edge: This option records traffic that is sent and received with Edge.

◦ Unmanaged Application: This option records HTTP traffic from one or multiple client programs that

use a proxy. You must manually start the client programs, and the proxy recorder records all traffic that

is sent and received through the specified network port.

5. Depending on your selection in Step 4, perform one of the following steps: On the Recorder Settings page,

depending on the browser that you selected, specify the following details:

a. If you selected a browser, specify the recording method:

▪ To record HTTP or SOCKS traffic through a proxy, click Record traffic with the proxy recorder.

To record low-level network traffic for applications where a proxy cannot be used, click Record

traffic with the socket recorder. Use this option when you are not using Mozilla Firefox or

Microsoft™ Internet Explorer.

Note: When using proxy recording, you can filter out HTTP or HTTPS requests to a

specific endpoints so that any requests to those endpoints are not recorded. See Proxy

recording preferences on page 1400.

▪ If HCL OneTest™ UI is installed and shell-shared with HCL OneTest™ Performance, for the Web

UI tests, you can use the Record user actions option to record the functional aspects of the

application in the same HTTP recording session. Thus, both the functional and performance

aspects of the application are recorded.

339

HCL OneTest Performance

340

▪ If the server requires client SSL authentication, provide the client certificate for the proxy

recorder to be authenticated by the server as though the proxy recorder were the client. Select

The server requires a specific client certificate.

To provide single certificate keystore, specify the file name and password of the server

certificate keystore. If multiple certificates are required, click Multiple certificates, and click

Add to specify a certificate keystore file name and password for each host name and port.

▪ To record a secured site using Internet Explorer or Google Chrome on Windows, install the

recorder certificate by selecting Register the recorder root certificate authority. Before the

recording starts, the browser prompts you to install the certificate. After the recording is

stopped, the browser prompts you to uninstall the certificate. To avoid multiple prompts for

each recording, select Keep the recorder root certificate authority after recording.

Note: If you already had the certificate from a version prior to 9.2.1 and then install the

latest version of the product, you might have to install the certificate again.

This option is not available when you record by using the Firefox or Safari browser.

To record a secured site on these browsers, manually import the certificate in the

browser from the default location C:\Program Files\HCL\HCLIMShared\plugins

\com.ibm.rational.test.lt.recorder.proxy_version\SSLCertificate. For

information about how to import the certificates, see the browser's documentation.

▪ If you selected Mozilla Firefox, you can choose to use a temporary Firefox profile. This

option starts the Firefox browser without any bookmarks, plug-ins, or tool bars that might be

associated with your usual profile. Select Use an alternate Firefox profile, and then select Use

a temporary Firefox profile.

▪ If you clicked Record traffic with the proxy recorder, click Advanced to specify whether to use

an HTTP or SOCKS proxy recorder to review and edit network connection settings that the

browser uses or to specify advanced SSL authentication settings. If you clicked Record traffic

with the socket recorder, specify the advanced SSL authentication settings.

b. If you selected Managed Application, complete the following steps:

i. On the Recording Method page, click a recorder to record HTTP traffic and click Next.

ii. On the Managed Application Options page, for Program path, click Browse to select the

program. If necessary, specify the Working directory, and in the Arguments field, type the

command-line arguments that the program requires. Click Next.

iii. If the program requires user input from a command-line interface, select the Open console for

user input check box. Click Next.

iv. Depending on the recording method that you selected, complete one of the following steps:

Chapter 7. Test Author Guide

▪ On the Proxy Recorder Settings page, specify whether to use an HTTP or SOCKS proxy

recorder to review and edit network connection settings that the browser uses or to

specify the advanced SSL authentication settings.

▪ On the Socket I/O Recorder Secured Settings page, specify the advanced SSL

authentication settings.

c. If you selected Unmanaged Application, on the Proxy Recorder Settings page, specify whether to use

an HTTP or SOCKS proxy recorder to review and edit network connection settings that the browser

uses or to specify the advanced SSL authentication settings.

To record an HTTP test from a mobile device, see Recording an HTTP test for mobile applications on

page 343.

6. Click Finish.

Result

A progress window opens while your browser starts.

7. In the browser address field, type the address of the web application to test, and activate the link.

Note: If you enter the address of a secure website (one that starts with https:), your browser might

display a security alert. Depending on the security certificate for the site, you might be required to

accept a security risk to proceed with the recording.

8. Complete the user tasks to test. While you are recording, adhere to the following guidelines:

◦ Wait for each page to load completely. This wait does not affect performance results, because you can

remove extra waiting time (think time) when you play back the test.

◦ Do not change any browser preferences.

You can use the Recorder Test Annotations toolbar to add comments, record synchronizations, or take screen

captures during the recording.

◦ To change the page name, click the Change page name icon . In the resulting test, the page element

in the test editor uses the new name; however, the original name is preserved in the Page Title

Verification Point area so that page title verification points still work correctly.

◦ To add a comment to the recorded test, click the Insert comment icon . Add a comment when you

get a prompt.

◦ To add a screen capture to the recorded test, click the Capture screen icon . The screen and

window captures make your tests easier to read and help you visualize the recorded test. You can

change the settings for screen captures and add a comment to the image.

◦ To manually add a synchronization point to the recording, click the Insert synchronization icon .

◦ To manually add a transaction folder to the recording, click the Start Transaction icon and Stop

Transaction icons to start and stop the transaction. Transactions can be nested.

◦ To insert a split point into the recorded test, click the Split point icon . With split points, you can

generate multiple tests from a single recording, which you can replay in a different order with a

341

HCL OneTest Performance

342

schedule. See Splitting an HTTP test during recording on page 443 for more information about

splitting a test.

◦ To filter packets that display during recording sessions, click the Filter packets icon. You can

specify the filter criteria for the following elements:

▪ SAP packet type

▪ SAP packet attribute

▪ Socket packet type

▪ Socket packet attribute

▪ Packet type

▪ Proxy connection IDs

▪ Citrix events

▪ A group of conditions

▪ Remote host

You can add and remove packet filters as needed.

9. After you finish the user tasks in the browser, stop the recorder. You can stop the browser by closing the client

program or by clicking the Stop icon in the Recording Control view.

10. Select the domains to include in the test and click Finish. The domains that are not selected are not included

in the test. You can add them back by generating the test again from the recording.

To include all the domains for all of the recordings, click the Select all and remember my decision check box.

To enable the filter again for HTTP tests, click Window > Preferences > Test > Test Generation > HTTP Test

Generation, and, for Service tests, click Service Test Generation and then click the Enable domain review

before test generation check box.

Results

A progress window is displayed while the test is generated. After the test is complete, the Recording Control view

displays the Test generation completed message, the test navigator lists your test, and the test opens in the test

editor.

Related information

Recording reliable HTTP tests on page 335

Recording sensitive session data on page 442

Recording a WebSocket test
If your application is based on the WebSocket protocol, you can check the performance of the application by creating

a recording of the application and playing it back.

About this task

Chapter 7. Test Author Guide

WebSocket is not a separate test extension in the product. To test a WebSocket application, you have to record the

HTTP test. After the recording completes, you must not delete or change the content of the requests, response, and

connection objects in the test script.

To record the HTTP test, see Recording an HTTP test on page 336. The requests and responses contain text or

binary data. You can do data correlation on the text data.

Starting from 9.1.1.1, the WebSocket test generation automatically does data correlation. See Correlating request and

response data on page 609.

Starting from 9.1.1.1, you can specify error handling behavior for WebSocket tests. See Specifying error handling

behavior on page 466.

Starting from 9.2.0, you can add verification points to the requests and responses just as you would do to HTTP tests.

See Verifying expected behavior on page 461.

After the test run completes, view the test results by selecting the HTTP WebSocket Report. The report displays the

number of requests attempted, succeeded, and the rate of success.

Recording an HTTP test for mobile applications
You can use HCL OneTest™ Performance to test a native or web application from the mobile device by using an HTTP

protocol.

Before you begin

• You must have installed HCL OneTest™ Performance on your computer.

• You must have a mobile device.

• HCL OneTest™ Performance and the mobile device must be connected to the same wireless network.

About this task

To record the HTTP traffic to and from the mobile applications, you must download a digital certificate to connect

to a wireless network, which is same as that hosts HCL OneTest™ Performance. To record communication between

the mobile device and the internet, the computer on which HCL OneTest™ Performance is installed must be set up as

a proxy server. This setup communicates all mobile network traffic through HCL OneTest™ Performance's recording

proxy.

1. To download the certificate from HCL OneTest™ Performance to your computer, perform the following sub-

steps:

a. In the Performance Test perspective, on the toolbar, click the New Test From Recording icon or

click File > New > Test From Recording.

b. In the New Test From Recording wizard, select HTTP Test, and click Next.

c. On the Select Location page, select the project and folder, type a name for the test, and click Next.

343

HCL OneTest Performance

344

d. On the Select Client Application page, select the Unmanaged Application.

e. On the Proxy Recorder Settings page, click hyperlinked save option to save the recorder root

certificate on your local desktop.

2. Share the downloaded certificate with a mobile device that is under test.

3. To download and install the certificate on a mobile device, perform the following sub-steps depending on your

mobile device:

iPhone device Android device

a. Open the email that contains certificate on

the mobile device.

b. Select the certificate.

c. Choose iPhone as the device.

d. Go to Settings > General > Profile > HCL

OneTest Performance Recorder.

e. From Install Profile screen, tap Install.

f. If you have a PIN or passcode set on your

iPhone, you must enter it. After you enter the

PIN or passcode, ignore the warning and tap

Install.

g. Tap Done to exit the screen.

a. Open the email that contains certificate on

the mobile device.

b. Download the certificate.

c. Go to Settings > Additional settings > Priva­

cy > Encryption & credentials > Install from

storage.

d. Select the certificate to install.

e. If you have a PIN or password set on your An­

droid device, you must enter it and tap OK.

f. Specify a name for the certificate and click

OK.

g. Go to Settings > Additional settings > Privacy

> Encryption & credentials > User credentials

to view the installed certificate.

4. If you are using an iPhone, go to Settings > General > About > Certificate Trust Settings to manually enable

the installed certificate.

5. To configure the mobile device proxy, perform the following sub-steps depending on your mobile device:

iPhone device Android device

a. From iPhone, go to Settings > Wi-Fi and tap

the connected network.

b. In the HTTP PROXY section, select Manual

for Configure Proxy and specify the following

settings:

▪ Server - The IP address or the host

name of the computer that hosts HCL

OneTest™ Performance.

▪ Port - Enter 1080 as HCL OneTest™

Performance listening port.

▪ Authentication - Do not enable.

a. From your Android device, go to Settings >

Wi-Fi and tap the connected network.

b. In the PROXY section, select Manual and

specify the following settings:

▪ Hostname - The IP address or the

host name of the computer that hosts

HCL OneTest™ Performance.

▪ Port - Enter 1080 as HCL OneTest™

Performance listening port.

▪ Bypass for - Leave this field blank.

c. In the IP SETTINGS section, select DHCP.

6. To record an HTTP performance test:

Chapter 7. Test Author Guide

a. From HCL OneTest™ Performance project, right-click the folder where you want your recording to be

placed, and select New > Test From Recording.

b. Select HTTP Test in the Recording Session window and click Next.

c. On the Select Location page, select the project and folder, specify a name for the test, and click Next.

d. Select Unmanaged Application in the Select Client Application window. This option records HTTP

traffic from a mobile device that uses a proxy.

e. Click Next.

f. Select Proxy Type as HTTP and Proxy port as 1080 on the Proxy Recorder Settings page and click

Finish.

g. From your mobile device, navigate through your installed application to start the recording. If all

settings are configured correctly, you can see some activities on the HTTP Proxy Recorder tab during

recording.

h. To pause your recording, and if you want to navigate to other section of mobile application that needs

no recording, click the Pause/Resume Recording button. Click the button again to resume recording.

i. When you finish recording all the required transactions from your mobile application, click the Stop

button to stop the recording.

j. Select the domains to include in the test and click Finish.

Results

A progress window is displayed while the test is generated. After the test is complete, the Recording Control view

displays the Test generation completed message, the test navigator lists your test, and the test opens in the test

editor.

345

HCL OneTest Performance

346

Generating HTTP tests from a Web UI test
The performance tests record the HTTP traffic against the HTTP server that hosts the application under test. You

would have recorded many scenarios against the server. If a new version of the server is about to be used, there can

be changes in the HTTP traffic for all of the existing tests. You might have to re-record all of the tests to bring them

back to the state where they can be run successfully. This is a time-consuming process.

Before you begin

You must have installed HCL OneTest™ PerformanceHCL OneTest™ UI in the same package group, also referred to as

shell-share mode.

About this task

When you know that a new version of the HTTP server is going to be installed and it would impact your performance

tests, you can record the scenarios with the Web UI Test recorder of HCL OneTest™ UI and then just generate the

HTTP tests. When you have all of the HTTP tests generated, you can add the required test elements and run them to

view the performance results. When the new version of the server is installed, you can start refreshing the generated

HTTP tests. This action records the traffic from the Web UI test and uses the test elements such as loops and dataset

that were edited in the HTTP test with the new HTTP traffic. The new HTTP tests are re-recorded with new HTTP

traffic without manual intervention.

1. From the Web UI perspective, create a Web UI test.

For information about creating a Web UI test, see Recording a Web UI test .

2. In the Test Navigator view of Performance Test perspective, right-click the Web UI test and click Generate

HTTP Test.

You can have only one Web UI test as the master test.

Result

The HTTP Test recorder opens the web browser and automatically records the HTTP traffic for the UI actions

that were recorded in the Web UI test and generates the HTTP test.

3. To refresh the HTTP test, right-click the generated HTTP test and select Refresh HTTP Test.

This option is available only for the HTTP tests that were generated out of Web UI tests.

4. Specify a name for the test, select a project, and click Next.

5. Click Finish.

The HTTP Test recorder opens the web browser and automatically records the HTTP traffic from the Web UI

test and generates the HTTP test against the new version of the server.

Preparing to record a test for the HTTP/2 protocol
To collect the performance data of an application that supports HTTP/2 protocol, record a test against the HTTP/2

application. Before recording the HTTP/2 application, follow the procedure in this topic to configure your computer.

About this task

This configuration is required because this feature is released as Beta and is intended for the non-production use.

https://hclonetestui.hcldoc.com/v10/help/topic/com.ibm.rational.test.lt.rtw.webgui.doc/topics/t_rec_test.html

Chapter 7. Test Author Guide

1. Download the following Application Layer Protocol Negotiation (ALPN) boot jar file https://

mvnrepository.com/artifact/org.mortbay.jetty.alpn/alpn-boot/8.1.8.v20160420

2. Create or rename the productInstallDir\jdk folder to ..\jdk.abc. You can rename the folder back to

jdk later to test with Java.

3. Download Oracle Java 1.8.0u92 from http://www.oracle.com/technetwork/java/javase/downloads/

jdk8-downloads-2133151.html. You can then either extract the compressed file or install Java at

productInstallDir\jdk.

4. Copy the ALPN jar file to productInstallDir\majordomo\lib.

5. From productInstallDir, open eclipse.ini and add the following flags:

-Xbootclasspath/p:<productInstallDir>\majordomo\lib\alpn-boot-8.1.8.v20160420.jar

Note: If there are any other flag starting with -X, delete those flags.

6. Configure HCL OneTest™ Performance Agent to use Oracle Java.

a. Stop the Majordomo process.

On Windows systems, run the following command: cd “c:\program files\hcl\hclonetest\majordomo”

ngastop

On Linux systems, run the following command: cd /opt/HCL/HCLOneTest/Majordomo ./MDStop.sh

b. Set the environment variable RPT_JAVA to the Oracle Java binary or executable.

On Windows systems, run the following command: set RPT_JAVA=c:\program files\java

\jdk1.8.0_92\bin\java.exe

On Linux systems, run the following command: export RPT_JAVA=/root/jdk1.8.0_92/jre/bin/java

c. Start the Majordomo process.

What to do next

You can now record a test for the HTTP/2 application. After the recording, in the Version field of request details, the

requests are marked with HTTP/2 indicating that the HTTP/2 traffic is captured. If the test playback fails, check if all

the steps are correctly followed.

Splitting an HTTP test during recording
You can insert split points when you record a test. With split points, you can generate multiple tests from a single

recording that you can replay in a different order with a schedule. You can also create a schedule that contains all of

the tests that are generated from the split points.

About this task

347

https://mvnrepository.com/artifact/org.mortbay.jetty.alpn/alpn-boot/8.1.8.v20160420
https://mvnrepository.com/artifact/org.mortbay.jetty.alpn/alpn-boot/8.1.8.v20160420
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

HCL OneTest Performance

348

During the recording process, you can select the option to create a schedule for the tests that are generated from the

split points. The schedule will contain these attributes:

• One user

• One user group for the local computer

• All of the tests from the recording, in serial order

• One stage: Run until finished

• Recorded think times, with the maximum think time set to 2 seconds

• Statistics:

Statistics log level: All

Statistics sample interval: 5 Seconds

Only store All Hosts statistics

• Test Log:

Show errors and failures: All

Also show warnings: All

And also show all other types: All

• Problem Determination log level: Warning

To insert split points when you record a test:

1. Start recording the test. The Recorder Test Annotations toolbar opens near the top of the screen.

2. To insert a split point into the recorded test, click the Split point icon . The Insert Split Point window is

displayed.

Choose from:

◦ Click Test name, and then type a name for this section of the test.

Tip: You are naming the previous section of the test, not the upcoming section of the test.

Repeat this step between recorded user actions as needed to split tests.

Chapter 7. Test Author Guide

3. Close the client program to stop the recording. The Generate HTTP Test window is displayed.

Choose from:

◦ Type a Test prefix for all the tests in the schedule.

◦ Select Generate a schedule containing tests to create a schedule for the tests. When you select this

option, you can modify the name of the schedule.

◦ Select Customize automatic data correlation to choose automatic data correlation or rule-based data

correlation. If you select this option and choose rule-based data correlation, you can specify which

data correlation rule sets to use.

4. Click Finish.

Result

349

HCL OneTest Performance

350

The Test Generation window displays the status of generating the tests and schedule and the data

correlation. You can view the test generation log from this window.

5. When test generation is complete, you can select the test to open and then click Open Selected Tests, or you

can click Close to finish this process.

Results

The schedule and tests are generated using the names that you specified in the wizard.

Returning a browser to its initial state if recording is interrupted
Browser options are changed during recording and are reset after recording is complete. If you interrupt recording, the

browser stays in its changed state, and you may receive The page cannot be displayed messages. To fix this, reset the

browser to its initial state.

1. Right-click the Internet Explorer icon, and select Properties.

2. On the Connections page, click LAN Settings.

a. If you do not use a proxy, in the Local Area Network (LAN) Settings window, clear Use a proxy server

for your LAN.

b. If you use a proxy:

In the Local Area Network (LAN) Settings window, select Use a proxy server for your LAN, and then

click Advanced.

In the Proxy settings window:

i. Add the proxy address and port number to the HTTP and the Secure fields.

ii. Remove the proxy address and port number from the Socks field.

iii. In the Proxy Settings window, click OK.

3. In the Local Area Network (LAN) Settings window, click OK.

4. In the Internet Properties window, click OK.

Creating HTTP tests manually
The typical—and simplest—way to create a test is by recording it. However, you can also write a test from scratch.

Creating an empty test
You can create an empty template for a test that you plan to write manually.

1. In the Test Navigator, right-click a project and click New > Other.

2. In the New window, expand Test, expand Test Assets, click New Test, and then click Next.

3. In the Enter, create, or select the parent folder field, click the test project in which to store the test.

4. In the Name field, type a name for the test, and then click Next.

5. Optionally, in the Test Attributes window, type a description for the test, and then click Next.

6. In the Protocol and Features window, select HTTP Protocol, and then click Next.

Chapter 7. Test Author Guide

7. In the HTTP Extension window, enter the name of the host, and set the options for the test.

8. In the New test summary window, inspect your selections, and then click Finish.

9. Confirm that you want to open the editor.

Result

A test template opens for you to edit. The following figure shows HTTP test template with the default options

(one page, one request per page, and a response for the request).

Adding templates for new elements
You can add a template for a new test element that you plan to write by hand.

To add a template for a page, page request, or basic authentication block to a test:

1. Open the test. If you are writing a test completely by hand, you can create an empty test as explained in

Creating an empty test on page 350.

2. Click the parent or sibling element.

3. Click Add or Insert.

Result

351

HCL OneTest Performance

352

The editor enforces the test hierarchy: tests contain pages, pages contain requests, and requests contain

authentication blocks.

◦ Add adds the template to the bottom of the selected element: a page is added to the bottom of the

test, a request is added to the bottom of the selected page, and an authentication block is added to the

end of the selected page request.

◦ Insert inserts the template at the point of the cursor: a page is inserted before the selected page, a

page request is inserted before the selected request, and an authentication block is inserted at the top

of the selected page request.

4. Select one of the following options. The options that are displayed depend on the element that you select.

Option Description

HTTP Page Adds a page to the test.

HTTP Request Adds a request to the test.

Basic Authentication Adds an authentication block to a request. A fold­

er named Authentication is added, and the Test El­

ement Details area displays the User id, Password,

and Realm fields.

Custom Code Adds a block of custom code to the test. For more in­

formation on custom code, see Extending test execu­

tion with custom code on page .

Delay Adds a delay to the test.

Loop Runs part of the test a specific number of times.

In addition to setting the number of iterations, you

can control the rate of iterations and randomly vary

the delay between iterations. For more information,

see Extending test execution with custom code on

page .

Condition Adds a conditional block to the test. In most cases,

a conditional block issues HTTP requests depending

on the value of a reference or field reference. The ref­

erence or field reference must exist in the test and

precede the conditional block. For more information,

see Adding conditional logic on page .

Transaction Enables you to view performance data about the

transactions that you have added. In the Test Ele­

ment Details area, give the transaction a meaningful

name. This is useful in the Transactions report, which

../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/taddif.html
../topics/taddif.html
../topics/taddif.html
../topics/taddif.html

Chapter 7. Test Author Guide

Option Description

lists transactions by name. For more information, see

Adding a transaction to a test on page .

Random Selector Enables you to run test elements in random order.

For more information, see Running test elements in

random order on page .

Comment Adds a comment that appears in the Test Element

Details area and in the actual test.

Adding a header
You can add a standard header or a custom header to a request or response.

1. Open the test.

2. In the test hierarchy, click a request (to add a request header) or the Response Data folder for a request (to

add a response header).

3. In the Test Element Details area, locate the Request Headers table, and then click Add.

Result

353

../topics/taddtrans.html
../topics/taddtrans.html
../topics/taddtrans.html
../topics/taddtrans.html
../topics/trunrantestelement.html
../topics/trunrantestelement.html
../topics/trunrantestelement.html
../topics/trunrantestelement.html
../topics/trunrantestelement.html

HCL OneTest Performance

354

The Add/Edit Headers window

opens.

4. To add a standard header:

a. In the Available Headers list, locate the header to add and click it.

Use the Quick search field (start typing the name of a header) and Header types list (select the type of

header you are looking for) to quickly locate a header in the Available Headers list.

b. Click the right angle bracket (>).

Result

The selected header moves into the Selected headers list and your cursor is placed in the value

column.

c. Type the value for the header.

5. To add a custom header:

a. In the Header types list, select Custom.

b. At the bottom of the window, in the New custom header area, type the header information in the Name

field and the Value field, and then click Insert.

Chapter 7. Test Author Guide

Result

The custom header is added to the Selected headers list.

6. When you have finished adding headers, click OK.

Editing header contents
You can modify the contents of the headers that are contained in requests and responses.

1. Open the test.

2. In the test hierarchy, click a request (to edit a request header) or the Response Data folder for a request (to

edit a response header).

3. In the Test Element Details area, locate the Request Headers table, and double-click the cell containing a

value that you want to edit.

Result

An ellipsis button is displayed in the Value column.

4. Click Modify.

5. In the Edit Header window, edit the header value as desired.

You can create a reference or field reference in the header value.

6. Click Table View to return to the Request Headers table.

Creating tests from HTTP Archive files
To migrate your tests from another tool to HCL OneTest™ Performance, you can export tests in the HTTP Archive

(.har) file format and then import or copy the HTTP Archive files to HCL OneTest™ Performance. You can then create

test scripts from the HTTP Archive files.

About this task

Depending on the tool that you use to export tests to the HTTP Archive format, Google Chrome and Mozilla Firefox,

for example, do not save enough information to reflect exactly what happened on each connections. The tool exports

the contents, HTTP requests and responses, timings, but connections and SSL information is not exported. Use a tool

such as Fiddler2 that exports enough information about tests.

355

HCL OneTest Performance

356

When you import or copy an HTTP Archive file, the product displays a message if the Archive file does not contain

enough information to generate the test.

1. To create tests from the HTTP Archive file, you must first copy or import the archive file to the Test Navigator

view of the product. To import the HTTP Archive files in the product, initiate the Import action from the Test

Navigator view and choose the File System option in the wizard.

After the import is finished, a new category HTTP Archive is created in the Test Navigator view.

2. Generate the test from one of the following methods:

a. In the Test Navigator view:

i. Right-click the HTTP Archive file, click Generate Test.

ii. Specify a name for the test, and click Finish.

b. In the product:

Chapter 7. Test Author Guide

i. Click File > New > Test from Recording > Create a test from an existing recording

ii. Select the HTTP Archive file and follow the wizard to create the test.

Note: If the HTTP Archive file cannot generate a test, a message is displayed when you

select it.

3. Select the type of test that you want to create and click Next.

4. Select the domains that you want to include in the test and click Finish.

Result

A new test is generated.

What to do next

You can now run the test. See Running a local schedule or test on page 783.

Recording Adobe™ Flex content
You can record an HTTP session that contains traffic to and from a .swf Adobe™ Flex application.

About this task

The Adobe™ Flash plugin must be installed in your web browser to run flex applications (.swf files) and to record the

HTTP session.

Adobe™ Flex technology allows communication through XML, SOAP, or AMF. AMF is compressed binary data that

must transformed into XML to be used in an HTTP performance test.

1. Record the HTTP as described in Recording an HTTP test on page 336.

By default, HCL OneTest™ Performance transforms the AMF format in to the XML format.

2. Optional: If you configured the default setting of HCL OneTest™ Performance to not transform after the

recording, follow the steps in the Transforming binary data in tests on page 649 topic.

Results

After the transformation, the XML data is generated in the test with "amf" prefixes in the names, as in the following

example:

<amf3Property amfName="zipcode" amfType="amf3String" zipcode="94103"/>

The generated XML can be used for data correlation. Only the amfValue attributes or attirbutes without the amf prefix

can be used for data correlation.

357

HCL OneTest Performance

358

Note: Do not modify or use data correlation on any XML attributes that start with the amf prefix except for

amfValue. If these attributes are modified, the replay of the test will cause errors.

Related information

Recording an HTTP test on page 336

Recording Microsoft Silverlight applications
To test the performance of an application that was developed by using Microsoft™ Silverlight, you can record the

application.

Before you begin

HCL OneTest™ Performance supports Microsoft Silverlight 5.

About this task

Microsoft™ Silverlight communicates with the server in the Windows™ Communication Foundation (WCF) Binary

format. After recording the Microsoft Silverlight application, you can transform the format to XML for better

readability and to apply data correlation.

1. Record the HTTP application as described in Recording an HTTP Test on page .

By default, HCL OneTest™ Performance transforms the WCF Binary format into XML format.

2. Optional: If you changed the default setting of HCL OneTest™ Performance to not transform after the

recording, follow the steps in the Transforming binary data in tests on page 649 topic.

Changing HTTP test generation preferences
You can change how performance tests are generated, such as how tests process verification points, data correlation,

and pages.

1. Click Window > Preferences > Test > Test Generation > HTTP Test Generation.

2. Select the preference to change.

The test generation preferences are as follows:

Do not generate a new page if think time is less than

Enter the shortest time, in milliseconds, that the generator uses as a delay to emulate user think

time for an HTTP page. If your tests contain fewer pages than expected, try a shorter interval.

Create a new page if delay between requests is greater than

Enter the longest delay, in milliseconds, that the generator allows between page requests. If this

time is exceeded, a new page is generated. If your tests contain more pages than expected, try a

longer interval.

../topics/trecordtest.html
../topics/trecordtest.html
../topics/trecordtest.html
../topics/trecordtest.html

Chapter 7. Test Author Guide

Maximum request delay

Enter the longest delay, in milliseconds, that the generator allows before truncating HTTP

requests. The requests are truncated on the generated test. The recorded test still contains the

original values, and you can get them back by generating a new test.

Save only the first 4KB of responses larger than

Enter the limit of response data, in KB, that the generator saves. If a response is larger than the

specified limit, only the first 4 KB of data is saved.

Suppress NSLookup() and use numeric IPs

Select this option to shorten test generation time. The disadvantage is that IP addresses in a

test are less user-friendly than web page format (www.example.com).

Disable Page Cache Emulation during test generation

Select this option to disable page cache emulation. When page cache emulation is enabled,

caching information in server response headers is honored. Additionally, requests are not

submitted to the server for content that is confirmed by the client as fresh in the local cache.

Page cache emulation is enabled by default.

Enable domain review before test generation

Clear the check box to not show the test generation page to select specific domains to be added

to the test. By default, in addition to the domain that you intend to record, other domains linked

to the original domain are also recorded.

Remove HTTP request delays from page response times

To not include the client delays in the page response times for the test or schedule, in this

context, is used to refer to both VU Schedule and Rate Schedule, select this check box. By

default, the page response times include delays to represent processing time caused by clients

such as a web browser. Sometimes this delay could exceed the logical limit causing page

response times to increase drastically.

Use Legacy Test Generator

Select this option if you have been instructed to use the legacy HTTP test generator.

Automatically include verification point of

Click to specify the types of verification points to be automatically included. If a check box for

a verification point is selected, the code and edit controls for this type of verification point are

generated in all tests. Verification points can also be enabled or disabled within specific tests.

Relaxed

Response codes that are in the same category (for example, 200, 201, 203, 209) are considered

equivalent. An error is reported if the response code is not in the same category.

Exact

An error is reported if the response code does not match the recorded value exactly.

359

HCL OneTest Performance

360

Accept sizes for primary request within

If you are automatically generating response size verification points, click to specify the

acceptable size range for primary requests. No error is reported if a response is within the

specified percentage above or below the expected size. By default, for primary requests, HTTP

response size verification points use range matching.

The data correlation preferences are as follows:

Automatically correlate host and port data

By default, host and port data is correlated automatically. If tests in a previous release have

significant manual correlations, or you are using proxies, the migration of the replace-host

functionality feature is likely to fail during playback. In this situation, clear the check box. When

you reopen your tests, they will not have the automatic correlation feature in them.

Automatically correlate URL pathname if redirected by response

Specifies whether URL path names are correlated if they are redirected by a selected response

code. If a check box for a response code is selected, the test generator performs correlations for

that response code. This option applies only to responses that are redirects, with a status code

between 300 and 399.

Automatically correlate Referers

By default, the Referer field in an HTTP request header is correlated automatically. Clear the

check box if you plan to correlate Referers manually. If you run tests against servers that do not

require a Referer field, clearing this check box reduces the number of correlations performed

when the test runs, and can increase user throughput.

Enable all other data correlation

By default, request and response data is correlated automatically. Clear the check box to disable

automatic data correlation of request and response data. Consider clearing the check box if you

create your own data correlation rules in the rules editor.

Create substitutions for empty strings

Select this check box to correlate empty strings. For example, strings such as spouse name or

middle initial sometimes become important to correlate. However, correlating empty strings

increases the time to generate a test.

Optimize automatic data correlation for execution

Specifies the characteristic that tests are automated for.

◦ With the Accuracy setting (the default), many references with an identical session

ID value are created and the value of each session ID is substituted from the nearest

previous reference.

◦ To make a test run faster by reducing the number of references that are created during

automatic data correlation, change the optimization to Efficiency. For example, consider

a test where a session ID, which is assigned when a user logs in, is included in every

Chapter 7. Test Author Guide

subsequent request in the test. With the Efficiency setting, all session IDs are substituted

from a single previous reference. The downside of this setting is that it can result in

incorrect correlations. For example, a request that contains the Joe Smith string might be

incorrectly correlated with a request that contains the Joe Brown string.

URL rewriting for execution

Specifies how web addresses (URLs) are rewritten during test execution. When correlating data,

the test generator replaces part of a URL request string with a value that the server returned in

response to a previous request.

◦ Automatic (default): The test generator automatically determines when rewriting the

entire URL during substitution will facilitate test execution.

◦ On: Select to rewrite URLs in every instance of data correlation. This produces larger

tests that take longer to run. Try this setting if your tests fail unexpectedly.

◦ Off: Select to manually correlate the instances where URL rewriting is needed. This

setting might cause execution errors.

URL encoding for execution

With this option, you can control the encoding of the URLs. If you set it to Automatic, the tool

detects the encoding that already exists in the test and applies it to the substitution site. If you

set it to ON, the tool always encodes the substitutions according to the encoding standards. If

you set it to OFF, no encoding occurs.

Note: To turn data correlation off entirely or to set whether names are automatically generated for

data correlation references, click Window > Preferences > Test > Test Generation > HTTP Test

Generation, and click the Data Correlation tab.

The data correlation type preferences are as follows:

Data Correlation Types

Specify when to generate data correlation constructs. With the Automatic setting, the test

generator creates the required constructs where needed. If the test does not contain the

required constructs, change the setting to On, which will always perform data correlation. If tests

do not require a specific construct, select Off, which has the additional benefit of improving

performance on subsequent test generation.

Jazz Foundation Services

The On and Automatic options enable data correlation for Jazz applications that use REST

storage or query APIs from Jazz Foundation Services. An example of such an application is

Rational DOORS Next Generation. Although data correlation does not typically apply to browser-

based Jazz web clients, it may be useful for other HTTP client-server applications that use REST

services and the Atom Publishing Protocol for updating web resources.

361

HCL OneTest Performance

362

Jazz Web Applications

The On and Automatic options enable data correlation for Jazz web applications that use the

Jazz Foundation web UI framework Examples of these web applications are the web interfaces

for Rational Quality Manager and Rational Team Concert. Data correlation can also be useful

for other web applications that contain javascript that employs JSON for client-server data

exchange. This is a common practice with DOJO- and AJAX-based applications.

JSON

To perform data correlation on web applications that uses JSON framework, ensure that

Automatic or ON is set to the JSON entry.

Prioritize correlation based on ID

Select On to correlate HTML response code based on its ID attribute. Generally, the HTML

response code after the recording would appears as <input type="username" name="User"

id="aaa" value="John"/>. Some applications dynamically update the name attribute. Therefore,

when you play back the test, the HTML response code would appear as <input type="username"

name="idt020" id="aaa" value="John"/>. Because the name attribute is changes dynamically,

data correlation does not occur and the playback fails. When this option is turned on, the ID

attribute is considered as the basis to correlate the name attribute in the request and to locate

the value attribute.

3. After changing a setting, click Apply.

Recording SAP tests
When you record a test, the test creation wizard records your interactions with the SAP server, generates a test from

the recording, and opens the test for editing. You can record tests from the SAP GUI. You can also record SAP batch

input tests that can be used to produce a heavy load on the server while minimizing the processing requirements for

virtual testers.

SAP performance testing guidelines
Before you test the performance of SAP applications, you must set up your test environment and incorporate these

guidelines to produce reliable SAP performance tests.

SAP configuration

The SAP GUI client software must be installed on the same computer as HCL OneTest™ Performance. The SAP GUI

client is required for recording and running performance tests. For information about support of SAP GUI versions,

refer to the SAP Note 1412821 - SAP GUI for Windows: Support on Windows for SAP.

The product is optimized by default for SAP GUI version 7.10 or later. To improve performance with older SAP

GUI 6.20 and 6.40 versions, when running long tests, you must change the bridge2java.dll file located in

the C:\Program Files\HCL\HCLOneTest\plugins\com.ibm.rational.test.lt.runtime.sap

Chapter 7. Test Author Guide

\<build_identifier> directory by renaming bridge2java.dll to bridge2javaV7.dll, and then renaming

bridge2javaV6.dll to bridge2java.dll.

If you are deploying tests on remote computers to simulate a large number of users, the following software must be

installed on each remote computer:

• The SAP GUI client software, configured with the same logon properties as the client on which the tests were

recorded

• TheHCL OneTest™ Performance Agent software that is provided with the product

Performance testing relies on the SAP Scripting API and ActiveX. Make sure that these options are selected when

installing the SAP GUI client.

Performance test recording and running also require that scripting be enabled on the SAP application server and on

all SAP GUI clients that are installed on remote computers. See the topic on configuring SAP for performance testing

for more information.

Limitations

During playback of the performance tests, each virtual user runs SAP GUI in silent mode by default (the user interface

is not displayed on the screen). However, some modal dialog boxes from the SAP GUI might briefly flash on the

screen.

Avoid recording SAP tests with the SAP GUI low speed connection setting. You cannot run with a normal speed

connection tests that you recorded with this setting.

You can have a maximum of only 50 virtual users on an agent for a SAP GUI test.

Batch input tests

You can use batch input tests to simulate a large number of virtual users while minimizing the load on the virtual user

computers.

Batch input tests access the SAP server at a low level, bypassing the SAP GUI interface, and therefore cannot contain

any verification points or SAP GUI elements. Their main purpose is to simulate a load on the server when added to

a test schedule that already contains SAP performance tests. Only the SAP performance tests will provide accurate

SAP application performance measurement.

Batch input transactions are recorded in the SAP GUI and exported to the file system. You can then generate batch

input tests that are based on those recorded transactions.

Note: Sometimes the default values of the SAP Java Connectors (JCo) parameters are not sufficient for

the load tests. The default values require some updates both at the SAP R/3 server and client end. For the

client, in the Additional SAP Connection Properties window, you must configure the SAP JCo parameters

363

HCL OneTest Performance

364

options that are available in the test. Alternatively, you can specify the properties as RPT_VMARGS in the

agent location. For example, RPT_VMARGS=- Djco.cpic_maxconv=1000

Performance tests

When deploying your performance tests, it is important to use a relevant number of virtual users on a given computer.

For example, if you deploy too many virtual users on a single computer, the results produced will reflect more the load

of the test computer than the load of the SAP application server.

For best results with performance tests on an average test computer with a 1 GHz processor and 1 GB of RAM, do

not exceed 50 concurrent virtual users. With batch input tests, the maximum number of concurrent virtual users is

approximately 500.

If you exceed the number of virtual users that a single test computer can run, the measured performance of the server

will be affected by the performance of the test computer, which will invalidate the final results.

When editing a schedule for long performance tests, use these recommendations:

• In the schedule editor, reduce the Test log level to None.

• In the schedule editor, set the Statistics sample interval to approximately 1/60 of the run time, for example 12

minutes for an estimated 12-hour session.

• When possible, use loops inside test suites rather than loops in the schedule. Using loops inside test suites

avoids connection problems that might occur over long duration tests and emphasizes measurement of the

actual SAP transactions rather than the logon process.

If you run a schedule that has an SAP test from HCL OneTest™ Performance Agent in Windows, you must then start

HCL OneTest™ Performance Agent as a Process. However, HCL OneTest™ Performance Agent starts as a Service by

default.

To start the agent as a process, you must perform the following steps:

1. Open Windows Services.

2. Change the Status of the Majordomo service from Running to Stop.

3. Double-click the Majordomo.bat file from the <SDP_Install_Directory>\Majordomo directory to run the

agent as a compatible process.

Note: You must install SAP GUI in the agent computer to run a schedule that has an SAP test.

Long duration test runs

When running long duration test schedules that exceed many hours, use the long run mode process to reduce

resource consumption with the SAP GUI client. This mode increases the reliability of long duration test runs because

a new process starts every time the specified number of SAP sessions completes. Hence, Windows resource

consumption is bare minimum. You must enable this option for each user group in the schedule.

Chapter 7. Test Author Guide

In the long run mode, a new process is created each time the number of SAP test instances reaches the specified

number.

For more information about how to run a long run mode test, see Running a long run mode SAP GUI test on

page 784.

Cleaning the SAP work directory

In some cases, trace files are created by SAP GUI under SapWorkDir directory when running SAP performance

tests. You can delete these files by setting and environment variable RPT_CLEAN_SAPWORKDIR or a java VMARG

rptCleanSapWorkDir. For example:

• -DrptCleanSapWorkDir=C:\Documents and Settings\UserName\SapWorkDir

• RPT_CLEAN_SAPWORKDIR="C:\Users\UserName\AppData\Local\SAP\SAP GUI\Traces"

If you set the variable to the SapWorkDir folder location, the contents (*.trc files) of the folder are removed when

a schedule starts. If the variable is set to true or on, the product automatically searches for the SapWorkDir folder

before removing its contents. If the variable is set to false or off, no action is taken.

Related information

Configuring SAP for performance testing on page 158

Configuring an environment for batch input tests on page 159

Running long duration Citrix tests on page 785

Running long run mode SAP GUI test on page 784

Recording an SAP test
You can record your interaction with the SAP GUI client to generate an SAP test. When you record, the recording

wizard opens the SAP GUI client and records all the interactions that occur between the client and the server.

Before you begin

You must have completed the following tasks:

• Verified that SAP GUI scripting is enabled on the SAP server and the SAP GUI client. See Configuring SAP for

performance testing on page 158.

• Working SAP GUI client that you can connect to an SAP server.

• Verified that tests are stored in performance projects. If your workspace does not contain a project, the test

creation wizard enables you to creates one.

365

HCL OneTest Performance

366

• Ensured that the session that you are recording is reproducible.

For example, if you create items in SAP and do not delete them, then if items created in SAP are already exist

when the test is run, that might cause the test to not run as expected.

About this task

You can record and generate a test by using REST APIs. The API documentation to record a test is located at

Install_directory\HCL\HCLIMShared\plugins\com.ibm.rational.test.lt.server.recorder.jar.

The API documentation to generate a test after the recording completes is located at C:\Program Files

\HCL\HCLIMShared\plugins\com.ibm.rational.test.lt.server.testgen.jar.

You must install the latest version of SAP GUI when you want to record an SAP test in HCL OneTest™ Performance.

For more information about supported SAP GUI versions, see System Requirements on page 27.

Important:

• Both 64-bit and 32-bit HCL OneTest™ Performance supports the SAP protocol.

• When you install HCL OneTest™ Performance by using the shell-shared method and run an SAP test

or a compound test that has an SAP test in it, the SAP web analytics report displays only the SAP

Summary and Screen Performance pages after the test run is complete.

1. Open HCL OneTest™ Performance.

2. Click the New Test From Recording icon , and then click SAP Test.

Note: You can also click File > New > Test From Recording, and then select SAP Test. You can then

select the encryption level, if required and click Next to open the Select Location page.

Result

The Select Location page is displayed.

3. Create a test by performing the following steps:

a. Select a project, and then select a folder from the project.

b. Enter a name for the test.

c. Optionally, click Recording encryption level, and then select the encryption level when you are

recording any sensitive data.

4. Click Next.

Result

The Select Client Application page is displayed.

5. Select SAP Batch Input Recording or SAPGUI For Windows, and then click Next.

Chapter 7. Test Author Guide

Note: When you record an SAP test by using the SAP GUI For Windows method and if you use many

split points, then steps might not split properly after the SAP recording is complete. The split action

during the SAP recording comes into effect only after an SAP request by changing the state of the

current screen. After the test generation is complete, you must use the Split Test action for splitting

the steps to different SAP tests from the test editor.

6. On the SAP Connection page, select how to connect to the SAP server:

Choose from:

◦ In most cases, select SAP Logon; then enter the description normally used by SAP Logon to identify

the server in SAP system name.

◦ If your environment does not support SAP Logon, select Server information. In Application server,

enter the host name or IP address of the server. Then specify a value for System number. Enter

information in Other options, if required. Refer to your SAP documentation for details about the other

SAP Logon options.

◦ If your environment uses gateways or routers to connect to the SAP server, select Connection by

string. Click Edit to specify a valid connection string. Refer to your SAP documentation for details

about connection strings.

◦ If you have an SAP shortcut file to automate the connection, select SAP shortcut file. Click Browse to

specify the location of the file.

◦ You also have the option of logging on to SAP through the HTTP SAP Portal. See Recording a session

with HTTP SAP Portal on page 371 for more information.

◦ If you want to skip the logon process and start the recording from a specific screen in the middle

of a session, start a session with the SAP Logon program, go to the screen, and then select Record

from a running session started with SAP Logon. The recorded test will not contain any connection

information. This option can be useful for creating split tests. See Recording a specific SAP

transaction from a running SAP session on page 368.

7. If this is the first time you record a SAP performance test, read the privacy warning, and select Accept.

8. Click Finish to start recording.

Result

In some cases, you might see a warning that a script is opening a connection to SAP.

9. Log on to SAP and complete the transactions to test.

For security reasons, the password cannot be recorded by the SAP test recorder. Instead, it is requested at the

end of the recording session.

10. In the SAP GUI window, perform the tasks for testing.

You can use the Recorder Test Annotations toolbar to add comments, record synchronizations, or take screen

captures during the recording.

367

HCL OneTest Performance

368

◦ To add a comment to the recorded test, click the Insert comment icon .

◦ To add a screen capture to the recorded test, click the Capture screen icon . Screen and window

captures make your tests easier to read and help you visualize the recorded test. You can change the

settings for screen captures and add a comment to the image.

◦ To manually add a test synchronization to the recording, click the Insert synchronization icon .

◦ To insert a split point into the recorded test, click the Split point icon button. Split points

allow. With split points, you can generate multiple tests from a single recording, that you can replay

in a different order with a schedule. See Splitting a test during recording on page 443 for more

information about splitting a test.

11. When you have completed the transactions to be tested, stop the recorder by closing the SAP GUI or by

clicking Stop in the Recorder Control view.

12. In the Enter Password window, enter the password for the account that was used for recording.

This step is required because SAP GUI does not allow direct recording of the password.

Result

A Test Generation Progress window is displayed while the test is being generated.

The following message is displayed on the progress window: Test Generation completed.

What to do next

You can now play back the test and check the performance test results.

Before playing back a test, in SAP Connection Details editor, click Test Connection to test the connection to the SAP

GUI server.

Related information

Recording SAP tests on page 362

Recording sensitive session data on page 442

Running long run mode SAP GUI test on page 784

Recording a specific SAP transaction from a running SAP session
You can record certain SAP transactions from a running SAP GUI session to create a test that contains some specific

part of an SAP session. When you record a session, the recording wizard automatically records the transaction that

you specified.

Before you begin

• Working SAP GUI client that you can connect to an SAP server.

Chapter 7. Test Author Guide

• Verified that SAP GUI scripting is enabled on the SAP server and the SAP GUI client. See Configuring SAP for

performance testing on page 158.

• You must have logged in to the SAP GUI session with your valid credentials.

About this task

When you record a specific SAP transaction session from a running SAP session, you can skip the SAP logon process

and start the recording from a specific screen in the middle of a running SAP session by using the Record from a

running session started with SAP Logon option.

Important: Do not log off the SAP GUI session until the test run completes.

After the SAP recording is complete, you can run the SAP test and verify the transaction details.

You must install the latest version of SAP GUI when you want to record an SAP test in HCL OneTest™ Performance.

For more information about supported SAP GUI versions, see System Requirements on page 27.

1. Open HCL OneTest™ Performance.

2. Click the New Test From Recording icon , and then click SAP Test.

Result

The Select Location page is displayed.

3. Create a test by performing the following steps:

a. Select a project, and then select a folder from the project.

b. Enter a name for the test.

c. Optionally, click Recording encryption level, and then select the encryption level when you are

recording any sensitive data.

4. Click Next.

Result

The Select Client Application page is displayed.

5. Click SAPGUI For Windows, and then select Next.

Result

The SAP Connection page is displayed.

6. Select Record from a running session started with SAP Logon.

7. Click Finish.

Result

The SAP Easy Access on the SAP GUI window is displayed.

8. Record an SAP transaction (For example, SM04), and then click Exit to close the transaction session.

369

HCL OneTest Performance

370

Important: Do not log off the SAP GUI session until the test run completes.

9. Open HCL OneTest™ Performance and then click Stop Recording Session.

Result

A Test Generation Progress window is displayed while the test is being generated.

The following message is displayed on the progress window: Test Generation completed.

Results

You have successfully recorded a specific transaction session from a running SAP session.

What to do next

You can click Open Test to open the test in HCL OneTest™ Performance. With the SAP GUI session open, you can then

verify the SAP transaction details and run the test in HCL OneTest™ Performance.

Important: Do not log off the SAP GUI session until the test run completes.

After the test run completes, you can then verify the transaction details from the following pages:

• SAP Summary page in the SAP Statistical Report

• Test Log page

Note: When you use the Record from a running session started with SAP Logon option to record an SAP test,

and then if you add that SAP test to a schedule (VU schedule or Rate schedule), the schedule run fails and the

following error message is displayed in the Test Log page or Execution Event Console log page: Connection

with the existing SAP GUI session or shortcut is not allowed during schedule execution

You can then place the transaction session in between an SAP session that has a logon and logoff session.

You can then save and run the schedule.

Related reference

SAP Performance report on page 1033

Inserting a new recording into a SAP test
You can insert a new recording into a test. Use this feature to add or replace a part of a recorded session.

Before you begin

Chapter 7. Test Author Guide

Inserting a new sequence into a test requires that the SAP session reaches the same state as is expected at the point

where the new sequence is inserted. To do this, the SAP test recorder automatically replays the existing scenario up

to the insertion point before starting the new recording.

You must install the latest version of SAP GUI when you want to record an SAP test in HCL OneTest™ Performance.

For more information about supported SAP GUI versions, see System Requirements on page 27.

1. In the test editor, select the element before which you want to insert the new recording.

It is easier to manage the new test sequence when the insertion point is at the transaction level of the test.

2. Click Insert, and then New recording.

Result

The test starts replaying up to the selected insertion point.

3. When the New Recording window is displayed, perform the sequence of actions that you want to add to the

existing test.

4. When you have finished, in the New Recording window, click Stop to stop the recording.

Result

A progress window opens while the test is generated. On completion, the Recorder Control view displays the

message, Test generation completed, and the test is updated with the new contents.

5. After the test has been updated in the Test Navigator, check that the new sequence was properly inserted into

the test, and then click File > Save to save the test or File > Revert to cancel the inserted recording.

Recording a session with HTTP SAP Portal
To measure the performance of a SAP Portal from a web interface, you can record a SAP test by using the HTTP SAP

Portal option.

Before you begin

Verify that the HCL OneTest™ Performance Agent is running on the local computer and that SAP GUI Scripting is

enabled on the SAP server and the SAP GUI client.

Tests are stored in performance test projects. If your workspace does not contain a project, the test creation wizard

creates one with a name that you can change. To store a test in a specific project, verify that the project exists before

you record the test.

Ensure that the session that you are recording is reproducible. For example, if you create items in SAP and do not

delete them, then they will already exist when the test is run, which might cause the test to fail.

Certain websites require appropriate certificates to use a proxy recorder to record the site. The recorder certificate is

required to record all the secured sites. The client certificate is different and it serves as an additional layer of security

that is required by the web server to authenticate the client/browser. If some applications use Secure Sockets Layer

(SSL), the proxy recorder can cause authentication problems because SSL relays traffic between the client and the

server. Depending on the authentication method in place, the client might require the proxy recorder to authenticate

itself as the server, and the server might require the proxy recorder to authenticate as the client. If the client program

requires an authenticated server, you must either have access to the server certificate keystore and provide it to

371

HCL OneTest Performance

372

the proxy recorder or configure the client to accept the default certificate from the proxy recorder instead of the

certificate from the actual server.

To record an application that requires a client-side certificate, import the client certificate to the HCL OneTest™

Performance project. To import the certificate, click File > Import > General > File System, and navigate to the folder

that contains the certificates and click Finish.

To record an SAP Portal session:

1. Click File > New > Test from Recording; then select SAP Recording, and click Next.

2. Select the project and folder where you want to create the batch input test, type a name for the new test, and

then click Next.

Chapter 7. Test Author Guide

3. On the SAP session page of the wizard, select Record a session initiated from HTTP SAP Portal.

4. Select a web browser and click Next.

5. Depending on your selection, take one of the following steps. On the Recorder Settings page, depending on

the browser that you selected, specify these details:

◦ To record HTTP or SOCKS traffic through a proxy, click Record traffic with the proxy recorder. To

record low-level network traffic for applications where a proxy cannot be used, click Record traffic with

the socket recorder. Use this option when you are not using Mozilla Firefox or Microsoft™ Internet

Explorer.

Note: When using proxy recording, you can filter out HTTP or HTTPS requests to a specific

endpoints so that any requests to those endpoints are not recorded. See Proxy recording

preferences on page 1400.

◦ If HCL OneTest™ UI is installed and shell-shared with HCL OneTest™ Performance, for the Web UI tests,

you can use the Record user actions option to record the functional aspects of the application in the

same HTTP recording session. Thus, both the functional and performance aspects of the application

are recorded.

◦ If the server requires client SSL authentication, provide the client certificate for the proxy recorder to be

authenticated by the server as though the proxy recorder were the client. Select The server requires a

specific client certificate.

To provide single certificate keystore, specify the file name and password of the server certificate

keystore. If multiple certificates are required, click Multiple certificates, and click Add to specify a

certificate keystore file name and password for each host name and port.

◦ To record a secured site using Internet Explorer or Google Chrome on Windows, install the recorder

certificate by selecting Register the recorder root certificate authority. Before the recording starts, the

browser prompts you to install the certificate. After the recording is stopped, the browser prompts you

to uninstall the certificate. To avoid multiple prompts for each recording, select Keep the recorder root

certificate authority after recording.

Note: If you already had the certificate from a version prior to 9.2.1 and then install the latest

version of the product, you might have to install the certificate again.

This option is not available when you record by using the Firefox or Safari browser.

To record a secured site on these browsers, manually import the certificate in the

browser from the default location C:\Program Files\HCL\HCLIMShared\plugins

\com.ibm.rational.test.lt.recorder.proxy_version\SSLCertificate. For information

about how to import the certificates, see the browser's documentation.

◦ If you selected Mozilla Firefox, you can choose to use a temporary Firefox profile. This option starts

the Firefox browser without any bookmarks, plug-ins, or tool bars that might be associated with your

usual profile. Select Use an alternate Firefox profile, and then select Use a temporary Firefox profile.

373

HCL OneTest Performance

374

◦ If you clicked Record traffic with the proxy recorder, click Advanced to specify whether to use an

HTTP or SOCKS proxy recorder to review and edit network connection settings that the browser uses

or to specify advanced SSL authentication settings. If you clicked Record traffic with the socket

recorder, specify the advanced SSL authentication settings.

6. To start the recording, click Finish.

Result

The web browser opens.

7. In the web browser, type the URL of an SAP Portal web interface.

8. On the web page, follow the logon procedure, and click the link to open the SAP GUI session. The web browser

downloads an SAP Portal shortcut file and opens the SAP GUI application with the session information that

the shortcut file contains.

9. In the SAP GUI client, complete the transactions to record for the test.

10. When you complete the transactions to be tested, stop the recording by closing the SAP GUI and the web

browser.

Results

At the end of the recording session, one test is created that will contain both HTTP and SAP GUI pages. To run an

SAP Portal test, click Run Test.

Recording a SAP batch input test
You can record certain SAP transaction sessions from SAP GUI with SAP batch input tests recording wizard. When

you record a session, the recording wizard automatically starts a SAP GUI interface and records the transaction

that you specified. After you finish the recording, the wizard generates a SAP batch input test in HCL OneTest™

Performance.

Before you begin

You must have added the SAP Java™ Connector (JCo) libraries on your computer. See Configuring an environment for

batch input tests on page 159.

About this task

During a SAP batch input test recording, the SAP batch input test produces only a batch input transaction that you

specified. The SAP batch input tests do not contain any verification point and do not produce any performance result.

You must install the latest version of SAP GUI when you want to record an SAP test in HCL OneTest™ Performance.

For more information about supported SAP GUI versions, see System Requirements on page 27.

1. Open HCL OneTest™ Performance.

2. Click the New Test From Recording icon , and then click SAP Test.

Chapter 7. Test Author Guide

Note: You can also click File > New > Test From Recording, and then select SAP Test. You can then

select the encryption level, if required and click Next to open the Select Location page.

Result

The Select Location page is displayed.

3. Create a test by performing the following steps:

a. Select a project, and then select a folder from the project.

b. Enter a name for the test.

c. Optionally, click Recording encryption level, and then select the encryption level when you are

recording any sensitive data.

4. Click Next.

Result

The Select Client Application page is displayed.

5. Select SAP Batch Input Recording, and then click Next.

6. Perform the following steps to enter the connection and transaction details provided by the SAP

administrator.

a. Enter the following details in the Connection section.

Fields Action

Client Enter the SAP client details.

User Enter the user name associated with the SAP server.

Password Enter the password associated with the user name.

Language Select your language.

Host Enter the SAP host server details.

System Number Enter the system number that corresponds to an SAP in­

stance with the SAP server.

Note: For HCL OneTest™ Performance, the default

value is 00.

b. Click Test Connections to verify if the connection is established.

Result

The SAP Batch Connection dialog is displayed.

A confirmation message is displayed that states that the connection is successful.

375

HCL OneTest Performance

376

c. Click OK.

d. Enter the SAP transaction code in the Code field.

e. Click Finish.

Result

The SAP GUI window is displayed.

7. Record the batch input transaction, and then click Save.

Result

The SAP GUI Transaction page is displayed.

The page displays the details of the transaction that you recorded.

8. Click Exit.

Note: To exit the SAP GUI Transaction page, you must click Exit. If you exit the page by using any other

methods, an exception error is displayed.

9. Select the directory where you want to export the recording on your local computer, and then click Generate.

Result

The SAPGUI Security dialog is displayed.

The dialog displays the file path for the recording and the directory where the recording is being stored.

10. Click Allow to confirm.

Result

A Test Generation Progress window is displayed while the test is being generated.

The following message is displayed on the progress window: Test Generation completed.

Results

The SAP batch input transaction is recorded.

What to do next

You can click Open Test to open the test in HCL OneTest™ Performance test editor. You can then verify the SAP

transaction details and save the test. Later, you can run the test and view the transaction details from the following

pages:

• Test Log page

• SAP Performance report page (SAP Performance Report > Batch Input Transaction)

• Functional Test report page

Chapter 7. Test Author Guide

Related reference

SAP Performance report on page 1033

Related information

Configuring an environment for batch input tests on page 159

Changing SAP test generation preferences
You can change how SAP performance tests are generated, such as how tests processes verification points, data

correlation, and pages.

1. Click Window > Preferences.

2. Expand Test > Performance Test Generation, and then click SAP Test Generation.

3. Select the preference to change.

Automatic Generation

The following settings specify test elements that are automatically generated after recording the

test.

Use connection by string

When enabled, tests are generated with the connection by string launch method

instead of using the SAP Logon program. This option is enabled by default.

Verification points for SAP screen titles

When enabled, this option generates verification points on screen titles with each

SAP screen. This option is disabled by default.

Verification points for SAP request response time threshold

When enabled, this option generates verification points on the response time of the

SAP server. If the server response time is above the specified threshold, the test

produces a failed verification point. This option is disabled by default.

Calculate threshold from recorded (%)

This specifies the default response time threshold that is calculated when response time

verification points are generated. The threshold value is calculated as a percentage of the actual

response time that was measured during the recording. By default, the response time threshold

is generated with a value of 120% of the recorded response time.

Default request timeout [ms]

Specify a timeout value for a request to ping the server. When the request is timed out, it no

longer pings the server for that request.

GUI on execution

During test execution, it might not be desirable to display the SAP GUI. Hiding the SAP GUI

improves the performance of the virtual users. This setting specifies the default behavior when

377

HCL OneTest Performance

378

the test is generated. However, you can change this setting in the test editor by selecting the

SAP test element.

Hide GUI during execution

When selected, all instances of the SAP GUI are hidden. In some cases, modal

dialog boxes from the SAP GUI can flash briefly on the screen. This is the default

setting.

Note: If you run a test in the hidden mode and the test fails due to modal

dialog boxes or pop-up windows in transactions, you must add the

RPT_VMARGS property with value set to rptSapForceShowNone=true in the

Location property.

Show GUI for only one virtual user

When selected, the SAP GUI is displayed only for the first virtual user. All other

instances of the SAP GUI are hidden. This allows you to monitor the execution.

Show GUI for all virtual users

When selected, the SAP GUI is displayed for all virtual users.

Password prompt

Specifies behavior of the password request.

Prompt me for password when generating test

When enabled, a password is requested at the end of the recording session. If

disabled, the password is recorded with an empty string. The recorder cannot

record the password during the test. Therefore, if this option is disabled, the test

uses an empty string for the password.

4. Click Apply after changing a setting.

Recording Citrix tests
When you record a test, the test creation wizard records your interactions with the Citrix server, generates a test from

the recording, and opens the test for editing. You can record a test session in the Citrix XenApp client.

Chapter 7. Test Author Guide

Citrix performance testing guidelines
Citrix performance tests use synchronization mechanisms to replay the tests on multiple Citrix sessions

independently of server performance.

These guidelines will help you record a reliable test and avoid synchronization timeouts during test execution.

Ensure that you have a working Citrix client environment and that you can connect to a Citrix server. .

The most efficient recording method is to specify a published application or a server in the recording wizard. It is

preferable to specify your login credentials in the wizard instead of recording the login sequence as part of the test.

Ensure that the session that you are recording will be reproducible. To record tests that can be reliably replayed,

follow these guidelines:

• If you save a file during a recorded session, when replaying the tests, some applications might produce a

warning for an existing filename. If the warning was not in the recorded session, this might break the test and

cause synchronization timeouts.

• Do not use the mouse wheel to scroll when recording Citrix tests. Mouse wheel events are not recorded and

will result in synchronization timeouts on execution.

• Anticipate and make provisions for avoidable warnings and unrecorded windows and dialog boxes. For

example, if you save a file while recording, the test will try to save the same file during the replay. Although

the file might not exist during the initial recording, it does after recording. Attempting to save will generate an

overwrite warning and cause synchronization timeouts.

• Disable or turn off warnings, windows, and dialog boxes that are displayed during the first start of an

application. These items will be captured during the recording, but they might not be displayed in subsequent

application starts. This will cause synchronization timeouts.

• Use dedicated test user accounts for performance tests. Ensure that the user accounts have minimal

potential to cause problems if unpredictable mouse events occur outside of the application window after a

synchronization timeout.

• Set up the test accounts and applications to minimize unpredictable window events, such as new mail

notifications, automatic updates, or daily tips. Disable extensible menus and hover text tooltips when possible.

• Ensure that all computers used for recording and playback of Citrix tests use the same international settings

and character sets. Different locales can cause some characters to be unavailable or keyboard inputs to be

incompatible.

• To launch applications from the desktop, use the Quick Launch bar, desktop shortcuts, or select Start > Run

and enter the name of the application. Do not launch applications or open files from locations that are likely to

change, such as Favorites, Recent Files, or other dynamic menus.

• When using cascading menus like the Start menu, always wait for a moment for the submenu to display. After

the recording, when editing the test, look at the mouse sequences that were generated to ensure that they

follow the correct path to display the submenu.

• When recording your tests, before interacting with a window or dialog, click the element to ensure that it gets

focus, then provide input.

379

HCL OneTest Performance

380

• When an application is busy, for example when the mouse cursor is a sand glass, avoid using the mouse or

attempting to perform other operations.

• After recording a session, some applications require user input before quitting (for example, to record any

changes). This can cause discrepancies between the state of the application at the end of a session and at

the beginning of a test execution. To avoid problems, at the end of a recording session, close all applications

manually and cleanly end the session by clicking Stop or Close on the Citrix Recorder window, rather than

from the Start > Log Off menu.

• To ensure long duration schedules are run without issues such as test log transfer not completed, Citrix Online

Plugin or Receiver crashes when virtual users are ramping down, and Citrix processes remaining, you must

select the Uninterruptible iteration check box for the loops. When you use this option, you must increase the

value of Time limit for a user to respond to a stop request in the User Load tab of the schedule as per the

requirement.

After recording, and while you edit the test, it is important to perform regular verification runs in order to validate

the test with a single user. After each run, open the test log to make sure that the test synchronizes correctly. If

necessary, change the synchronization level from Mandatory to Conditional or Conditional to Optional on window

events or image synchronizations that produce unnecessary timeouts. Only deploy the test on virtual users or run it in

a schedule when the test is robust enough to run flawlessly with a single user.

HCL OneTest™ Performance Agent requirements

When you install HCL OneTest™ Performance Agent, by default, the agent starts as a service. To use the agent for

Citrix recording, it must run as a process. For Windows, open Windows Services. If the MajordomoService is set to

Automatic start up, set it to Manual and then stop the MajordomoService. You can now open the Majordomo folder

from the HCL OneTest™ Performance Agent installation path and double-click Majordomo.bat.

Optical Character Recognition

You can use optical character recognition when performing image synchronizations. This allows the test to

synchronize itself by recognizing the contents of a screen area. In some cases, the software can fail to correctly

recognize portions of text or letters.

To improve results of the optical character recognition, follow these guidelines:

• Use preferably high contrast screen areas where the text is clearly separated from the background.

• Select text areas with a homogeneous font size, style, and color. Mixing text styles will produce poor results.

• Try changing the OCR language, OCR zoom factor, OCR brightness, OCR recognition rate or settings in the

image synchronization test element. You can change the default values for these settings in the Preferences >

Test > Test Generation > Citrix Test Generation window.

• If the test produces image synchronization timeouts because of inconsistent text recognition, open the Image

Synchronization view in the test log, and add click the Add value button to add the unrecognized text as an

alternate synchronization value.

• In some cases, it might be more efficient to use the bitmap hash code method for image synchronization,

instead of optical character recognition.

Chapter 7. Test Author Guide

When recording image synchronizations with optical character recognition, accuracy of the recognized text is not

essential. It is only important that the recognized text is consistent each time the test is executed for the test to

synchronize. For example, if a portion of text is displayed as "Hello" on the screen, and recognized as "He110" in the

recorded test, you should not attempt to correct the value in the image synchronization test element, because the

same result should occur when the test is executed for the test to synchronize.

Long duration test runs

When running long duration test schedules that exceed 24 hours, use the long run mode to reduces resource

consumption with the Citrix client. This mode increases the reliability of long duration test runs by running the tests in

multiple process. You must enable this option for each user group in the schedule.

In long run mode, a new process is created for each virtual tester.

Related information

Running long duration Citrix tests on page 785

Recording a Citrix test
You can record a Citrix session with the Citrix XenApp or XenDesktop. When you record, the recording wizard

automatically starts the client and configures it for recording. When you have finished recording the session, the

wizard generates a Citrix performance test.

Before you begin

• Install Citrix Receiver and connect to Citrix XenDesktop.

• If you use Microsoft Windows 2008, you must have Citrix Receiver 3.3 or 4.1. To run a citrix test on Microsoft

Windows 2008, you must install Citrix Receiver 3.3 or 4.1 and .Net Framework 3.5. To install the .Net

Framework 3.5 feature, open Control Panel and click Turn Windows features on or off. In the Add Roles and

Features Wizard, on the Features page, select the .Net Framework 3.5 Features check box, and click Next. To

specify the source files path of the feature, click Specify an alternate source path, specify the path, click OK,

and click Install.

• The behavior of the recording wizard is controlled by recorder preferences. To inspect the current settings,

click Window > Preferences, expand Test, and click Citrix Recording. This procedure assumes that default

settings are used.

• After you record a test or when you run a test on Windows 2008, the Citrix Image Synchronization tab does

not display the captured screenshot for Actual Image. The bitmap hash code also varies for the actual and

expected screenshot. You must use the bitmap hash code of the Expected Image for Actual Image. To do

that, in the Citrix Image Synchronization, click the Add Value icon and click Yes in the confirmation message.

The Image Synchronization entry is added to the test. Save the test.

• By default, HCL OneTest™ Performance Agent starts as a service. If you run a Citrix test on an agent, you must

start HCL OneTest™ Performance Agent as a process.

381

HCL OneTest Performance

382

To start an agent as a process:

1. Open the Windows Services window.

2. For the Majordomo service, change the Startup Type to Manual and then change the Status to Stop.

3. From the agent's installation directory, open the Majordomo folder, and double-click the

Majordomo.exe file.

About this task

You can record and generate a test by using REST APIs. The API documentation to record a test is located at

Install_directory\HCL\HCLIMShared\plugins\com.ibm.rational.test.lt.server.recorder.jar.

The API documentation to generate a test after the recording completes is located at C:\Program Files

\HCL\HCLIMShared\plugins\com.ibm.rational.test.lt.server.testgen.jar.

To record a Citrix test:

1. In the Performance Test perspective, click the New Test from Recording toolbar button or click File > New

> Test from Recording.

2. In the New Test from Recording wizard, select Create a test from a new recording, select Citrix Test, and click

Next.

If you are recording sensitive data, you can select a Recording encryption level.

3. On the Select Location page, select the project and folder locations to contain the new test, type a name for

the test, and click Next.

If necessary, click the Create Parent Folder push button to create a new project or folder.

4. On the Citrix Connection Settings page, specify how to connect to the Citrix server. Complete one of these

tasks:

Choose from:

◦ If your Citrix administrator has provided you with an ICA file, complete these steps:

a. Select With ICA file to use its settings to connect to the server.

b. Click Browse to locate and select the ICA file on your computer.

c. Click Next to continue.

Choose from:

◦ If you want to manually specify the Citrix server to use for the session, complete these steps:

a. Select On server to connect directly to the server.

b. Specify the name or IP address of the server or click Browse to locate a server or server farm on your

local network.

c. Optional: If you need to change the Citrix farm parameters, click Farm Settings.

d. To record a Windows™ desktop session, leave Initial program blank.

Choose from:

◦ If your Citrix administrator has published applications on the network, complete these steps:

a. Select On published application, and click Browse to choose the application from the list of published

applications on the server or server farm.

b. Optional: If you need to change the Citrix farm parameters, click Farm Settings.

Chapter 7. Test Author Guide

In this case, the server farm performs the load balancing and selects the server automatically.

5. To make the logon sequence part of the session parameters, select Logon with user-specified credentials,

type your credentials, and specify the domain name. If this option is disabled, your credentials are recorded as

part of the logon sequence during the recording.

Note: If you use the With ICA file option and the ICA file contains the LogonTicket command, even

after you type your credentials as part of this step, you must type your credentials again on the

Citrix server to start a Citrix test. To avoid entering credentials twice, you can manually remove the

LogonTicket command from the ICA file.

6. Click Next to continue.

7. On the Citrix Session Preferences page, you can provide a description for the test, change the video settings,

encryption mode, and advanced options for the Citrix XenApp client. Click Next to continue.

Note: Because Citrix performance tests are based on low-level interactions with the server, including

mouse and window coordinates, the Citrix desktop must be large enough to support the application

under test. You must particularly avoid scrolling windows during the recording.

8. If this is the first time you record a Citrix performance test, read the Privacy Warning, and then select Accept

to proceed.

9. To start the recording, click Finish.

Result

The Citrix Recording window opens, displaying the Citrix XenApp session and a set of recorder controls.

10. In the Citrix Recording window, complete the tasks to test.

You can use the recorder controls in the toolbar to add comments, record synchronizations, or take screen

captures during the recording.

a. To add a user comment to the recorded test, click the Insert user comment icon .

Because Citrix tests can be long and difficult to read, meaningful comments can help you locate

important elements.

b. To add an image synchronization to the recorded test, click the Insert image synchronization icon

, select an area of the screen to be used for synchronization, and then click the Insert image

synchronization icon again.

Image synchronizations enable the test to keep track of the contents of a screen area during the

replay instead of focusing only on window events. You can use these screen captures to maintain

synchronization of a test in applications that do not create or modify many windows, but update

the contents of a window regularly. The contents of an image can be evaluated either as a bitmap

hashcode or as a text value obtained by optical character recognition.

c. To insert a response time measurement during the recording, click the Insert response time icon to

create a start for the measurement in the recording, and click the icon again to create a stop.

383

HCL OneTest Performance

384

d. To add a screen or window capture to the recorded test, click the Capture screen icon or Capture

window icon .

Screen and window captures make your tests easier to read and help you visualize the recorded test.

To change the settings for screen and window captures, click the Screen capture preferences icon

, and then select one of these options:

No automatic screen capture

Select this option if you do not want the test recorder to record screen captures

automatically. When this option is selected, you can still record screen captures

manually. This option is selected by default.

Capture screen every

Select this option to automatically record a periodic screen capture and specify the time

between captures.

Capture screen on window creation

Select this option to record a screen capture each time a window object is created in

Citrix.

Exclude tooltips

When Capture screen on window creation is selected, enable this option to prevent

creating a screen capture each time a tooltip event is displayed during the recording. If

this option is disabled, screen captures are recorded when tooltips are displayed.

To preview all screen captures, window captures, and image synchronizations on the side of the Citrix

Recording window, click the Screen capture preview button icon .

11. When you have completed the sequence of actions to be tested, close the session, and stop the recorder by

clicking the Stop recording icon .

Result

A progress window opens while the test is generated. On completion, the Recorder Control view displays the

Test generation completed message, the Test Navigator lists your test, and the test opens in the test editor.

Related information

Creating tests on page

Recording sensitive session data on page 442

Recording a test with the Citrix Web Interface
You can record a Citrix session from the Citrix Web Interface to use the load balancing feature provided by this

connection method.When you have finished recording the session, the wizard generates a Citrix test.

../topics/tcreatetest.html
../topics/tcreatetest.html
../topics/tcreatetest.html
../topics/tcreatetest.html

Chapter 7. Test Author Guide

Before you begin

• By default, HCL OneTest™ Performance Agent starts as a service. If you run a Citrix test on an agent, you must

start HCL OneTest™ Performance Agent as a process.

To start an agent as a process:

1. Open the Windows Services window.

2. For the Majordomo service, change the Startup Type to Manual and then change the Status to Stop.

3. From the agent's installation directory, open the Majordomo folder, and double-click the

Majordomo.exe file.

Certain websites require appropriate certificates to use a proxy recorder to record the site. The recorder certificate is

required to record all the secured sites. The client certificate is different and it serves as an additional layer of security

that is required by the web server to authenticate the client/browser. If some applications use Secure Sockets Layer

(SSL), the proxy recorder can cause authentication problems because SSL relays traffic between the client and the

server. Depending on the authentication method in place, the client might require the proxy recorder to authenticate

itself as the server, and the server might require the proxy recorder to authenticate as the client. If the client program

requires an authenticated server, you must either have access to the server certificate keystore and provide it to

the proxy recorder or configure the client to accept the default certificate from the proxy recorder instead of the

certificate from the actual server.

To record an application that requires a client-side certificate, import the client certificate to the HCL OneTest™

Performance project. To import the certificate, click File > Import > General > File System, and navigate to the folder

that contains the certificates and click Finish.

385

HCL OneTest Performance

386

1. Click File > New > Test from Recording, and then select Citrix Recording, and click Next.

2. On the Select Location for Test Suite page, select a project.

3. In Test file name, type a name for the Citrix test, and then click Next.

4. On the Citrix Connection Settings page, select Through a Web interface, and click Next.

5. On the Select Client Applications page, select the web browser to use and click Next.

6. Depending on your selection, take one of the following steps. On the Recorder Settings page, depending on

the browser that you selected, specify these details:

Chapter 7. Test Author Guide

◦ To record HTTP or SOCKS traffic through a proxy, click Record traffic with the proxy recorder. To

record low-level network traffic for applications where a proxy cannot be used, click Record traffic with

the socket recorder. Use this option when you are not using Mozilla Firefox or Microsoft™ Internet

Explorer.

Note: When using proxy recording, you can filter out HTTP or HTTPS requests to a specific

endpoints so that any requests to those endpoints are not recorded. See Proxy recording

preferences on page 1400.

◦ If HCL OneTest™ UI is installed and shell-shared with HCL OneTest™ Performance, for the Web UI tests,

you can use the Record user actions option to record the functional aspects of the application in the

same HTTP recording session. Thus, both the functional and performance aspects of the application

are recorded.

◦ If the server requires client SSL authentication, provide the client certificate for the proxy recorder to be

authenticated by the server as though the proxy recorder were the client. Select The server requires a

specific client certificate.

To provide single certificate keystore, specify the file name and password of the server certificate

keystore. If multiple certificates are required, click Multiple certificates, and click Add to specify a

certificate keystore file name and password for each host name and port.

◦ To record a secured site using Internet Explorer or Google Chrome on Windows, install the recorder

certificate by selecting Register the recorder root certificate authority. Before the recording starts, the

browser prompts you to install the certificate. After the recording is stopped, the browser prompts you

to uninstall the certificate. To avoid multiple prompts for each recording, select Keep the recorder root

certificate authority after recording.

Note: If you already had the certificate from a version prior to 9.2.1 and then install the latest

version of the product, you might have to install the certificate again.

This option is not available when you record by using the Firefox or Safari browser.

To record a secured site on these browsers, manually import the certificate in the

browser from the default location C:\Program Files\HCL\HCLIMShared\plugins

\com.ibm.rational.test.lt.recorder.proxy_version\SSLCertificate. For information

about how to import the certificates, see the browser's documentation.

◦ If you selected Mozilla Firefox, you can choose to use a temporary Firefox profile. This option starts

the Firefox browser without any bookmarks, plug-ins, or tool bars that might be associated with your

usual profile. Select Use an alternate Firefox profile, and then select Use a temporary Firefox profile.

◦ If you clicked Record traffic with the proxy recorder, click Advanced to specify whether to use an

HTTP or SOCKS proxy recorder to review and edit network connection settings that the browser uses

or to specify advanced SSL authentication settings. If you clicked Record traffic with the socket

recorder, specify the advanced SSL authentication settings.

7. To start the recording, click Finish.

387

HCL OneTest Performance

388

Result

The web browser opens.

8. In the web browser, specify the Citrix Web Interface server URL

9. On the Citrix Web Interface page, type your user name, password, and domain to open a session. The Citrix

Web Interface displays the list of applications published on a server and available to the user. Select the

application to test.

The Citrix Recording window opens. You can use the recorder controls in the toolbar to add comments, record

synchronizations, or take screen captures during the recording.

a. To add a user comment to the recorded test, click the Insert user comment icon .

Because Citrix tests can be long and difficult to read, meaningful comments can help you locate

important elements.

b. To add an image synchronization to the recorded test, click the Insert image synchronization icon

, select an area of the screen that will be used for synchronization, and then click the Insert image

synchronization icon again.

Image synchronizations enable the test to keep track of the contents of a screen area during the

replay instead of focusing only on window events. You can use image synchronizations to maintain

synchronization of a test in applications that do not create or modify many windows, but update

the contents of a window regularly. The contents of an image can be evaluated either as a bitmap

hashcode or as a text value obtained by optical character recognition. You can also add verification

points to image synchronizations in the test editor.

c. To add a screen capture to the recorded test, click the Capture screen icon .

Screen captures make your tests easier to read and help you visualize the recorded test.

d. To change the settings for screen captures, click Screen capture preferences icon , and then select

one of these options:

No automatic screen capture

Select this option if you do not want the test recorder to record screen captures

automatically. When this option is selected, you can still record screen captures

manually. This option is selected by default.

Capture screen every

Select this option to automatically record a periodic screen capture and specify the time

between captures.

Chapter 7. Test Author Guide

Capture screen on window creation

Select this option to record a screen capture each time a window object is created in

Citrix.

Exclude tooltips

When Capture screen on window creation is selected, enable this option to prevent

creating a screen capture each time a tooltip event is displayed during the recording. If

this option is disabled, screen captures are recorded when tooltips are displayed.

10. When you complete the sequence of actions to be tested, close the session and stop the recorder by clicking

the Stop recording () or close the Citrix application and web browser..

Result

A progress window opens while the test is generated. On completion, the Recorder Control view displays the

Test generation completed message, the Test Navigator lists your test, and the test opens in the test editor.

Results

The Test editor displays both the HTTP pages and the Citrix user actions.

What to do next

To run the Citrix Web Interface test, click Run Test in the Test editor.

Inserting a new recording into a Citrix test
You can insert a new recording into a Citrix test. Use this feature to add or replace a part of a recorded session.

Before you begin

Inserting a new sequence into a test requires that the Citrix session reaches the same state as is expected at the

point where the new sequence is inserted. For example, if your new sequence must interact with a particular window

that was created earlier in the test, you must advance to the point where that window is in the expected state before

the recording can start. To do this, the Citrix test recorder can either automatically replay the existing scenario up to

the insertion point, or you can manually advance the session to the expected state.

When inserting a new sequence into a test, it is important that the context of user actions is preserved to ensure that

the test synchronizes properly during the replay. The resulting test will probably require manual editing to make sure

that test can replay smoothly.

Note: Because Citrix tests contain low level user input and synchronizations, minor changes can prevent the

test from working. When editing these tests, you must ensure that they are functionally identical.

To insert a recording into a test:

1. In the test editor, select the element before which you want to insert the new recording.

It is easier to manage the new test sequence when the insertion point is at the window event level of the test.

389

HCL OneTest Performance

390

2. Click Insert, and then Record scenario.

3. In the Update Recording window, specify how you want the session to reach the state expected at the

insertion point, and then click OK.

Choose from:

◦ Select Automatically replay the scenario to replay the test up to the insertion point. With this option,

the test replays and stops when it reaches the insertion point. If the replay fails to synchronize, you will

be asked to manually bring the session to the expected insertion point state.

◦ Select Manually advance to the expected state to manually put the Citrix session into the state that

will be expected at the insertion point.

4. After the Citrix session is in the expected state and you are ready to start the new recording, engage the

Enable/Disable recording button in the toolbar.

If you chose the automatic replay option, the recording is enabled automatically.

5. Perform the sequence of actions that you want to add to the existing test. When you have finished, click the

Enable/Disable recording again to stop the recording.

Note: You can restart the recording several times. However, you must be sure that the Citrix session

resumes from the same state that it was in when it was stopped. If actions are missing from the

recorded sequence the test is unlikely to synchronize correctly during the replay.

6. When you have completed the sequence of actions to be inserted into the test, close the session and stop the

recorder by clicking Stop recording .

Result

A progress window opens while the test is generated. On completion, the Recorder Control view displays the

message Test generation completed, the Test Navigator lists your test, and the test opens in the test editor.

7. After the test has been updated in the Test Navigator, check that the new sequence was properly inserted into

the test before saving the new test.

Check that the context of the Citrix session is compatible with the user actions at the beginning and at the end

of the of the inserted sequence. If the results of the insertion were not what you expected, you can revert to

the previously saved version of the test by clicking File > Revert or try to correct any problems manually.

Changing Citrix recording preferences
You can change the behavior of the recorder by changing the preference settings.

1. Click Window > Preferences.

2. Expand Test > Recording, and then click Citrix Recording.

3. Select the setting you want to change.

Screen capture options

These settings specify how the test recorder performs screen captures of the Citrix desktop

during recording.

Chapter 7. Test Author Guide

No automatic screen capture

Select this option if you do not want the test recorder to record screen captures

automatically. When this option is selected, you can still record screen captures

manually. This option is selected by default.

Capture screen every

Select this option to automatically record a periodic screen capture and specify the

time between captures.

Capture screen on window creation

Select this option to record a screen capture each time a window object is created

in Citrix.

Exclude tooltips

When Capture screen on window creation is selected, enable this option to

prevent creating a screen capture each time a tooltip event is displayed during the

recording. If this option is disabled, screen captures are recorded when tooltips are

displayed.

Capture screen on image synchronization

Select this option to ensure that a screen capture is recorded each time an image

synchronization is recorded.

4. After changing a setting, click Apply.

Changing Citrix test generation preferences
You can change how Citrix events are converted into performance test elements.

1. Click Window > Preferences.

2. Expand Test > Test Generation, and then click Citrix Test Generation.

3. Select the setting you want to change.

Recording Optimization Options

These settings specify how mouse and window events are interpreted in the generated test.

Window activate recording

Specify whether to record no, last, or all window-activate actions when a sequence

of similar actions is detected.

◦ none disables recording of window-activate events.

◦ last records only the last of an uninterrupted sequence of window events.

This eliminates redundant window-activate actions from the recording.

◦ all records all events of the sequence.

391

HCL OneTest Performance

392

Mouse move recording

This setting specifies which mouse move events are recorded. Relevant is the

default setting.

◦ All records an uninterrupted sequence of mouse movements in the

generated test.

◦ Relevant records only the mouse movements that generate a response,

such as hover text.

◦ First and last records a simplified mouse-move action.

Automatic Generation

These settings specify test elements that are automatically generated after recording the test.

Verification point on every window title change

When enabled, this option generates a window title verification point whenever the

caption changes. If this option is disabled, the window title is verified only when a

new window is created. This option is disabled by default.

Response times for main windows

When enabled, this option generates response time measurements for all recorded

main window-create events. A main window is a window that is created at the top

level of the test contents tree and contains user actions. The generated response

time measurement starts with the keyboard or mouse action that immediately

precedes the window-create event. This option is enabled by default.

Window event synchronization criteria

Use this option to disable window recognition on the window position, size, or title. Disable any

of these options if the test produces synchronization timeouts because a window changes its

position, size, or title between or during test runs.

Default Test Execution Delays

This page specifies the default keyboard and mouse delays for the test client. Do not change

these settings unless you are experiencing problems with events that do not run correctly.

Synchronization timeout delay

This is the delay after which a timeout error is produced when a window event or

an image synchronization element is not recognized during test runs. The default

value is 15000 milliseconds. The specified delay is for synchronizations that are

set as conditional. Mandatory synchronizations use a delay of three times the

specified delay. Optional synchronizations use a fixed delay of 2 seconds.

Chapter 7. Test Author Guide

Note: In the generated test, the Override synchronization timeout for a

particular window creation event will be enabled with the corresponding

recorded time only if it is greater than what is specified in this preference.

If think time is under x ms, then replace with

If the delay between two events is above the specified limit, then it is handled as a

think time. If the delay is below the limit, then the test generator replaces the think

time with one of the following delays. The think time is the delay spent by a virtual

user before performing an action. The default limit is 20000 milliseconds.

Note: In the generated test, the think time for a particular user action will

be enabled only when the recorded think time is greater than the value

specified for this preference.

Delay between mouse down and mouse up in a click

This is the default delay used to generate a mouse click action using a mouse

down and a mouse up action. The default value is 20 milliseconds.

Delay between two mouse clicks in a double click

This is the default delay used to generate a double-click action using two mouse

clicks. The default value is 50 milliseconds.

Delay between key down and a key up in a stroke

This is the default delay used to generate a key-stroke action using a key-down and

a key-up action. The default value is 20 milliseconds.

Delay between two keyboard strokes in a text input

This is the default delay used to generate a text input action using multiple key

stroke actions. The default value is 50 milliseconds.

Default OCR settings

This page specifies the settings for text extraction by optical character recognition in image

synchronizations. You might need to experiment with various settings to obtain good results.

These settings define the default behavior for new image synchronizations. You can change the

behavior for individual image synchronization elements by changing the OCR settings in the test

editor.

OCR default language

This is the language of the dictionary that is used to recognize words for the

application that you are testing. This setting defines the subset of languages that

will be available in image synchronization elements in the test editor.

393

HCL OneTest Performance

394

OCR default zoom factor

This is the enlargement factor that is applied to the image. The default setting is

medium for standard font sizes. Increase the zoom factor to improve recognition

of smaller fonts or decrease for larger fonts.

OCR default brightness

This is the brightness level from 0 to 250 that is applied to the image. The default

setting is 70 for text with normal contrast. Increase the brightness setting to

improve recognition of darker images or decrease for lighter images.

OCR default recognition rate

This is the rate of recognition that is required for the extracted string to match

the expected text. Decrease the recognition rate to tolerate a proportion of

mismatching characters in the recognized text. The default is 100%, which means

that an exact match is required.

4. After changing a setting, click Apply.

Recording service tests
When you record a test, the test creation wizard records your interactions with the service, generates a test from the

recording, and opens the test for editing. You can record a test session by invoking service calls with the generic

service client or by using an existing client. You can also create a service test manually or from a Business Process

Execution Language (BPEL) model.

Service testing guidelines
Before you can test a service, you must set up your test environment and incorporate these guidelines in order to

produce reliable tests.

Test prerequisites

Before creating service tests, you might need to perform some initial tasks. These tasks depend on the transport and

security protocols that are implemented by the web service under test.

• HTTP: This transport method is supported by default; no additional configuration is required.

• SSL: The workspace must contain the certificate keystore (JKS) files that are required for single or double

authentication.

• Java™ Message Service (JMS): The Web Services Description Language (WSDL) syntax must be compatible

with the requirements of the product. Refer to Verifying WSDL syntax compliance for JMS services on

page 396.

Chapter 7. Test Author Guide

Test generation

When the test is generated, message call envelopes are created according to the XML schema definition (XSD).

During this process, mandatory fields are created, and default choices are assumed. You can modify these elements

in the test editor.

Note: During recording, you might supply authentication details which are not relevant for the actual

application under test. To exclude such actions from the generated test, in Window > Preferences > Test >

Test editor > Service test ensure that the Display the 'Skip if Empty' column in XML tree viewer check box is

selected. To select the empty XML elements that you want to skip, in the test editor, select the elements in the

Skip if empty column.

Encryption and security

The Java™ Runtime Environment (JRE) that the product uses must support the level of encryption required by the

digital certificate that you select. For example, you cannot use a digital certificate that requires 256-bit encryption with

a JRE that supports only 128-bit encryption. By default, the product is configured with restricted or limited strength

ciphers. To use less restricted encryption algorithms, you must download and apply the unlimited jurisdiction policy

files (local_policy.jar and US_export_policy.jar).

For Oracle Java, download the files from this site:http://www.oracle.com/technetwork/java/javase/downloads/jce8-

download-2133166.html.

Before installing these policy files, back up the existing policy files in case you want to restore the original files later.

Then overwrite the files in /jre/lib/security/ directory with the unlimited jurisdiction policy files.

SSL Authentication

Service tests support simple or double SSL authentication mechanisms:

• Simple authentication (server authentication): In this case, the test client needs to determine whether the

service can be trusted. You do not need to setup a key store. If you select the Always trust option, you do not

need to provide a server certificat key store.

If you want to really authenticate the service, you can configure an certificate trust store, which contains the

certificates of trusted services. In this case, the test will expect to receive a valid certificate.

• Double authentication (client and server authentication): In this case, the service needs to authenticate the

test client according to its root authority. You must provide the client certificate keystore that needs to be

produced to authenticate the test as a certified client.

When recording a service test through a proxy, the recording proxy sits between the service and the client. In this

case, you must configure the SSL settings of the recording proxy to authenticate itself as the actual service to the

client (for simple authentication), and as the client to the service (for double authentication). This means that you

must supply the recording proxy with the adequate certificates.

395

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

HCL OneTest Performance

396

When using stub services, you can also configure the SSL settings of the stub service to authenticate itself as the

actual server. This means that you must supply the service stub with the adequate certificate.

NTLM and Kerberos Authentication

The product supports Microsoft™ NT LAN Manager (NTLMv1 and NTLMv2) and Kerberos authentication. The

authentication information is recorded as part of the test during the recording phase.

To enable NTLMv2 support, you must add a third party library to the workbench. For more information, see

Configuring the workbench for NTLMv2 authentication on page 671.

Digital certificates

You can test services with digital certificates for both SSL and SOAP security protocol. Digital certificates must be

contained in Java™ Key Store (JKS) keystore resources that are accessible in the workspace. When dealing with

keystore files, you must set the password required to access the keys both in the security editor and the test editor.

For SOAP security you might have to provide an explicit name for the key and provide a password to access the

private keys in the keystore.

Limitations

Arrays are not supported.

Because of a lack of specification, attachments are not supported with the Java™ Message Service (JMS) transport.

The envelope is directly sent using UTF-8 encoding.

All security algorithms are not always available for every Java™ Runtime Environment (JRE) implementation. If a

particular security implementation is not available, add the required libraries to the class path of the JRE that this

product uses.

The generic service tester displays the envelope as reflected in the XML document. However, security algorithms

consider the envelope as a binary. Therefore, you must set up the SOAP security configuration so that incoming and

outgoing messages are correctly encrypted but remain decrypted inside the test.

Performance

Virtual user performance depends on the implementation of the container application. For an HTTP transport, the

product has been tested with a maximum of 900 concurrent virtual users under Windows™ and 600 under Linux™.

For JMS, the maximum is 100 concurrent virtual users, although this number can vary due to the asynchronous

implementation of JMS. Beyond these values, connection errors might occur and the transaction rate will decrease.

Verifying WSDL syntax compliance for JMS services
Various Java™ Message Service (JMS) providers vary in the syntax used for describing services. Before testing JMS

services, you must ensure that Web Services Description Language (WSDL) files comply with the requirements of the

tool.

Chapter 7. Test Author Guide

1. In the project explorer or test explorer, locate and open the WSDL file for the JMS service that you want to test.

If necessary, you can import a WSDL file from the file system by clicking File > Import > File System.

2. Ensure that the following criteria are met in the syntax of the WSDL file that you use.

◦ Namespace: xmlns:jms="http://schemas.xmlsoap.org/wsdl/jms/"

◦ SOAP bindings are set to: transport="http://schemas.xmlsoap.org/soap/jms"

◦ JMS transports are defined either as a URL or as jms:address element

3. If the WSDL file is not compliant, edit the file so that it meets the criteria, and then save and close the file.

Exemple

For example, a JMS defined as a URL looks like this:

<soap:address location="jms:/queue?jndiConnectionFactoryName=UIL2ConnectionFactory;
 jndiDestinationName=queue/testQueue;
 initialContextFactory=org.jnp.interfaces.NamingContextFactory;
 jndiProviderURL=9.143.104.47"/>

A JMS defined as an address looks like this:

<jms:address destinationStyle="queue"
 jndiConnectionFactoryName="myQCF"
 jndiDestinationName="myQ"
 initialContextFactory="com.ibm.NamingFactory"
 jndiProviderURL="iiop://something:900/">
</jms:address>

Configuring the environment for SOAP security
SOAP security profiles require access to the libraries that implement encryption, signature, and other security

algorithms that transform the XML messages before sending and after receiving them. You must prepare an

environment with these libraries to use SOAP security, set the class path of the Java™ Runtime Environment (JRE)

that Eclipse uses, and set the class path of the virtual machine that the Agent Controller uses.

Before you begin

Before you can test SOAP-based services that use security algorithms, you must obtain a set of security libraries and

configuration files for SOAP.

BouncyCastle (http://www.bouncycastle.org) is a provider of such security libraries. Use of these security libraries is

optional for the Rational® test product.

1. Copy the library files into the jre/lib/ext of the JRE installation.

By default, this is the following directory: C:\Program Files\HCL\HCLOneTest\jdk\jre\lib\ext

2. Add the following VM argument either to the Eclipse launch command line or to the eclipse.ini file:

-vmargs-Dosgi.parentClassloader=ext

The eclipse.ini file is located in the same directory as the eclipse.exe launcher binary that is used to

run the product.

397

http://www.bouncycastle.org

HCL OneTest Performance

398

What to do next

To configure a remote computer that uses only the Agent Controller and does not require access to the workbench,

perform only step 1 and restart the Agent Controller service.

After configuring the environment, you must import a Web Services Description Language (WSDL) file and use the

WSDL security editor to set up a security profile for the WSDL file.

Recording a service test with the generic service client
You can record a service test by invoking service requests with the generic service client. After you have sent the

requests and received the responses from the service, select the results in the History section of the generic service

client to generate a test. If you do not have access to a dedicated client for the service calls, the generic service client

is the easiest way to generate the calls and to record a test.

Before you begin

If you are testing a SOAP-based web service, ensure that you have access to a valid Web Services Description

Language (WSDL) file. The wizard can import WSDL files from the workspace, the file system, a remote repository,

or from a URL. Ensure that the WSDL files use the correct syntax for the test environment. The generic service client

might not work with some WSDL files.

If you are using Secure Sockets Layer (SSL) authentication, ensure that you have the required key files in your

workspace.

If you are using SOAP security, ensure that you have configured the environment with the correct libraries and

configuration files. See Configuring the environment for SOAP security on page 397 for more information.

If the response in a recording or test generation is in XML and the size of the XML data is higher than the value

set in the XML Message Received maximum length field, the response is automatically converted to text to avoid

any memory issues. To convert the full response to text, the tool checks the value set for Text Message Received

maximum length. If the value is lesser than the size of the response, the response is truncated. If you want the

response to be in XML when the response size exceeds the value set in XML Message Received maximum length,

you can manually increase the value for both recording and test generation. To change the value for recording, click

Window > Preferences > Generic Service Client > Message Edition. To change the value for test generation, click

Window > Preferences > Test > Test Generation > Service Test Generation.

About this task

You can record and generate a test by using REST APIs. The API documentation to record a test is located at

Install_directory\HCL\HCLIMShared\plugins\com.ibm.rational.test.lt.server.recorder.jar.

The API documentation to generate a test after the recording completes is located at C:\Program Files

\HCL\HCLIMShared\plugins\com.ibm.rational.test.lt.server.testgen.jar.

To use a WS-SecurityPolicy that is included in a WSDL or an external XML file, you need to configure the security

policy as described in Using a security policy on page . If a recording contains the Security Assertion Markup

../topics/tgscwspolicy.html
../topics/tgscwspolicy.html
../topics/tgscwspolicy.html
../topics/tgscwspolicy.html

Chapter 7. Test Author Guide

Language (SAML) token, the WS Security policy file must rely on the Service Token Service (STS) that produces the

token. This token can then be used for encryption or other purposes as was designed.

Sample policy file that relies on SAML token:

<sp:SupportingTokens xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policy>
<sp:IssuedToken
 sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient">
<sp:Issuer>
<Address
 xmlns="http://www.w3.org/2005/08/addressing">http://9.143.105.204:8080/axis2/services/STS</Address>
</sp:Issuer>
<sp:RequestSecurityTokenTemplate>
<t:TokenType
 xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust">http://
docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0</t:TokenType>
<t:KeyType
 xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust">http://
schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey</t:KeyType>
<t:KeySize xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust">256</t:KeySize>
</sp:RequestSecurityTokenTemplate>
<wsp:Policy>
<sp:RequireInternalReference/>
</wsp:Policy>
</sp:IssuedToken>
</wsp:Policy>
</sp:SupportingTokens>

1. In the Performance Test perspective, click the New Test from Recording toolbar button or click File > New

> Test from Recording.

2. In the New Test from Recording wizard, click Create a test from a new recording, select Service Test, and

click Next.

If you are recording sensitive data, you can select a Recording encryption level.

3. On the Select Location page, select the project and folder where you want to create the test, type a name for

the test, and click Next.

If necessary, click Create Parent Folder to create a project or folder

4. On the Select Location page, select Generic Service Client.

This option uses the generic service client if you do not have access to a dedicated client for the service calls.

See Recording a service test through a client program on page 400 for information about using other client

programs to record the test.

5. Click Next. If this is the first time you are recording a web service test, read the Privacy Warning, select Accept,

and click Finish to proceed.

Result

The generic service client opens.

6. If your service uses a transport or authentication protocol that requires overriding the default settings, then

click the Transport tab and create an HTTP, Java™ Message Service (JMS), IBM® WebSphere® MQ, IBM®

WebSphere® Java MQ, or Java MQ transport.

7. Click the Requests tab.

399

HCL OneTest Performance

400

Choose from:

◦ Right-click WSDLs and select one of the options to get the WSDL file.

◦ Right-click WADLs and select one of the options to get the WADL file.

◦ Right-click Endpoints and select one of the options to send the request.

See Sending service requests with the generic service client on page 667 for more information about using

the generic service client.

8. After creating the call, click the Edit Data arrow to change the details of the call if necessary.

9. Click the Invoke arrow to invoke the service call.

Result

If the call was successful, the response is displayed under the View Response arrow.

10. To record a test with multiple calls, repeat steps 6 through 9.

11. When you have finished sending service requests, stop the recorder. You can do this by closing the generic

service client or by clicking the Stop push button in the Recorder Control view.

If you changed the network settings of the client program as described in step 8, you can revert to the default

settings before closing the program.

Result

The Generate Service Test wizard opens.

12. Click Finish.

What to do next

Alternatively, you can use the generic service client to create, edit, and invoke the calls without recording. Successful

responses are added to the Request History list. You can select calls in the Request History list, and click the

Generate Test Suite icon .

Related information

Sending service requests with the generic service client on page 667

Recording a service test through a client program on page 400

Recording sensitive session data on page 442

Sending service requests with WSDL files on page 680

Recording a service test through a client program
You can record tests for SOAP-based, XML, plain text, or binary services with any client program that uses the HTTP

protocol. To record the test, the recorder intercepts the service calls and message returns between the client and the

service. You can choose between an HTTP or SOCKS proxy recorder or a low-level socket recorder, depending on the

capabilities of the client program.

Before you begin

The following recorders are available for recording traffic from an application:

Chapter 7. Test Author Guide

• SOCKS proxy recorder: Use this recorder when no proxy connections are required.

• HTTP proxy recorder: Use this recorder when a proxy connections is required to connect to the network or

when the client program does not support SOCKS.

• Socket recorder: Use this recorder for low-level network traffic when the client does not support proxies.

This recorder does not support SSL authentication or encryption of any kind and is only available if the HCL

OneTest™ Performance Extension for Socket Protocols is installed.

Regardless of the recorder that you use, the client program must use the HTTP network protocol. For recording Java™

Message Service (JMS) or IBM® WebSphere® MQ tests, see Recording a service test with the generic service client

on page 398.

If you are using Secure Sockets Layer (SSL), the HTTP or SOCKS proxy can cause authentication problems because

the proxy recorder relays traffic between the client and the server. Depending on the authentication method in place,

the client might require that the proxy recorder authenticate itself as the server and the server might require that

the proxy recorder authenticate as the client. If the client program requires an authenticated server, you must either

have access to the server certificate keystore and provide it to the proxy recorder or configure the client to accept the

default certificate from the proxy recorder instead of the certificate from the actual server.

If you are testing a SOAP-based web service, ensure that you have access to a valid Web Services Description

Language (WSDL) file. The wizard can import WSDL files from the workspace, the file system, a remote repository,

or from a URL. Ensure that the WSDL files use the correct syntax for the test environment. The generic service client

might not work with some WSDL files.

If you are using SOAP security, ensure that you have configured the environment with the correct libraries and

configuration files. See Configuring the environment for SOAP security on page 397 for more information.

To record a service test with a client program:

1. In the Performance Test perspective, click the New Test from Recording toolbar button or click File > New

> Test from Recording.

2. In the New Test from Recording wizard, click Create a test from a new recording, select Service Test, and

click Next.

If you are recording sensitive data, you can select a Recording encryption level.

3. On the Select Location page, select the project and folder to create the test in, type a name for the test, and

click Next.

If necessary, click Create Parent Folder to create a project or folder

4. On the Select Client Application page, select the type of client program to use.

The program type defines the recorder that can be used. The following client program types are supported for

recording a service test:

Choose from:

401

HCL OneTest Performance

402

◦ Managed Application: This option starts a specified program and uses a proxy or socket recorder to

record the traffic.

On the Managed Application Options page, click Browse to specify the Program path. If necessary,

specify the Working directory, and type the command line Arguments that the program requires.

If the program requires user input from a command-line interface, select Open console for user input.

◦ Choose a web browser to record traffic that is sent and received with the web browser.

◦ Unmanaged Application: This option enables you to record traffic from one or multiple client programs

that use a proxy. You must manually start the client programs and the proxy recorder records all traffic

that is sent and received through the specified network port.

◦ Generic Service Client: This option uses the generic service client if you do not have access to a

dedicated client for the service calls. See Recording a service test with the generic service client on

page 398 for using the generic service client to record service tests.

5. On the Recorder Settings page, depending on the type of client program you selected, specify these details:

a. If you selected Managed Application, specify the recording method.

▪ Select Record traffic with the proxy recorder to record HTTP or SOCKS traffic through a proxy.

▪ Select Record traffic with the socket recorder to record low-level network traffic for

applications where a proxy cannot be used. This recorder does not support SSL authentication

or encryption.

Note: When using proxy recording, you can filter out HTTP or HTTPS requests to a specific

endpoints so that any requests to those endpoints are not recorded. See Proxy recording

preferences on page 1400

b. If you selected Record traffic with the proxy recorder, specify whether the proxy recorder uses HTTP

or SOCKS. Select HTTP if a connection to proxy is required or if your application does not support

SOCKS.

c. If you are using SSL authentication, specify the authentication settings for the proxy recorder.

During the recording, the proxy recorder is between the client and the server.

▪ If the server requires client SSL authentication, provide the client certificate for the proxy

recorder to be authenticated by the server as though the proxy recorder were the client. Select

The server requires a specific client certificate.

To provide single certificate keystore, specify the file name and password of the server

certificate keystore. If multiple certificates are required, click Multiple certificates, and click

Add to specify a certificate keystore file name and password for each host name and port.

▪ To record a secured site using Internet Explorer or Google Chrome on Windows, install the

recorder certificate by selecting Register the recorder root certificate authority. Before the

recording starts, the browser prompts you to install the certificate. After the recording is

Chapter 7. Test Author Guide

stopped, the browser prompts you to uninstall the certificate. To avoid multiple prompts for

each recording, select Keep the recorder root certificate authority after recording.

Note: If you already had the certificate from a version prior to 9.2.1 and then install the

latest version of the product, you might have to install the certificate again.

This option is not available when you record by using the Firefox or Safari browser.

To record a secured site on these browsers, manually import the certificate in the

browser from the default location C:\Program Files\HCL\HCLIMShared\plugins

\com.ibm.rational.test.lt.recorder.proxy_version\SSLCertificate. For

information about how to import the certificates, see the browser's documentation.

▪ If the client requires server authentication, you must provide the server certificate keystore

for the proxy recorder to be authenticated by the client as though the proxy recorder were

the server. Select The client requires a specific server certificate, and click Add to specify a

certificate keystore filename and password for each hostname and port. If you do not select

this option, the proxy recorder provides its own default certificate.

Note: The keystore must contain the private certificate of the server.

d. If you selected to use the HTTP proxy recorder, specify how to connect to the network. If necessary,

specify an HTTP or SOCKS proxy or point to a proxy auto-configuration (PAC) file.

Use this option if you are connecting to the service through a corporate proxy or firewall.

6. Click Next. If this is the first time you record a service test and you did not select a web browser for the client

application, read the Privacy Warning, select Accept, and click Finish to proceed.

7. If you selected a proxy recorder with a managed or unmanaged application, change the network settings of

the client program to use the proxy recorder.

The method for changing the network settings depends on the client program. However, you must be able to

set the following proxy settings in the program:

◦ SOCKS or HTTP proxy: Specify the protocol that you selected for the proxy recorder in the wizard.

◦ Host name: Set to localhost.

◦ Port: Specify the port number that you selected for the proxy recorder in the wizard.

To avoid unexpected results, revert to the previous proxy settings before you stop the recording.

8. Use the client program to perform the actions to test.

You can use the Recorder Test Annotations toolbar to add comments, record synchronizations, or take screen

captures during the recording.

◦ To add a comment to the recorded test, click the Insert comment icon .

◦ To add a screen capture to the recorded test, click the Capture screen icon . Screen and window

captures make your tests easier to read and help you visualize the recorded test. You can change the

settings for screen captures and add a comment to the image.

◦ To manually add a synchronization point to the recording, click the Insert synchronization icon .

403

HCL OneTest Performance

404

◦ To manually add a transaction folder to the recording, click the Start Transaction icon and Stop

Transaction icon to start and stop the transaction.

◦ To insert a split point into the recorded test, click the Split point icon . With split points, you can

generate multiple tests from a single recording, which you can replay in a different order with a

schedule.

9. After you finish the user tasks in the client program, stop the recorder. You can do this by closing the client

program or by clicking the button Stop in the Recorder Control view.

If you changed the network settings of the client program as described in step 8, you can revert to the default

settings before closing the program.

Result

The Generate Service Test wizard opens.

10. If you inserted a split point during the recording, on the Destination page, specify the location for the split test

or merge the split recordings together.

See Splitting a test during recording on page 443 for more information about splitting tests.

11. On the Service Test Generation Options page, if you are testing a SOAP-based web service, specify a Web

Services Description Language (WSDL) file from the workspace or click Add to import a WSDL or to link to a

remote WSDL file and click Next.

12. Select the domains to include in the test and click Finish. The domains that are not selected are not included

in the test. You can add them back by generating the test again from the recording.

To include all the domains for all of the recordings, click the Select all and remember my decision check box.

To enable the filter again for HTTP tests, click Window > Preferences > Test > Test Generation > HTTP Test

Generation, and, for Service tests, click Service Test Generation and then click the Enable domain review

before test generation check box.

13. Click Finish.

Results

A progress window opens while the test is generated. On completion, the Recorder Control view displays the Test

generation completed message, the test navigator lists your test, and the test opens in the test editor.

Related information

Recording a service test with the generic service client on page 398

Sending service requests with the generic service client on page 667

Recording sensitive session data on page 442

Sending service requests with WSDL files on page 680

Preparing to record a test for the HTTP/2 service
To test a web service that is based on the HTTP/2 protocol, record a test by using the SOA extension of HCL

OneTest™ Performance. Before recording the HTTP/2 service, follow the procedure in this topic to configure your

computer.

Chapter 7. Test Author Guide

About this task

This configuration is required because this feature is released as Beta and is intended for use in a non-production

environment only.

Use Mozilla Firefox or Google Chrome when recording on servers that support the HTTP/2 service.

1. Download the following Application Layer Protocol Negotiation (ALPN) boot jar file https://

mvnrepository.com/artifact/org.mortbay.jetty.alpn/alpn-boot/8.1.8.v20160420

2. Create or rename the productInstallDir\jdk folder to ..\jdk.ibm. You can rename the folder back to

jdk later to test with the IBM JDK.

3. Download Oracle Java 1.8.0u92 from http://www.oracle.com/technetwork/java/javase/downloads/

jdk8-downloads-2133151.html. You can then either extract the compressed file or install Java at

productInstallDir\jdk.

4. Copy the ALPN jar file to productInstallDir\majordomo\lib.

5. From productInstallDir, open eclipse.ini and add the following flags:

-Xbootclasspath/p:<productInstallDir>\majordomo\lib\alpn-boot-8.1.8.v20160420.jar

Note: If there are any other flags starting with -X, delete those flags.

6. Configure HCL OneTest™ Performance Agent to use Oracle Java.

a. Stop the Majordomo process.

On Windows systems, run the following command:
cd “c:\program files\hcl\hclonetest\majordomo�?

ngastop

On Linux systems, run the following command: cd /opt/HCL/HCLOneTest/Majordomo ./MDStop.sh

b. Set the environment variable RPT_JAVA to the Oracle Java binary or executable file.

On Windows systems, run the following command: set RPT_JAVA=c:\program files\java

\jdk1.8.0_92\bin\java.exe

On Linux systems, run the following command: export RPT_JAVA=/root/jdk1.8.0_92/jre/bin/java

c. Start the Majordomo process.

7. When you record a service by using a web browser against an HTTP/2 client, the HTTP/2 traffic is

automatically captured. But, to record an HTTP/2 service by using the GSC client, in the HTTP transport

protocol configuration dialog, you must select the Activate check box.

405

https://mvnrepository.com/artifact/org.mortbay.jetty.alpn/alpn-boot/8.1.8.v20160420
https://mvnrepository.com/artifact/org.mortbay.jetty.alpn/alpn-boot/8.1.8.v20160420
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

HCL OneTest Performance

406

8. Specify the following configuration options for HTTP/2:

HTTP/2

Note: Testing HTTP/2 service is in the Beta mode. For more information, see Preparing

to record a HTTP/2 service on page 404.

To test a service that uses the HTTP/2 protocol, select the Activate check box. This check box

is automatically selected when you record a service by using a browser. If you use the Generic

Service Client component to create a HTTP/2 test, you have to manually select the check box.

Chapter 7. Test Author Guide

HTTP/2 client connection timeout

Specifies the time limit for the HTTP/2 client to connect to the HTTP/2 server.

Time out for the HTTP/2 session creations

Specifies the time limit to create the HTTP/2 session. This time starts after the connection is

established.

Enable HTTP/2 Push

The Push functionality of HTTP/2 automatically identifies and passes the related objects or

requests to the client when a request is sent to the server. Clear the check box to not use the

functionality.

Initial session window

Specifies the buffer size on the sessions.

Initial stream window

Specifies the window size for buffer on each stream after the connection is established.

HTTP/2 Client Input Buffer Size

Specifies the buffer size that is used to read the network traffic.

Maximum Quantity of Messages that can be queued

Specifies the maximum number of messages that can be queued for the HTTP/2 client on a

thread.

Maximum Quantity of HTTP/2 thread pool

Specifies the maximum number of thread pools that will be used by the HTTP/2 client to

distribute the workload.

Minimum Quantity of HTTP/2 thread pool

Specifies the minimum number of thread pools that will be used by the HTTP/2 client to

distribute the workload.

HTTP/2 client bytebuffer pool size

Specifies the buffer size to receive the unciphered values.

Server Name Indication

Note: Not applicable for HTTP/2.

Clear this check box if you do not want to connect to the host computer by using the Server

Name Indication protocol. If the host computer is already configured with Server Name

Indication protocol, you should keep this check box selected.

407

HCL OneTest Performance

408

Use HTTP Keep Alive

Select this option to keep the HTTP connection open after the request. This option is not

available if you are using IBM® Rational® AppScan®.

Use SSL

Select this option to use an SSL configuration. Click Configure SSL to create an SSL

configuration or select an existing configuration.

Platform Authentication

In this section, specify the type of authentication that is required to access the service. Select

None if no authentication is required.

Basic HTTP authentication

Select this option to specify the User Name and Password that are used for basic

authentication.

NTLM authentication

Note: Not applicable for HTTP/2.

Select this option to use the Microsoft™ NT LAN Manager (NTLM) authentication

protocol. NTLM uses challenge-response authentication. This view lists what

is negotiated (supported by the client and requested of the server) and what is

authenticated (the client reply to the challenge from the server).

Kerberos authentication

Note: Not applicable for HTTP/2.

Select this option to use the Kerberos authentication protocol between the client

and server.

Connect through proxy server

Note: Not applicable for HTTP/2.

If the HTTP connection needs to go through a proxy server or a corporate firewall, specify the

Address and Port of the proxy server. If the proxy requires authentication, select either Basic

proxy authentication or NTLM proxy authentication.

Proxy authentication

In this section, specify the type of authentication that is required to access the

proxy. Select None if no authentication is required.

Chapter 7. Test Author Guide

Basic proxy authentication

Select this option to specify the User Name and Password that are

used for basic authentication.

NTLM proxy authentication

Select this option to use the Microsoft™ NT LAN Manager

(NTLM) authentication protocol. NTLM uses challenge-response

authentication. This view lists what is negotiated (supported by the

client and requested of the server) and what is authenticated (the

client reply to the challenge from the server).

Custom class

Note: Not applicable for HTTP/2.

Select this option if the communication protocol requires complex, low-level processing with

a custom Java™ code to transform incoming or outgoing messages. Click Browse to select

a Java™ class that uses the corresponding API. This option is not available in IBM® Security

AppScan®.

9. Click OK. You have configured the workbench to test an HTTP/2 service.

What to do next

You can now record a regular SOA test for the HTTP/2 service. After the recording, in the Version field of request

details, the requests are marked with HTTP/2 indicating that the HTTP/2 traffic is captured. If the test playback fails,

check if all the steps are correctly followed.

Optimizing HTTP/2 tests for SOA
HTTP/2 tests require a lot of CPU and memory resources. When you apply load on HTTP/2 tests using computers

that do not have enough resources, the tests might fail. You might want to configure or tune the computers that run

HTTP/2 tests.

CPU Usage

Ensure that the HTTP/2 tests get adequate CPU resources to run. If there are other processes running on the

computer and they are not required, you can stop them. For example, the CPU usage statistic in the image below

indicates that the other processes (shown in red) on the computer are consuming a lot of resources whereas the test

execution process (shown in green) is getting less resources.

409

HCL OneTest Performance

410

Memory usage and garbage collection

Ensure that enough memory is available for the test execution. You can configure the garbage collector and adjust the

memory heap size.

Garbage Collection - Consider using the following values so that the garbage collector does not allocate large

amount of temporary memory. By doing so, you are tuning the number of threads allocated for the garbage collector

according to the capability of the computer. You apply the values for each location asset of the schedule.

RPT_VMARGS

-XX:MaxGCPauseMillis=250 -XX:ParallelGCThreads=6 -XX:ConcGCThreads=3 -XX:GCTimeRatio=19

Memory heap - Consider using the following values for memory heap:

RPT_VMARGS

-Xms11024m

RPT_DEFAULT_MEMORY

22412m

Chapter 7. Test Author Guide

Thread Usage

Ensure that you start load testing with fewer virtual testers and gradually ramp up the workload. This practice helps

in observing the changes in the workload, that is, the number of calls per second. In the graph, when the number of

calls per second is flat, it indicates that the maximum capacity of the computer is reached and there is no need to add

more virtual testers.

Platform tuning

Configure the TCP/Socket capabilities of your system by following these two links:

https://www.eclipse.org/jetty/documentation/jetty-9/index.html#high-load

https://www.microsoft.com/en-us/download/details.aspx?id=56495

Creating a service test from a BPEL model
You can use Business Process Execution Language (BPEL) resources from your workspace to automatically generate

a set of service tests that corresponds to the paths that are run in a synchronous BPEL model.

Before you begin

Tests are stored in test projects. If your workspace does not contain a test project, the test creation wizard creates

one, enabling you to change its name. To store a test in a specific project, verify that the project exists before you

record the test.

If you are using Secure Sockets Layer (SSL) authentication, ensure that you have any required key files in your

workspace.

If you are using Java™ Message Service (JMS), ensure that you have configured the environment with the correct

libraries and configuration files. Ensure that the WSDL files use the correct syntax for the test environment.

If you are using SOAP security, ensure that you have configured the environment with the correct libraries and

configuration files.

BPEL models must be synchronous. Asynchronous BPEL models are not supported.

411

https://www.eclipse.org/jetty/documentation/jetty-9/index.html#high-load
https://www.microsoft.com/en-us/download/details.aspx?id=56495

HCL OneTest Performance

412

Ensure that the BPEL models refer to the WSDL files in a valid import statement, for example:

<bpws:import importType="http://www.w3.org/2001/XMLSchema" location="foo.wsdl" namespace="http://foo"/>

Relative file paths, such as: "../../foo.wsdl" are not supported.

Ensure that you have one or more valid Web Services Description Language (WSDL) files and the associated BPEL

model in your workspace. Only the calls to services with a valid web service binding are taken into account. For

example, if the BPEL model was produced in IBM® Websphere Integration Developer, then services must be exported

with the following web service bindings:

<bpws:invoke name="myOperation" operation="myOperation" partnerLink="IServicePartner"
 portType="ns3:IService" wpc:displayName="myOperation" wpc:id="20">

Only BPEL invoke activities are considered for generating tests. Any BPEL receive and reply activities are ignored.

Websphere Integration Developer does not generate the required soapAction attributes for the soap operations in the

WSDL files. Please edit the generated WSDL files, as follows for every operation: <soap:operation soapAction=""/>.

To create a service test from a BPEL model:

1. In the Performance Test perspective, click File > New > Other > Test > Test Assets > BPEL to Web service test,

and then click Next.

2. Click Browse to select a BPEL file from the workspace, and click Next.

3. On the Web service test generation page, change the number of paths by specifying how activities and

sequences from the flow of the BPEL model are processed. Each path generates one test.

a. In the Flow section, select how any concurrent sequences that are found in the flow will be converted

into paths.

b. In the Switch section, select whether to test otherwise activities from the flow.

c. In the Throw section, select how throw activities from the flow are converted into paths.

d. In the Invoke section, select whether to test inline catches inside invoke activities from the flow.

e. Select Enable data correlation in generated tests to automatically create references in the generated

test elements by propagating variables to the parameters of the web service call and message return

elements.

4. Click Recount paths to update the number of paths to test, and click Next.

One test is generated for each path.

5. For WSDL operations that are bound to multiple ports, you must select one port that is to be used for the test.

Under each test that will be generated, the Operations list displays the WSDL operations that are bound to

multiple ports.

If no WSDL operations are displayed under the tests, this means that all operations are bound to a single port.

In this case, skip step 6.

a. In the Operations list, expand a test and select a WSDL operation that requires binding.

b. In the Binding ports list, select the port that you want to use to test the selected WSDL operation.

c. Repeat steps a and b for each WSDL operation that requires binding.

Chapter 7. Test Author Guide

6. Click Next.

7. Select a location and a name for the new folder where the tests generated from the BPEL model are created,

and click Finish.

Results

A new folder is created in the Test Navigator containing the generated service tests. These tests are generated with

default message content and must be edited with valid input values.

Creating a service test manually
You can create a service test without recording by simply adding the test elements as required and manually editing

the test element details in the test editor.

Before you begin

Tests are stored in test projects, which are test projects that include a source folder. You must create a test project

before creating a test.

Ensure that you have a valid WSDL file in your workspace. Ensure that the WSDL files use the proper syntax for the

test environment.

If you are using Secure Sockets Layer (SSL) authentication, ensure that you have any required key files in your

workspace.

If you are using SOAP security, ensure that you have configured the environment with the proper libraries and

configuration files.

1. In the workbench, click File > New > Other > Test > Test Assets > Web service test or click the New Service

Test toolbar button.

2. Select a project and, in Name, type a name for the test, and then, click Next.

The name that you type is the base name for the recording, test, and other required files. You see these files

in standard Navigator or the Java™ Package Explorer with their distinguishing suffixes, but you see only the

simple (test) name in the Test Navigator.

3. Select a web service request to create the test for.

If you select Web service request or one of the options in Specification-based structure, specify a WSDL port

and then configuration properties for the HTTP protocol. If you select, XML request and Text request, specify

the configuration properties for the HTTP, JMS, WebSphere MQ, WebSphere Java MQ, and Microsoft.Net

protocols.

For information about the configuration properties of each protocol, see the topics in Sending service

requests with the generic service client on page .

4. Click Finish. The service test is created.

413

../topics/tgsctop.html#tgsctop
../topics/tgsctop.html#tgsctop
../topics/tgsctop.html#tgsctop
../topics/tgsctop.html#tgsctop
../topics/tgsctop.html#tgsctop

HCL OneTest Performance

414

Creating a service test for WebSphere® MQ
You can create an IBM® WebSphere® MQ test by adding the test elements as required and editing the test element

details in the test editor.

Before you begin

Tests are stored in test projects, which are Java™ projects that include a source folder. You must create a test project

before creating a test.

Ensure that you have a valid Web Services Description Language (WSDL) file for a WebSphere® MQ service in your

workspace.

If you are using Secure Sockets Layer (SSL) authentication, ensure that you have any required key files in your

workspace.

If you are using SOAP security, ensure that you have configured the environment with the correct libraries and

configuration files.

1. In the workbench, click File > New > Other > Test > Test Assets > Web service test or click the New Service

Test toolbar button.

2. Select a project, and then, in Test file name, type a name for the test and click Next.

The name that you type is the base name for the recording, test, and other required files. You see these files in

the standard Navigator or the Java™ Package Explorer with their distinguishing suffixes, but you see only the

simple (test) name in the Test Navigator.

3. In the Select a service request interface page, complete one of the following steps:

a. To test a service that use a WSDL file, select Web service request or Specification-based structure,

click Next, and select a WSDL file.

b. To test a service that does not use a WSDL file, select XML Request, Text Request, Binary Request or

an Empty test.

4. Click Next and select the WebSphere MQ protocol.

5. In SOAP Action, specify the SOAP action to be used to invoke the MQ request.

6. To override the message header and descriptor that was specified in WebSphere MQ transport configuration,

click Override MQ Protocol Configuration values and specify the customize header and message descriptor.

7. Click Finish. The service test is created.

8. On the web service call, click Update Response.

This opens the Response Preview window, displaying the data that will be used to perform the call.

9. Click Update Test.

This action calls the web service and creates a message return element with the return data. If a message

return element already exists, then it is updated with latest return data. With the message return test element,

you can implement data correlation and content-based verification points.

Chapter 7. Test Author Guide

Creating a service test for WebSphere Java MQ
To test Java-based applications, create a service test and add the WebSphere Java MQ messages. You can create a

service test by using Generic Service Client option or the New Service Test wizard .

Before you begin

Connect to a WebSphere MQ server.

If you are using Secure Sockets Layer (SSL) authentication, ensure that you have any required key files in your

workspace.

If you are using SOAP security, ensure that you have configured the environment with the correct libraries and

configuration files.

1. In the workbench, click File > New > Other > Test > Test Assets > Web Service Test or click Create a Service

Test .

2. Select a project, and then, in Test file name, type a name for the test.

The name that you type is the base name for the recording, test, and other required files. You see these files in

the standard Navigator or the Java™ Package Explorer with their distinguishing suffixes, but you see only the

simple test name in the Test Navigator.

3. In the Select a service request interface page, complete one of the following steps:

a. To test a service that use a WSDL file, select Web service request or Specification-based structure,

click Next, and select a WSDL file.

b. To test a service that does not use a WSDL file, select XML Request, Text Request, Binary Request or

an Empty test.

4. Click Next, select the WebSphere Java MQ protocol, and specify a transport configuration. If necessary,

click New to create the transport configuration for the call. See Creating a WebSphere Java MQ transport

configuration on page 674.

5. Complete the following information in the General tab:

Learn more about the UI elements in the General tab:

Queue

Name of the queue as defined on the WebSphere MQ server.

Message type

The types of messages are these:

◦ Datagram means that the message does not require a reply.

◦ Request means that the message requires a reply.

◦ Reply means that the message is a reply to an earlier request message.

◦ Report means that the message is reporting on some expected or unexpected

occurrence, usually related to some other message. An example is a request

message that contained data that was not valid.

415

HCL OneTest Performance

416

Message Persistence

This value indicates whether the message is persistent or not. If the message is

persistent, it survives the system failures and restarts of the queue manager. If the

message is not persistent, it survives a restart if it is present on a queue having the

NPMCLASS(HIGH) attribute. However, even with the NPMCLASS(HIGH) attribute a

message does not survive a QMGR class. Nonpersistent messages on queues having

the NPMCLASS(NORMAL) attribute are discarded at queue manager restart, even if the

message is found on the auxiliary storage during the restart procedure.

Dynamic Reply

Select this check box for the WebSphere MQ server to dynamically create a temporary

queue as a reply. If this check box is not selected, the message in Reply Queue is used.

Reply Queue

This is the name of the message queue to which the application that issued the get

request for the message should send the reply and report messages.

Reply Manager

This is the name of the queue manager on which the reply-to queue is defined.

Additional properties

Specify the additional properties for the queues.

6. Optional: If necessary, complete the following information on the Config tab:

Learn more about the UI elements in the Config tab:

Message Priority

This is the priority of the message. The lowest priority is 0.

Encoding

This is the numeric encoding of numeric data in the message. This value does not apply

to numeric data in the MQMD structure itself.

Expiry Interval

This is the period of time, in tenths of a second, after which the message becomes

eligible to be discarded if it has not already been removed from the target queue. The

expiry interval is set by the application that put the message.

Chapter 7. Test Author Guide

Character set

This is the character set identifier of the character data in the application message data.

7. Optional: In the Report tab, select the report messages to receive.

8. Optional: If necessary, complete the following information in the Context tab:

Learn more about the UI elements in the Context tab:

Application Identity Data

This information is defined by the application suite. Use it to provide information about

the message or its originator.

Application Origin Data

This information is defined by the application suite. Use it to provide additional

information about the origin of the message.

Accounting Token

This information is needed by the application to appropriately charge for the work that is

done as a result of the message.

User ID

This is the user identifier of the application that originated the message.

9. Optional: In the Identifiers tab, for the messages that require binary input, specify the ID in the string format

in the second column. The first column is filled automatically in the hexadecimal format.

10. Optional: In the Segmentation tab, select the segment of the message and click Next.

11. If you had selected XML Request, click Next, select a XSD file and click Finish.

Result

The new service test is created.

What to do next

You can now enhance the test and run it.

Creating a service test for a plain XML call
You can create a test for a plain XML call over HTTP, JMS, or IBM® WebSphere® MQ, by simply adding the test

elements as required and editing the test element details in the test editor.

Before you begin

Tests are stored in test projects, which are Java™ projects that include a source folder. You must create a test project

before creating a test.

417

HCL OneTest Performance

418

If you are using Secure Sockets Layer (SSL) authentication, ensure that you have any required key files in your

workspace.

If you are using SOAP security, ensure that you have configured the environment with the correct libraries and

configuration files.

1. In the workbench, click File > New > Other > Test > Test Assets > Service Test or click the New Service Test

 toolbar button.

2. Select a project, and then, in Test file name, type a name for the test and click Next.

The name that you type is the base name for the recording, test, and other required files. You see these files in

the standard Navigator or the Java™ Package Explorer with their distinguishing suffixes, but you see only the

simple (test) name in the Test Navigator.

3. On the Select Service Call Interface page, select whether you want to create a test using a plain XML call

interface or a Web service call interface.

If you select web service call interface, select or add a WSDL file and then, select port to which the call will be

binded. Click Next.

4. On the Configure Protocol page, select either HTTP, JMS or WebSphere® MQ as the protocol and then,

specify the options for the selected Protocol configuration.

5. On the Select Root Element page, you can select an XSD and then, select a root element for the call.

6. Click Finish.

Changing service test generation preferences
You can change default test generation values by changing the preference settings. The default settings, however, are

appropriate for recording in most cases.

1. Click Window > Preferences > Test > Web Services Test Generation

2. Select the setting to change.

Time out delay used for call

This is the default time out for web service calls. If the web service does not respond within this

period, an error is produced.

Think time default value

This is the default think time for generated tests.

3. After changing a setting, click Apply.

Recording socket and TN3270 tests
When you record a test, the test creation wizard records your interactions with the application under test, generates a

test from the recording, and opens the test for editing.

Chapter 7. Test Author Guide

Socket performance testing guidelines
Before you can test the performance of TCP/IP socket-based applications, set up your test environment and

incorporate these guidelines to produce reliable performance tests.

Limitations

You can use this extension to test applications that run in a client-server model, where the test simulates multiple

clients that connect to one or several servers. Other models, such as peer-to-peer networks, are not supported.

HCL OneTest™ Performance does not support socket recording in the 64 bit versions of Microsoft Windows 2003 and

Windows XP. Also, you cannot record 64 bit applications on 64 bit Windows 10 and Windows 2016 systems.

Performance

When you deploy performance tests, use a relevant number of virtual users on a given computer is important. For

example, if you deploy too many virtual users on a single computer, the results will reflect more the load of the test

computer than the load of the server.

For best results with performance tests on an average test computer with a 1 GHz processor and 1 GB of RAM, do not

exceed 1000 concurrent virtual users.

If you exceed the number of virtual users that a single test computer can run, the measured performance of the server

will be affected by the performance of the test computer, which will invalidate the final results.

When editing a schedule for long performance tests, use these guidelines:

• In the schedule editor, reduce the Test log level to None.

• In the schedule editor, set the Statistics sample interval to approximately 1/60 of the run time, for example 12

minutes for an estimated 12-hour session.

• When possible, use loops inside test suites rather than loops in the schedule. Using loops inside test suites

avoids connection problems that might occur over long duration tests and emphasizes measurement of the

send and receive activity rather than connection and close activity.

SSL/TLS Authentication

Socket tests support simple or strong Secure Sockets Layer (SSL) or Transport Layer Security (TLS) authentication

mechanisms, also called server authentication and client authentication.

For server authentication, the client must determine whether the server can be trusted. When you are recording or

running a socket test with a proxy recorder, the proxy recorder sits between the server and the client. Therefore, you

must "trick" the client application into behaving as though the proxy recorder is the certified server by performing

either one of the following actions:

419

HCL OneTest Performance

420

• Configure the SSL or TLS settings of the recorder proxy to authenticate itself as the actual server to the client

and as the client to the service. This means that you must supply the recording proxy with the adequate

certificates.

• Configure a managed client (an external client application) to accept the proxy recorder as though it

were the certified server. The recording wizard provides a link to download and import an HCL OneTest™

Performancecertificate into the client application.

For client authentication, the server must authenticate the test client according to its root authority. Therefore, you

must provide the client certificate that is expected by the server to authenticate the proxy recorder or the test agent

as a certified client.

See Digital certificates overview on page 429 for more information about managing digital certificates.

TN3270 performance testing guidelines
Before you can test the performance of TN3270 terminal applications, set up your test environment and incorporate

these guidelines to produce reliable performance tests.

Limitations

You can use this extension to test applications that run on a TN3270 terminal emulation client, where the test

simulates multiple terminals that connect to one or several servers.

These TN3270 terminal emulation packages are supported:

• IBM® Personal Communications

• Attachmate EXTRA! X-treme

• Managed Application

When you record a TN3270 session or a Managed Application session by using the default options of the Socket

I/O Recorder, the corresponding network traffic may not be captured. Therefore, an empty test is generated after the

recording of the test is complete.

You should then select the Use MS-Detour for launching processes option on the Socket I/O Recorder Secure

Settings page. The Socket I/O Recorder then uses the Microsoft Detour library when attempting to capture the

application’s network traffic when you record a test.

Performance

When deploying your performance tests, use a relevant number of virtual users on a given computer. For example, if

you deploy too many virtual users on a single computer, the results reflect more the load of the test computer than

the load of the server.

For best results with performance tests on an average test computer with a 1 GHz processor and 1 GB of RAM, do not

exceed 1000 concurrent virtual users.

Chapter 7. Test Author Guide

If you exceed the number of virtual users that a single test computer can run, the measured performance of the server

is affected by the performance of the test computer, which invalidates the final results.

When editing a schedule for long performance tests, use these recommendations:

• In the schedule editor, reduce the Test log level setting to None.

• In the schedule editor, set the Statistics sample interval value to approximately 1/60 of the run time, for

example 12 minutes for an estimated 12-hour session.

• When possible, use loops inside test suites rather than loops in the schedule. Using loops inside test suites

avoids connection problems that might occur over long-duration tests and emphasizes measurement of the

send and receive activity rather than connection and close activity.

Recording a socket API performance test
You can record a socket API test from any client program on your computer. When you record, the recording wizard

automatically starts the client program and records all the data that transits through the socket API.

Before you begin

Tests are stored in performance test projects. If your workspace does not contain a performance test project, the

test creation wizard creates one with a name that you can change. To store a test in a specific project, verify that the

project exists before you record the test.

Ensure that you have a working client program and that you can connect to the server.

Ensure that the session that you are recording is reproducible. This means that when the recorded actions are

replayed by the test, the same responses from the server will be received.

HCL OneTest™ Performance does not support socket recording in the 64 bit versions of Microsoft Windows 2003 and

Windows XP. Also, you cannot record 64 bit applications on 64 bit Windows 10 and Windows 2016 systems.

To record a socket test:

1. Open HCL OneTest™ Performance.

2. Click the New Test from Recording icon , and then click Socket Test.

Note: You can also click File > New > Test From Recording, and then select Socket Test. You can then

select the encryption level, if required and click Next to open the Select Location page.

Result

The Select Location page is displayed.

3. Create a test by performing the following steps:

421

HCL OneTest Performance

422

a. Select a project, and then select a folder from the project.

b. Enter a name for the test.

c. Optionally, click Recording encryption level, and then select the encryption level when you are

recording any sensitive data.

4. Click Next.

Result

The Select Client Application page is displayed.

5. On the Select Client Application page, select the type of client program to use to record the test:

Choose from:

◦ To specify any client program that is located on your computer, select Managed Application, and click

Next.

The Managed Application Options page is displayed.Specify the application to launch by performing

the following action, and then click Next:

a. Click Browse and specify the program path.

b. Click Browse and specify the working directory, if required.

c. Specify the command-line arguments that the program requires in Arguments, if needed.

d. Select the Open console for user input check box if the program requires user input from a

command-line interface.

Specify the required secure options from the Socket I/O Recorder Secure Settings page:

▪ Enable recording of SSL/TLS encrypted communication to enable the recording of the SSL/

TLS encrypted communication.

▪ Use MS-Detour for launching processes to use the Microsoft Detour library when recording

with the Socket I/O recorder.

◦ To record a TN3270 terminal emulation session, select IBM Personal Communication or Attachmate

EXTRA! X-treme if these programs are installed, and click Next.

If required, specify a session file to start the TN3270 session.

Note: Using this method to record a TN3270 session produces a low-level socket API

performance test that is based on the TN3270 protocol traffic. To record a TN3270 test, see

Recording a TN3270 performance test on page 424.

◦ To record an HTTP session, select Microsoft Internet Explorer or Mozilla Firefox, and click Next.

Chapter 7. Test Author Guide

If you choose Mozilla Firefox, you can specify a Firefox profile.

Note: Using this method to record an HTTP session produces a socket API performance test

that is based on the HTTP traffic. To record an HTTP test, see Recording an HTTP test on

page 336.

6. If the application uses Secure Sockets Layer (SSL) and Transport Layer Security (TLS) authentication to

authenticate the server or the client application, specify the following options, and click Next:

Choose from:

◦ Select The server requires a specific client certificate if you are using client authentication. Specify

a certificate keystore file name and password. If multiple certificates are required, click Multiple

certificates and specify a certificate keystore file name and password for each host name and port.

◦ Select The client requires a specific server certificate to provide the certificate keystore file name of

the server and a password for each host name and port.

If you do not provide the server certificate, you must configure the client application to authenticate

the certificate of the proxy recorder as though the proxy recorder were the actual server. Click Save

this certificate to save the certificate that is generated by HCL OneTest™ Performance, and import the

.cer file into the client application.

If necessary, select whether to use SSL 3.0 and TLS 1.0 encryption. See Socket performance testing

guidelines on page 419 for more information about SSL and TLS authentication.

7. If this is the first time that you record a socket API performance test, read the Privacy Warning, and select

Accept to proceed.

8. Click Finish to start recording.

Result

A progress window opens while the client program starts.

9. Use the client program to perform the actions to test.

You can use the Recorder Test Annotations toolbar to add comments, record synchronizations, or take screen

captures during the recording.

◦ To add a comment to the recorded test, click the Insert comment icon .

◦ To add a screen capture to the recorded test, click the Capture screen icon . Screen and window

captures make your tests easier to read and help you visualize the recorded test. You can change the

settings for screen captures and add comments to images.

◦ To manually add a test synchronization to the recording, click the Insert synchronization icon .

◦ To manually add a transaction folder to the recording, click the Start Transaction icon and Stop

Transaction icon to start and stop the transaction.

◦ To insert a split point into the recorded test, click the Split point icon . With split points, you can

generate multiple tests from a single recording, which you can replay in a different order with a

schedule. See Splitting a test during recording on page 443 for more information about splitting a

test.

423

HCL OneTest Performance

424

10. When you have finished test actions in the program, stop the recorder. You can do this by closing the client

program or by clicking the Stop push button in the Recorder Control view.

Result

A progress window opens while the test is generated. On completion, the Recorder Control view displays the

Test generation completed message, the Test Navigator lists your test, and the test opens in the test editor.

Related information

Socket performance testing guidelines on page 419

Recording a TN3270 performance test on page 424

Recording sensitive session data on page 442

Recording an HTTP test on page 336

Recording service tests on page 394

Recording a TN3270 performance test
You can record a TN3270 test from a terminal emulation client. When you record, the recording wizard automatically

starts the terminal emulation client and records all the screen and input activity that transits the socket connection.

Before you begin

Ensure that you have a TN3270 terminal emulation program installed on the local computer.

Tests are stored in performance test projects. If your workspace does not contain a performance test project, the

test-creation wizard creates one with a name that you can change. To store a test in a specific project, verify that the

project exists before you record the test.

Ensure that the session that you are recording is reproducible. This means that when the recorded actions are

replayed by the test, the same responses from the server will be received.

To record a socket test:

1. Open HCL OneTest™ Performance.

2. Click the New Test from Recording icon , and then click TN3270 Test.

Note: You can also click File > New > Test From Recording, and then select TN3270 Test. You can

then select the encryption level, if required and click Next to open the Select Location page.

Result

The Select Location page is displayed.

3. Create a test by performing the following steps:

Chapter 7. Test Author Guide

a. Select a project, and then select a folder from the project.

b. Enter a name for the test.

c. Optionally, click Recording encryption level, and then select the encryption level when you are

recording any sensitive data.

4. Click Next.

Result

The Select Client Application page is displayed.

5. On the Select Client Application page, select any of the following type of client program to use to record the

test, and then click Next:

Choose from:

◦ In most cases, select IBM Personal Communication or Attachmate EXTRA! X-treme.

If required, specify a session file to start the TN3270 session.

◦ If you are using other TN3270 terminal emulation software, select Managed Application.

Result

The Recording Method page is displayed.

6. Select the required method from the Recording Method page when you select Managed Application in step 5

on page 425 for your recording.

Choose from:

◦ Proxy Recorder method

Select Proxy Recorder to record the HTTP activity of a client set up by using a proxy, and click Next.

The Managed Application Options page is displayed.Specify the application to launch by performing

the following action, and then click Next:

a. Click Browse and specify the program path.

b. Click Browse and specify the working directory, if required.

c. Specify the command-line arguments that the program requires in Arguments, if needed.

d. Select the Open console for user input check box if the program requires user input from a

command-line interface.

You can then specify the settings on the Proxy Recorder Settings page.

◦ Socket I/O Recorder method

Select Socket I/O Recorder to record the client I/O operations, and then click Next.

The Managed Application Options page is displayed.Specify the application to launch by performing

the following action, and then click Next:

a. Click Browse and specify the program path.

b. Click Browse and specify the working directory, if required.

c. Specify the command-line arguments that the program requires in Arguments, if needed.

d. Select the Open console for user input check box if the program requires user input from a

command-line interface.

425

HCL OneTest Performance

426

Specify the required secure options from the Socket I/O Recorder Secure Settings page:

▪ Enable recording of SSL/TLS encrypted communication to enable the recording of the SSL/

TLS encrypted communication.

▪ Use MS-Detour for launching processes to use the Microsoft Detour library when recording

with the Socket I/O recorder.

7. Click Finish to start recording.

Result

A progress window opens while the TN3270 terminal program starts.

8. Use the TN3270 terminal program to perform the actions to test.

You can use the Recorder Test Annotations toolbar to add comments, record synchronizations, or take screen

captures during the recording.

◦ To add a comment to the recorded test, click the Insert comment icon .

◦ To add a screen capture to the recorded test, click the icon Capture screen. Screen and window

captures make your tests easier to read and help you visualize the recorded test. You can change the

settings for screen captures and add a comment to the image.

◦ To manually add a test synchronization to the recording, click the Insert synchronization icon .

◦ To manually add a transaction folder to the recording, click the Start Transaction icon and Stop

Transaction icon to start and stop the transaction.

◦ To insert a split point into the recorded test, click the Split point icon . With split points, you can

generate multiple tests from a single recording, which you can replay in a different order with a

schedule. See Splitting a test during recording on page 443 for more information about splitting a

test.

9. When you have finished test actions in the program, stop the recorder. You can do this by closing the TN3270

terminal program or by clicking the Stop push button in the Recorder Control view.

Result

A progress window opens while the test is generated. On completion, the Recorder Control view displays the

Test generation completed message, the Test Navigator lists your test, and the test opens in the test editor.

Related information

TN3270 performance testing guidelines on page 420

Recording a socket API performance test on page 421

Recording sensitive session data on page 442

Changing test generation preferences
You can change the way that the test recorder organizes multiple send and receive elements in a new socket test by

changing test generation preferences. To improve the readability of your test, you can merge consecutive send or

receive elements that use the same connection.

Chapter 7. Test Author Guide

Before you begin

To change the way that test elements are organized by default in a new test, you can change the test generation

preferences before recording the test.

To merge or reorganize elements in an existing test, you can use the Organize wizard. See Merging socket send and

receive elements on page 551 for more information.

To merge send or receive elements in a new socket test:

1. Click Window > Preferences > Test > Test Generation > Socket Test Generation.

Result

The Socket Test Generation preferences window opens.

2. Select Strategies.

You can create multiple organization strategies for handling different applications. Only one strategy is active

during the recording.

3. Select Default Strategy or click New to create an organization strategy.

4. Click Settings.

5. In Edit Socket Strategy Settings, specify how you want the test recorder to generate multiple send and receive

elements:

Send elements

Merge consecutive send elements

Select this option to merge together all the consecutive socket send elements that

use the same connection.

Manipulate data with custom code

Select this option to force all the selected send elements to enable the Manipulate

data with custom code setting with the specified Class name of a custom Java™

class that uses the API to process data in the socket send element.

Receive Actions

Do not merge

Select this option to keep receive elements unmodified as they are initially

recorded.

Merge consecutive receive elements

Select this option to merge together all the consecutive socket receive elements

that use the same connection.

Keep only last receive element

Select this option to discard all multiple consecutive receive elements except the

last one recorded.

427

HCL OneTest Performance

428

Response timeout

The maximum delay (in seconds) to receive the first byte of the response. If no

data is received before the end of the response timeout delay, the receive action

produces an error in the test log. The response timeout counter starts when the

receive action starts after the think time; the counter is interrupted when the first

byte is received.

End policy

This option specifies when to stop receiving data and to move to the next test

element.

◦ Receives exact number of bytes: The receive action stops when the

recorded number of bytes is received. Specify a Timeout (in seconds) after

which the receive action produces an error in the test log, if the correct

number of bytes is not received. If Link data size is enabled, the receive

action expects the number of bytes displayed in the Data area. If Link data

size is disabled, the receive action expects the number of bytes displayed

in Bytes. This is the default setting

◦ Receives until end of stream: The receive action stops when the

connection is closed by the remote computer. If Accepts empty response

is selected, then the reception of a single byte is not required and the

Response Timeout is ignored. Specify a Timeout (in seconds) after which

the receive action produces an error in the test log, if the correct number of

bytes is not received.

◦ Matches a string: The receive action stops when a specified sequence of

bytes is received. Specify a Timeout (in seconds) after which the receive

action produces an error in the test log, if the correct number of bytes is not

received.

◦ Recognizes a regular expression: The receive action stops when a

sequence of bytes that matches a regular expression is received. Specify

a Timeout (in seconds) after which the receive action produces an error in

the test log, if the correct number of bytes is not received.

◦ Delegated to custom code: The receive action stops when a condition

is met in a custom Java™ class. This setting allows great flexibility, but

requires coding of a custom Java™ class following the HCL OneTest™

Performance extension API. Click Generate Code to generate a template

based on the API or View Code to open the specified class in the Java™

editor.

Except when the Receives until end of stream policy is in force, receive actions

produce an error in the test log when the connection is closed by the remote

computer.

Chapter 7. Test Author Guide

Timeout

For end policies that have a Timeout setting, this setting specifies a delay (in

seconds) after which the receive action produces an error in the test log if the end

policy criteria is not met. The timeout counter starts when the first byte is received.

6. Click OK to apply the changes, and close the Preferences window.

Digital certificates overview
The digital certificates feature enables you to run tests against servers that use Secure Sockets Layer (SSL) for

applications that require client-side digital certificates to authenticate users.

A digital certificate is a file that binds a public cryptographic key with an identity (a user or an organization). Trusted

certificate authorities issue digital certificates, which are then used to authenticate users and organizations for

access to websites, email servers, and other secure systems. A certificate store is an archive file that contains almost

any number of digital certificates, possibly certificates that are issued from different certificate authorities.

To use digital certificates in tests:

1. Create a digital certificate store. For more information about this subject, see Digital certificate creation

overview on page 430 and Creating a digital certificate store on page 434.

2. Associate a digital certificate with a test for playback. For more information about this subject, see Playing

back a test with a digital certificate on page 436.

3. Optionally, you can associate the digital certificates in one or more digital certificate stores with a dataset. For

more information about this subject, see Using a digital certificate store with a dataset on page .

Create a certificate store by running the supplied KeyTool command-line program. The program creates a certificate

store that contains digital certificates.

Record a test that requires using a digital certificate. Specify the certificate and password that to use, and then begin

recording the test. Browse the website as you typically would to record a test.

After you have finished recording, open the test for editing. On the Common Options page, under Digital Certificates,

click Add. Type the name of the certificate store that you created previously; then select the certificate that you want

to use. Save the test. When you run this test, the digital certificate from the certificate store is submitted to the server.

If you have recorded a test that does not use SSL, you can convert that test to be secure by adding an SSL object to

the corresponding Server Access Configuration in the test.

429

../topics/tcertdp.html
../topics/tcertdp.html
../topics/tcertdp.html
../topics/tcertdp.html

HCL OneTest Performance

430

To use a certificate store with a dataset, open the test for editing. On the Common Options page, click Add Dataset.

Create a dataset with two columns that contains a list of the certificates in the certificate store and a list of

passphrases for the certificates. Select Fetch only once per user. Save the dataset. On the Common Options page,

under Digital Certificates, click Add. Select the certificate store that you created previously from the Certificate Store

column. Insert a Certificate Name for the digital certificate. Highlight this name, and then select Substitute from

dataset. Choose the dataset added previously, and then choose the column with the certificate name. Repeat this

process to substitute passphrases from the dataset column containing passphrases. Save the test. Add the test to a

schedule. When you run this schedule, the certificates from the certificate store are submitted to the server.

Digital certificate creation overview
If you want to use digital certificates to run tests against applications that require client-side digital certificates to

authenticate users, work with the appropriate server administrators to determine the types of certificates that you

need to create.

In cryptography, a public key certificate is a document that uses a digital signature to bind a public key with a physical

identity. These certificates are often referred to generically as digital certificates or client digital certificates. The most

common standard for digital certificates is the X.509 standard.

In public key cryptography, each certificate has two associated keys: a public key and a private key. The public key is

incorporated into the X.509 certificate and is always available with the certificate itself. The private key is always kept

private (meaning, it is never transmitted). For ease of portability, the two keys (and the certificate) can be included in

one, encrypted and passphrase-protected, format known as PKCS#12.

In order to verify the authenticity of a certificate, it is digitally signed by another certificate, known as a Certificate

Authority (CA). This CA certificate may be one created (and kept secure) by a company hosting a secure application,

or it could be created by a company such as Verisign.

When a web application requires digital certificates, an administrator typically creates digital certificates for each

authorized user. The administrator digitally signs each certificate using the system CA certificate. These certificates,

along with the public and private keys, are distributed to users. Often these keys will be distributed in the PKCS#12

Chapter 7. Test Author Guide

format. Users then import these certificates into their web browsers. When the browser is challenged by the server, it

will produce its certificate.

When importing certificates for web applications, select the check box that indicates that the keys be exportable.

With this indication, the certificate can be exported to a PKCS#12 formatted file for later use by other programs.

Do not use certificates that are assigned to actual users for performance testing purposes. Use test certificates that

do not correspond to actual users.

There are four types of certificates that can be used in testing:

• Self-signed certificates

• Signed certificates

• Certificate authority (CA) certificates

• Unsigned certificates (rarely used)

Self-signed certificates are used when no entity needs to vouch for the authenticity of the certificate. These are the

simplest certificates to create and use. Typically, however, a signed certificate is used to represent a particular user.

Signed certificates are used when a certificate needs to be created for and issued to one, and only one, user. Signed

certificates are signed by a certificate authority (CA).

Certificate authority (CA) certificates are self-signed certificates used to sign (certify) certificates.

Unsigned certificates are certificates that are neither signed by a CA nor self-signed. Most web applications do not

use unsigned certificates.

When you create a self-signed or signed certificate (including CA certificates) you can specify a subject. The subject

of a certificate is the set of attributes of an X.500 Distinguished Name that is encoded in the certificate. The subject

enables the recipient of a certificate to see information about the owner of the certificate. The subject describes the

certificate owner, but is not necessarily unique. Think of subjects as entries in a telephone book; there can be multiple

entries for Patel Agrawal, but each entry refers to a different person.

The subject can contain many different types of identifying data. Typically, the subject includes the following:

Attribute Example

COMMON NAME (CN) CN=Patel Agrawal

ORGANIZATION (O) O=XYZ Corporation

ORGANIZATIONAL UNIT (OU) OU=XYZ Software Group

COUNTRY (C) C=IN

LOCALITY (L) L=Bangalore

STATE or PROVINCE (ST) ST=Kanataka

E-MAIL ADDRESS (emailAddress) emailAddress=agrawal@xyz.com

431

HCL OneTest Performance

432

This information can be typed as one string, using forward slashes to separate the data.

For example, the above subject would be typed as follows:

/CN=Patel Agrawal/O=XYZ Corporation/OU=XYZ Software Group/C=IN/L=Bangalore/ST=Karnataka/

emailAddress=agrawal@xyz.com

To learn more about using the supplied command-line program to create certificates, see Creating a digital certificate

store on page 434.

Creating a digital certificate with OpenSSL
You can use the OpenSSL program to create digital certificates for use with tests.

Before you begin

OpenSSL is available from the OpenSSL Project at http://www.openssl.org/.

1. Create a certificate authority (CA).

For the purposes of testing, this CA takes the place of a recognized CA on the Internet, such as VeriSign. You

use this CA to digitally sign each certificate that you plan to use for testing.

a. Create a certificate request (CSR) file. The "subject" (-subj) describes the user of the certificate. Enter

dummy values as shown. The following command line sets the password for the certificate to abcdefg.

Example

openssl req -passout pass:abcdefg -subj "/C=US/ST=IL/L=Chicago/O=HCL Technologies/OU=HCL Software

Group/CN=HCL OneTest Performance CA/emailAddress=hop@hcl.com" -new > waipio.ca.cert.csr

b. Create a key file, waipio.ca.key, to store the private key.

This removes the password protection from the certificate request file so that you do not have to type

the password every time you sign a certificate. Because the password protection has been removed,

use the certificate request file for testing purposes only.

Example

openssl rsa -passin pass:abcdefg -in privkey.pem -out waipio.ca.key

c. Create an X.509 digital certificate from the certificate request. The following command line creates a

certificate signed with the CA private key. The certificate is valid for 365 days.

Example

openssl x509 -in waipio.ca.cert.csr -out waipio.ca.cert -req -signkey waipio.ca.key -days 365

d. Create a PKCS#12-encoded file containing the certificate and private key. The following command line

sets the password on the P12 file to default. HCL OneTest™ Performance uses password of default

for all PKCS#12 files by default.

http://www.openssl.org/

Chapter 7. Test Author Guide

Example

openssl pkcs12 -passout pass:default -export -nokeys -cacerts -in waipio.ca.cert -out

waipio.ca.cert.p12 -inkey waipio.ca.key

Result

You now have a CA certificate (waipio.ca.cert), which can be installed into the web server under test and

a private key file (waipio.ca.key) that you can use to sign user certificates.

2. Create a digital certificate for a user.

a. Create a CSR file for the user. Set the initial password to abc. Optionally, provide an appropriate subject.

Example

openssl req -passout pass:abc -subj "/C=US/ST=IL/L=Chicago/O=HCL Technologies/OU=HCL Software

Group/CN=John Smith/emailAddress=smith@hcl.com" -new > johnsmith.cert.csr

b. Create a private key file without a password.

Example

openssl rsa -passin pass:abc -in privkey.pem -out johnsmith.key

c. Create a new X.509 certificate for the new user, digitally sign it using the user's private key, and certify

it using the CA private key. The following command line creates a certificate which is valid for 365

days.

Example

openssl x509 -req -in johnsmith.cert.csr -out johnsmith.cert -signkey johnsmith.key -CA

waipio.ca.cert -CAkey waipio.ca.key -CAcreateserial -days 365

d. Optional: Create a DER-encoded version of the public key. This file contains only the public key, not

the private key. Because it does not contain the private key, it can be shared, and does not need to be

password protected.

Example

openssl x509 -in johnsmith.cert -out johnsmith.cert.der -outform DER

e. Create a PKCS#12-encoded file. The following command line sets the password on the P12 file to

default.

Example

openssl pkcs12 -passout pass:default -export -in johnsmith.cert -out johnsmith.cert.p12 -inkey

johnsmith.key

Repeat this step to create as many digital certificates as needed for testing. Keep the key files secure, and

delete them when they are no longer needed. Do not delete the CA private key file. You need the CA private key

file to sign certificates.

433

HCL OneTest Performance

434

Results

Now you can install the CA certificate (waipio.ca.cert) into WebSphere®. Optionally, create a user certificate

specifically for your web server, and install it into WebSphere®.

You can use user certificates individually to record tests. To use the user certificates (johnsmith.cert.p12)

during test editing and playback, compress them in ZIP format to a file with the .rcs extension. This creates a digital

certificate store. To learn more digital certificate stores, see Creating a digital certificate store on page 434. You can

also import user certificates into your web browser to interactively test them in your environment.

Creating a digital certificate store
The KeyTool command-line program enables you to create a Rational® Certificate Store (RCS) file that contains

digital certificates for use with tests. A Rational® Certificate Store (RCS) file is a compressed archive file that

contains one or more PKCS#12 certificates. You can also use the KeyTool program to remove certificates from a

certificate store.

About this task

HCL OneTest™ Performance acts as a proxy between the browser and the server application to record the data

exchange. When a secured page is recorded using HCL OneTest™ Performance, the proxy certificate of the product is

presented to the browser.

1. In the command line tool, navigate to the directory that contains the Keytool utility. By default, the utility is

located at C:\Program Files\HCL\HCLOneTest\jdk\jre\bin.

2. Type the following command:

Example

keytool.exe -genkeypair -alias certificateName -keystore keystoreName -storepass password -validity 365

-keyalg RSA -keysize 2048 -storetype pkcs12

For additional information about parameters by certificate generation, review the official keytool

documentation.

Option Description

-genkeypair Generate public and private keys for key pair.

-alias Alias for your certificate in the key store. You may

never use it, but every new certificate in your key

store must have its own alias.

-keystore Name of the key store file, which will be generated as

the result of the command. It holds your certificate

and a corresponding private key. You can reuse this

key store for next certificates that you might gener­

ate. One key store can contain many certificates.

http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html?cm_mc_uid=73131314022614726114038&cm_mc_sid_50200000=1473502911#genkeypairCmd

Chapter 7. Test Author Guide

Option Description

-storepass
Password that protects your key store file. You will

have to enter it every time you want to sign a docu­

ment.

-validity Number of days the certificate is valid. You can enter

more than 365.

-keyalg Algorithm to generate the cryptographic keys that is

corresponding to your certificate. You can use RSA or

DSA.

-keysize Length of the cryptographic keys. The more the

length the stronger the signature.

-storetype Format of the key store file. PKCS#12 (a.k.a PFX) key

stores can be understood by a lot of different pro­

grams and you can also import a PKCS#12 file in

your Windows key store (just double click it and fol­

low the instructions).

3. The certificate generation process prompts you to enter some information about you. Enter the information as

prompted.

4. If prompted for a password when using the keystore, enter the same password as provided on the command

line.

Result

The key store file (.pfx) is stored in your current directory.

Results

435

HCL OneTest Performance

436

You now have a digital certificate store that you can use with tests. Because the KeyTool program has many options,

you might want to create an alias or script file to use to invoke KeyTool. Use KeyTool to create and add as many

digital certificates as you want. If you want to create a dataset of the names of certificates in the certificate store, run

KeyTool again with the -list option. This option writes a list of names that can then be imported to a dataset.

What to do next

Before you start recording the application that requires client certification, import the certificate to the HCL OneTest™

Performance project. For information about how to import the certificate and record a test, see the Recording a test

on page topic.

You do not have to use the KeyTool command-line program to create a certificate store. It is possible to use existing

PKCS#12 certificates with HCL OneTest™ Performance. PKCS#12 certificates can be exported from a web browser.

PKCS#12 certificates encode the private key within the certificate by means of a password.

Note: Do not use certificates associated with real users. Certificates associated with real users contain

private keys that should not become known by or available to anyone other than the owner of the certificate.

An intruder who gained access to the certificate store would have access to the private keys of all certificates

in the store. For this reason, you must create, or have created for you, certificates that are signed by the

correct certificate authority (CA) but that are not associated with real users.

Playing back a test with a digital certificate
After you create a digital certificate store and record a test using a digital certificate, you must associate the digital

certificate with the test for playback.

Before you begin

You need to record a test using a digital certificate, and you need a digital certificate store file containing one or more

PKCS#12 certificates.

If your certificate extension is not .rcs, then you need to zip the certificate, rename the extension to .rcs, and copy it to

the root directory of the project.

To associate a digital certificate with a test for playback:

1. Open the test for editing.

2. On the Security tab, under Digital Certificates, click Add.

3. Select or type the name of the certificate store file that you created previously.

You must type or select the file name. You cannot browse to locate the file. The certificate store must be

a Rational® Certificate Store (RCS) file. A Rational® Certificate Store file is a compressed archive file that

contains one or more PKCS#12 certificates.

4. Select the digital certificate that you want to use, and then click Select.

5. When prompted to place the digital certificate in a dataset, click No. To learn more about substituting digital

certificates, see Using a digital certificate store with a dataset on page .

Result

../topics/trecordtest.html
../topics/trecordtest.html
../topics/trecordtest.html
../topics/trecordtest.html
../topics/trecordtest.html
../topics/trecordtest.html
../topics/tcertdp.html
../topics/tcertdp.html
../topics/tcertdp.html
../topics/tcertdp.html

Chapter 7. Test Author Guide

Note: If you add multiple certificates to the Digital Certificates list on the Common Options page, the

first certificate that satisfies the request from the server (in the order by which the certificates were

entered) is used during playback.

6. Save the test.

Results

When you run this test, the digital certificate from the certificate store is submitted to the server.

Entrust TruePass authentication overview
Entrust provides digital identity and encryption technologies to governments and private industry. With Entrust

TruePass software users can authenticate with secure web applications without installing a digital certificate in their

browsers. This makes it convenient for use in kiosks and other public user environments.

You can now run tests against servers that require Entrust TruePass authentication. Roaming mode with TruePass

applet version 7.0 and later are supported. Local mode, and versions of the TruePass applet prior to 7.0, are not

supported. Recording tests with Entrust TruePass applications works just as regular HTTP recording does.

The Entrust TruePass Authentication object is displayed in the test editor for tests that you record with Entrust

TruePass applications. The Version field displays the recorded version number of the Entrust TruePass applet. The

Server Name and Port are correlated fields. Click Substitute to use the Data Sources view to change the server

or port number for playback. The Application Context displays where the Entrust application is mapped to in the

application server. The User Name and Passphrase fields can be substituted with values from a dataset.

437

HCL OneTest Performance

438

Kerberos overview
You can run HTTP tests against servers that use the Kerberos protocol for authentication.

Introduction

Kerberos is a security authentication protocol that requires users and services to provide proof of identity.

Note: Kerberos is supported only for HTTP tests on HCL OneTest™ Performance.

Supported environments

Kerberos is supported on HTTP for web servers running Internet Information Server (IIS) or WebSphere® with the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI). Additionally,

the Key Distribution Center (KDC) must be part of the Windows™ Domain Controller Active Directory. Internet Explorer,

Mozilla Firefox, Opera, Apple Safari, and Google Chrome browsers are supported for recording tests. Kerberos is not

supported on other protocols, environments, or browsers. For example, a KDC running on Linux™ is not supported.

Tips

For best results when you record tests that use Kerberos authentication, specify the host by name, not by numeric

IP address. Also, note that user information is case-sensitive. Specify user information using the exact logon name

from the user account in Active Directory. The User logon name field in the properties for the user in Active Directory

displays the correct user name in the correct case. To the right of the user name the realm or domain name is

displayed in the correct case. For example:

• User ID: kerberostester

• Password: secret

• Realm: ABC.IBM.COM

User logon names of the form ABC\kerberostester are not supported.

Troubleshooting

Kerberos authentication is a complex process. If you encounter problems when you attempt to record and play back

tests that use Kerberos authentication, change the problem determination log level toAll and run the tests again with

only one virtual user. To learn more about the problem determination log, see the help topic on changing the problem

determination level. After running a test, the CommonBaseEvents00.log file on the agent computer contains

information that can help you determine why Kerberos authentication failed.

Terms

Active Directory

Active Directory is an implementation of Lightweight Directory Access Protocol directory services

created by Microsoft™ for use primarily in Windows™ environments. The main purpose of Active

Directory is to provide central authentication and authorization services for Windows™ computers. With

Chapter 7. Test Author Guide

Active Directory, administrators can assign policies, deploy software, and apply critical updates to an

organization.

Directory service

A directory service is a software application or set of applications that store and organize information

about the users and resources of a computer network.

Generic Security Services Application Program Interface (GSS-API)

The GSS-API enables programs to access security services. The GSS-API alone does not provide any

security. Instead, security service providers provide GSS-API implementations, typically in the form of

libraries that are installed with their security software. Sensitive application messages can be wrapped,

or encrypted, by the GSS-API to provide secure communication between client and server. Typical

protections that GSS-API wrapping provides include confidentiality (secrecy) and integrity (authenticity).

The GSS-API can also provide local authentication about the identity of a remote user or remote host.

Key Distribution Center (KDC)

The authentication server in a Kerberos environment is called the Key Distribution Center.

Lightweight Directory Access Protocol (LDAP)

LDAP is an application protocol for querying and modifying directory services running over TCP/IP.

An LDAP directory tree typically reflects political, geographic, or organizational boundaries. LDAP

deployments typically use Domain Name System (DNS) names for structuring the highest levels of the

hierarchy. LDAP entries can represent many different types of objects including people, organizational

units, printers, documents, or groups of people.

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

SPNEGO is used when a client application attempts to authenticate to a remote server, but the

authentication protocols supported by the remote server are unknown. SNPEGO is a standard GSS-API

pseudo-mechanism. The pseudo-mechanism uses a protocol to determine which common GSS-API

mechanisms are available, then SPNEGO selects one GSS-API mechanism to use for all future security

operations.

Trust Association Interceptor (TAI)

The TAI is a mechanism that establishes a secure connection between WebSphere® and other

application software.

Recording Kerberos applications with Internet Explorer
You must configure your browser before you attempt to record Kerberos applications.

Before you begin

The client computer must be a member of the domain for which single sign-on (SSO) has been defined.

To configure Internet Explorer to use Simple and Protected GSS-API Negotiation Mechanism (SPNEGO):

439

HCL OneTest Performance

440

1. Log on to Windows™ with a user ID for the domain for which SSO has been defined.

2. Start Internet Explorer.

3. Click Tools > Options.

4. Click the Security tab.

5. Define the site to authenticate to using Integrated Windows™ Authentication. Depending on your enterprise

policy, you define the site in either the Local intranet zone or the Trusted sites zone.

Choose from:

◦ To define the site in the Local intranet zone, select Local intranet. The instructions that follow assume

that you are defining the site in the Local intranet zone.

◦ To define the site in the Trusted sites zone, select Trusted sites. In the Security Settings for the

Trusted sites, click Automatic logon with current username and password, not Automatic logon only

in Intranet zone.

6. Click Sites.

7. Click Advanced.

8. Type the URL for the hostname for which you want to enable SSO. For example, type http://abc.ibm.com.

9. Click Add.

10. Click OK.

11. Click OK again.

12. Click the Advanced tab.

13. Scroll down to Security, and select Enable Integrated Windows Authentication (requires restart).

This option is not available on Internet Explorer 5.5. Integrated Windows™ Authentication is always enabled on

Internet Explorer 5.5.

14. Click OK.

15. Restart Internet Explorer.

Recording Kerberos applications with Mozilla Firefox
You must configure your browser before recording Kerberos applications.

Before you begin

The client computer must be a member of the domain for which single sign-on (SSO) has been defined.

To configure Mozilla Firefox to use Simple and Protected GSS-API Negotiation Mechanism (SPNEGO):

1. Start Mozilla Firefox.

2. In the location bar, type about:config.

3. In the Filter field, type network.n.

4. Double-click the network.negotiate-auth.trusted-uris preference.

The network.negotiate-auth.trusted-uris preference lists the sites that are permitted to engage in SPNEGO

authentication with the browser.

5. In the Enter string value window, type a comma-delimited list of URLs of trusted domains.

6. Click OK.

Chapter 7. Test Author Guide

7. Optional: If the application under test uses the advanced Kerberos feature called Credential Delegation,

double-click the network.negotiate-auth.delegation-uris preference. Type a comma-delimited list of URLs of

trusted domains.

The network.negotiate-auth.delegation-uris preference lists the sites to which the browser may delegate user

authentication.

Generating tests that use Kerberos
You must supply your Kerberos user name and password when generating tests that use Kerberos.

About this task

The test generation process attempts to detect if Kerberos was used when a test was recorded. If the test generation

process detects that Kerberos was used when a test was recorded, you are prompted for the Kerberos credentials.

The test generation process might not differentiate between Kerberos authentication and NT LAN Manager (NTLM)

authentication. In that case, you are prompted for the authentication type and credentials.

1. In the Kerberos window, type in the Kerberos Realm name field the Kerberos realm name that you used during

recording.

If the test generation process cannot determine which type of authentication was used, the Authorization

window is displayed, not the Kerberos window. In that case, click the Kerberos radio button before typing the

Kerberos realm name.

2. In the User name field, type the user name that you used during recording.

3. In the Password field, type the password that you used during recording.

Results

The test generation process creates a Kerberos configuration file. The file is krb5.ini and it is stored in the root

of the project workspace. This file is required to play back Kerberos tests. Typically, you need to ensure that the

workbench computer that you use to record the test is in the same Kerberos realm as the agent computers that you

use to play back the test. Advanced users and security administrators can edit this file with a text editor to tailor it to a

specific test environment.

Annotating a test during recording
You can add comments, add transactions, or change a page name while you record a test. The advantage of adding

these elements during (rather than after) recording is that you can place the annotations in the test exactly where you

want. In addition, because annotations are part of the recorded test, they are regenerated when you regenerate the

test. You can also insert split points into a test during record.

1. Start recording the test. The Recorder Test Annotations toolbar opens near the top of the screen.

2. Click the appropriate icon.

You can use the Recorder Test Annotations toolbar to add comments, record synchronizations, or take screen

captures during the recording.

441

HCL OneTest Performance

442

◦ To add a comment to the recorded test, click the Insert comment icon . You are prompted for a

comment.

◦ To add a screen capture to the recorded test, click the Capture screen icon . Screen and window

captures make your tests easier to read and help you visualize the recorded test. You can change the

settings for screen captures and add a comment to the image.

◦ To manually add a synchronization point to the recording, click the Insert synchronization icon .

◦ To manually add a transaction folder to the recording, click the Start Transaction icon and Stop

Transaction icon to start and stop the transaction. Transactions can be nested.

◦ To insert a split point into the recorded test, click the Split point icon . With split points, you can

generate multiple tests from a single recording, which you can replay in a different order with a

schedule. See Splitting a test during recording on page 443 for more information about splitting a

test.

◦ When recording an HTTP test, to change the page name, click the Change page name icon . In

the resulting test, the page element in the test editor uses the new name, however the original name

is preserved in the Page Title Verification Point area so that page title verification points still work

correctly.

3. Close the client program to stop the recording.

4. If you inserted a split point during the recording, on the Destination page, in the Test Generation wizard,

specify the location for the split test or merge the split recordings together.

Results

The test is generated with the comments, transactions, and page names that you added.

Recording sensitive session data
You can keep recording session (.recsession) files to view the contents of a recording or to regenerate tests.

However, if a recorded test contains sensitive information, you can choose to obfuscate, or encrypt, text strings in the

recsession file.

To protect test data in a recording session file:

1. In the Performance Test perspective, click the New Test from Recording toolbar button or click File > New

> Test from Recording.

2. In the New Test from Recording window, select Create a Test from a New Recording, and select the type of

test to create.

3. In Recording encryption level, select one of these options:

Choose from:

◦ Obfuscated: This setting hides text strings to prevent viewing the raw data in recsession files with a

text editor outside of the workbench. You can still use recsession file to generate tests and to view

recording information.

◦ Passphrase: This setting uses an AES-128-bit algorithm to encrypt text strings in the recsession

files. The encryption strength depends on the length of the passphrase. The recording session file is

unrecoverable if the passphrase is lost.

Chapter 7. Test Author Guide

4. On the Select Location page, select the project and folder locations to contain the new test, type a name for

the test, and click Next.

5. If you selected Passphrase, on the Passphrase Protection page, type the passphrase twice in Passphrase and

Confirm passphrase.

For solid protection, make the passphrase longer than 24 characters if using English words or at least 12

random characters.

6. Click Next, and continue the recording session for the type of test that you selected.

Splitting a test during recording
You can insert split points when you record a test. Split points allow you to generate multiple tests from a single

recording that you can replay in a different order with a schedule.

To split a test during recording:

1. Start recording the test. The Recorder Test Annotations toolbar opens near the top of the screen.

2. To insert a split point into the recorded test, click the Split point button. . The Insert Split Point window is

displayed.

3. Type a name for this section of the test and click OK. You are naming the previous section of the test, not the

upcoming section of the test.

Repeat this step between recorded user actions as needed to split tests.

4. After you finish performing the user tasks in the client program, stop the recorder. You can do this by closing

the client program or by clicking the Stop button in the Recorder Control view.

If you changed the network settings of the client program as described in step 8, you can revert them to the

default settings before closing the program.

Result

The Generate Service Test wizard opens.

5. On the Destination page, specify the location for the split test or merge the split recordings together:

◦ In Location, click Browse to specify the folder where the split tests are generated.

◦ Type a Test prefix that will be appended to the name of each split test. Leave blank if you do not want

the split test names to have a prefix.

◦ In the split test list, mark the split tests that you want to generate. Click Select All to generate all split

tests or Unselect All to clear the list.

◦ To merge several split tests into a single test, multi-select the tests that you want to merge by holding

the Shift key and click the Merge button.

6. Click Finish.

Results

The tests are generated using the test names that you specified.

443

HCL OneTest Performance

444

Generating a new test from a recorded session
You can generate a new test from a recorded session. For example, if you accidentally damage a test during editing,

or if you want to change a test preference, you can regenerate the test instead of re-recording it. If split points were

inserted in the recording, you can choose to generate a single test without split points.

To regenerate a complete test from a recording that contains split points:

1. In the test navigator, select the .recsession file of the test recording to regenerate.

2. Right-click, and then select Generate Test.

Result

The Generation Test wizard is displayed.

3. If the .recsession file is compatible with multiple test types, select the type of test that you want to generate

and click Next.

Example

For example, select HTTP Test to generate an HTTP performance test.

4. On the Select Location page, select the project and folder where you want to create the test, type a name for

the test, and click Next.

If necessary, click Create the parent folder to create a new performance test project or a folder

5. If the .recsession file contains split points, on the Options page, select Generate test without split points if

you want to regenerate the test as a single test.

6. Click Finish.

Results

The test is regenerated and opened in the test editor.

Organizing test assets by type
By clicking an icon, you can view your test assets in a logical order, in separate folders for tests, schedules, results,

locations, and datasets.

About this task

In the Test Navigator view, you can click Show Java Content to see custom code that you created, click Show Missing

Resources to view unresolved references, and click Show File Extenstions to view file extensions of test assets.

1. On the Test Navigator toolbar, click the Show the logical test navigator icon.

To see the Test Navigator view, click Windows > Show view and click Test Navigator.

2. Your assets are now grouped logically. To see them, open the appropriate folder.

Chapter 7. Test Author Guide

Note: In the Logical view, only if the asset is available the appropriate folder is displayed. For example,

if the Results folder is displayed only after you have executed a test.

Editing tests
After you record a test, you can edit it to include datasets (to provide variable data rather than the data that you

recorded), verification points (to confirm that the test runs as expected), and data correlation (to ensure that returned

data is appropriate for the corresponding request). You can also add protocol-specific elements to a test. When you

edit a test, the modified items appear in italic type. The italic type changes to regular type after you save the test.

Editing HTTP tests
After you record a test, you can edit it to include variable data rather than the data that you recorded and can include

verification points to confirm that the test runs as expected. You can also edit the test to include [NB1] transactions,

conditional processing, custom code, and standard header or custom header to a request or response.

Redirection support for HTTP tests
When you run HTTP tests, redirect requests are followed automatically, which supports common usage patterns,

such as load balancing.

HTTP redirect responses are responses to requests with status codes in the 300 family, which indicate that the

requested content is found at a different location. Redirect responses include HTTP status codes such as 301 Moved

Permanently and 302 Found. Some HTTP applications redirect clients to a specific URL, but the ultimate response to

the client request can be handled by one of several servers to balance the load that each server handles. For example,

a request that is sent to http://www.example.com/ might be redirected to http://www-1.example.com or http://

www-2.example.com, depending on traffic and load conditions.

Both expected redirect and unexpected redirect responses are supported when you run tests. Expected redirect

responses occur when you record tests. Unexpected redirect responses are received from the server when you run

tests, but the responses are not present in the recorded test.

Expected redirect responses are handled by automatic data correlation. To automatically correlate host names and

port numbers, click Window > Preferences > Test > Test Generation > HTTP Test Generation > Data Correlation, and

445

HCL OneTest Performance

446

then select the Automatically correlate URL pathname if redirected by response check box. This option is selected by

default.

Unexpected redirect requests are followed until an HTTP status code that is not a redirect response, such as 200

OK, is returned by the server, or until the maximum number of redirect responses has been reached. By default, the

maximum number of redirect responses to follow is 10. When a 200 OK response is received, references that use the

data in the final response are created.

Server access configurations are updated dynamically for unexpected redirect responses. For example, for a Config_1

server access configuration, where the host is abc.example.com and the port is 80, if a request that uses that

configuration is redirected to port 8080 on the xyz.example.com host, all subsequent requests in the test that use the

same configuration use port 8080 on the xyz.example.com host.

Verification points in a request are applied to the final destination. You can set a ResponseCode verification point

in a request so that an unexpected redirection can be handled appropriately. If you set an exact ResponseCode

verification point, it fails when a redirection occurs. A relaxed verification point also fails if the status codes in the 300

family are not part of the relaxed code list.

Creating secondary HTTP requests
A recording creates multiple HTTP requests and responses. In some cases, a response from the server can be

dynamic, because of which the subsequent requests might need to be modified. While playing back the test, some

of these dynamic requests might fail. For example, recording and playback might involve a different set of users with

different permission settings or the UI elements might have changed since the time you recorded the test. To ensure

that the test is played back without the need to record it again, you can create secondary requests which, based on

the response received from the server, fetch the exact values that the test requires .

About this task

You identify the HTTP request for which to create a secondary request, and then create a reference for all the

occurrences to dynamically generate the request. If you do not want to create a reference, you can define an array

variable that lists the HTTP requests to use from playback. You can use the array variable from custom code.

From version 9.1.0.1 or later, you can also specify the number of requests to be send to the server in the Test Editor

itself. After creating the secondary HTTP request, in the HTTP Secondary Request Generator Details area, specify the

total number of requests. If the number of requests is greater than 0, the number that you specify in Total number of

requests takes precedence over the array variable.

Chapter 7. Test Author Guide

You can also use the delays to control the flow of the requests to the server. In the Advanced tab, go to the Delay

Between Requests section and select the parameters for the flow of the requests. In Release When, select when

exactly to release the request. For instance, First Character Sent indicates to release the second request after the first

character in the first request is sent.

To create a secondary HTTP request:

1. Create a reference. See the Creating a reference on page topic.

2. Right-click the HTTP request for which to create the secondary request and click Create Secondary HTTP

Request Generator. You can also select multiple HTTP requests that have common headers or connection

attributes. If multiple requests do not have common attributes, you are prompted to select one request as

template.

Result

The original HTTP requests are disabled, indicating that the playback will now use only the secondary HTTP

request.

3. Run the test.

HTTP test editor overview
With the test editor, you can inspect or customize a test that you recorded.

The test editor lists the HTTP pages for a test, by title. The following example shows the visitIBM test, which was

generated from a recording of these tester actions: type http://www.ibm.com, under Shop for select Software, stop

recording.

447

../topics/taddvar_perf.html
../topics/taddvar_perf.html
../topics/taddvar_perf.html
../topics/taddvar_perf.html

HCL OneTest Performance

448

The test editor window contains two main areas. The area on the left, Test Contents, displays the hierarchy of

the HTTP pages for the test. The area on the right, Test Element Details, displays common options and specific

information about the HTTP protocol. The HTTP options apply to every page an HTTP test.

The Test Variables are listed at the top of the Test Contents area. These variables, which are the host names and

ports in the test, are automatically created when the test is generated. Click a variable name to see where it is used in

the test. By changing these variables, you can share or reuse the test for different configurations and web hosts. User-

defined variables are also listed at the top of the Test Contents area. For more information on this subject, see related

topics.

When you expand a test page, you see a list of the requests for the page, in separate folders, with names that are full

web addresses minus the initial http://. The following example shows the expanded first page of the visitIBM test

with the page selected in the Test Contents area. In this example, the settings that are displayed in the Test Element

Details apply to the selected page.

Chapter 7. Test Author Guide

The primary request, which is listed in bold, is the basis of the page title. The primary request can be the web

address that the tester typed into the browser, a hyperlink that was clicked, or a web address to which the tester was

redirected from another page request. In the example, the primary request shows that the tester was redirected to

www.ibm.com/us/ from the initial page request (www.ibm.com). If the primary request does not return a page title,

the test generator creates a unique name for it from the first node of the web address.

Some requests are highlighted in yellow. This highlighting indicates that these requests contain one or both of the

following types of information:

• A dataset candidate: This is a value, usually one specified by the tester during recording, that the test

generator determined is likely to be replaced by values in a dataset. An example of a dataset candidate

is a string that you search for in a recorded test. The string is highlighted as a dataset candidate on the

assumption that, before playback, you might want to associate the string with a dataset column that contains

appropriate substitute values. For more information on this subject, see related topics.

• Correlated data: These are values in a test, usually one of them in a response and the other in a subsequent

request, that the test generator determined needed to be associated in order to ensure correct test playback.

An example is a photograph that is returned to the browser by a test that searches an employee database.

The test generator automatically correlates employee names with photographs. Suppose that, before running

449

HCL OneTest Performance

450

the test with many virtual users, you replace the employee name searched for in the recorded test with names

in a dataset. Because the test correlates the data, each virtual user searches for a different employee, and the

server returns an appropriate photograph. For more information on this subject, see related topics.

Note: To see an illustration of color coding in performance tests, click Window > Preferences > Test > Test

Editor, and then click the Colors and Fonts tab.

When you expand a request, you see the Response data for the request. As shown in the following example, requests

can also contain Connection data. Because the response is selected in the Test Contents area, the Test Element

Details area displays the response data for this request.

The Response data inside each request shows the data that the web server returned to the browser based on that

request. Collectively, the requests listed inside a page are responsible for everything that was returned by the web

server for that page.

Select multiple responses to display a table under Test Element Details that shows the following elements for the

selected responses:

Chapter 7. Test Author Guide

• Response code

• Response reason

• Response size

• Binary indicator

• Parent request

• Content verification point

• Response code verification point

• Response size verification point

Click Add to add child elements to the selected test element. Alternatively, you can right-click a test element and

select an action from a menu. The choices that you see depend on what you have selected. For example, after you

select a test, you can add a new page, a block of custom code, or an IF condition. After you select a page, you can add

a request or an IF condition.

The Insert push button works similarly. Use it to insert a sibling element before the selected element.

The Remove, Up, Down push buttons, and some Add choices (HTTP Page, HTTP Request, Basic Authentication)

are primarily for use with tests that you write by hand; these actions or choices are likely to break a generated test.

The types of structures that are commonly used in generated tests are explained in Verifying expected behavior on

page 461 and Adding test elements on page .

If you test Siebel applications, see Testing Siebel applications on page 482 for prerequisites and details about the

differences between standard HTTP tests and Siebel tests.

A portion of the test editor can occasionally be obscured. To see the obscured area, move the cursor over one of the

blue lines until it changes to , and drag up or down while holding the left mouse button.

To resize the Test Editor window, do one of the following:

451

../topics/taddtestelement.html
../topics/taddtestelement.html
../topics/taddtestelement.html
../topics/taddtestelement.html

HCL OneTest Performance

452

• Click Ctrl+Alt+> or Ctrl+Alt+< to enlarge or reduce the window.

• Hover at the left side of the Test Element Details area. When you see a vertical blue line, right click the line

and select a size ratio from the menu.

The new size remains the next time you open the window. Double click the blue line to return to a 50/50 ratio.

Related information

Reusing tests on different hosts: Server connection variables on page 478

Providing tests with variable data (datasets) on page

Correlating response and request data on page

Specifying the number of allowable URL redirects during test runs
When you run a test in a load-sharing environment, an unexpected redirection loop might occur during HTTP

processing. An unexpected redirect response occurs when an HTTP request that normally returns a specific

document redirects the browser to another location.

About this task

When the system detects an infinite loop of redirects, the infinite loop is broken, an error verdict for the request is

issued, and the following message is displayed:

Infinite redirection loop detected getting URL n. If this is expected and understood, increase RPT_VMARGS

rptMaxRedirection parameter. Redirected history (from the first URL to the current one).

The default number of redirects is set at 10; however, you can edit the maximum number of redirects by updating the

RPT_VMARGS argument in the –DrptMaxRedirection setting.

../topics/tvardata.html
../topics/tvardata.html
../topics/tvardata.html
../topics/tvardata.html
../topics/tdatacorrtop.html
../topics/tdatacorrtop.html
../topics/tdatacorrtop.html
../topics/tdatacorrtop.html

Chapter 7. Test Author Guide

To modify the number of allowable redirects before an error is reported, complete these steps on the workbench.

1. In the Test Navigator, expand the project until you find the agent computer at the deployment location to

change.

Agent computers are represented by the icon.

2. Right-click the agent computer, and then click Open.

3. Under Property Groups, click General Properties, and then click Add.

4. In the New Property window complete these steps:

a. In the Property Name field, type RPT_VMARGS.

b. In the Operator field, confirm that the operator is =.

c. In the Property Value field, type –DrptMaxRedirection=n, where n is the maximum number of redirects

that can occur before the error message is displayed, and then click OK.

d. Only one RPT_VMARGS argument is allowed for each agent computer location. If multiple RPT_VMARGS

style properties are required, you must separate-Dname=Value with a space. For example,

-DrptMaxRedirection=15 -DanotherProperty=Value.

Result

The following New Property window sets the maximum number of redirects to 15:

Cutting and pasting in tests
You can cut, copy, and paste in HTTP tests.

The test editor supports the standard cutting, pasting, and copying of test elements by using the Edit menu or

keyboard shortcuts. Test elements include HTTP pages, HTTP page elements, and requests. If you cut a test element,

that element is not actually removed from the test until you next cut or paste.

If you copy a test element, that element is not actually copied until you next paste. For this reason, do not close the

test from which you copy a test element until you have pasted the test element into another test. If you copy a test

element from a test, and then close the test, nothing is pasted when you attempt to paste the test element. When you

cut an element, it becomes unavailable (gray) and is displayed in italics. When you paste an element, it is displayed in

italics until you save the test.

If you copy a request from one test to another and the connection details are same, the connections are copied. If the

server URL in the another test is different, the connection detail is not copied. Click Change to add a new connection.

453

HCL OneTest Performance

454

Note: Cutting and pasting can break correlations between test elements. For example, it is possible to cut a

test element that contains a reference that a later portion of the test requires. When you cut, copy, or paste

HTTP test elements, you are not warned of potential data correlation problems. You must ensure that the

editing operation does not cause a data correlation error.

Defining requirements in tests
You can define requirements for elements in a test. These requirements specify acceptable thresholds of

performance and validate service level agreements. Starting from version 9.2.0.1, you can define both performance

and functional requirements in the tests. The verdict of the test is computed based on the requirements defined in the

schedule. You can view the verdict in the Requirements report.

About this task

You can set requirements on protocol-specific test elements, on schedule elements, on data created by custom code,

and on collected resource usage data. You define a requirement as standard or supplemental. A standard requirement

determines that the requirement is significant enough to cause the entire run to be declared a failure if it fails. A

supplemental requirement, although important, is not significant enough to cause the run to fail. For example, a

supplemental requirement might be a request from development to validate a very specific data item provided by

WebSphere® PMI monitoring.

To define a requirement for the elements in a test:

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. In the Test Contents area, select the page or the request that will have the requirement.

You can select multiple pages or multiple requests.

3. In the Test Element Details area, click the Advanced tab, and select Enable Requirements.

Result

A table of requirements that apply to the page or to the request is displayed.

4. Click the requirement to define, and add a definition, as follows:

Chapter 7. Test Author Guide

Option Description

Name You can change the name of a requirement to im­

prove readability. However, changing a requirement

name causes a mismatch between the Requirements

report, which uses the changed name, and the oth­

er reports, which use the default name. Therefore,

when you change a requirement name, be sure to

keep track of the original name.

Operator Select an operator.

Value Type a value.

Standard Select to make the requirement standard. A standard

requirement can cause a test to have a verdict of fail.

Clear to make the requirement supplemental. In gen­

eral, supplemental requirements are used for require­

ments that are tracked internally. A supplemental re­

quirement cannot cause a run to fail, and supplemen­

tal results are restricted to two pages of the Perfor­

mance Requirements report.

5. Optionally, apply the defined requirement to other test elements:

a. In the Test Contents area, select the test elements that will have the requirement.

The elements must be of the same type, for example, all page elements.

b. In the Requirements table, right-click the requirement row, and select Copy Requirements.

6. Optionally, select Hide Undefined Requirements to hide the shaded rows, which indicate that a requirement is

not defined, and improve readability.

7. Select a requirement and click Clear to remove its definition. The requirement is still available and can be

redefined.

8. After you have defined a number of requirements on test elements, you might want to see all of the

requirements defined for the test. To do so:

a. In the Test Contents area, click the name (root) of the test.

b. In the Test Element Details area, sekect the Requirements category.

Result

The Requirements page displays a summary of the performance and functional requirements defined

in the test.

c. To navigate to the original requirement definition, double-click the requirement row.

455

HCL OneTest Performance

456

Exemple

You can define requirements in a test or in a schedule. When you define a requirement in a test, the requirement is

defined individually for each test element—even if you select multiple test elements and apply the requirement to all

of them at the same time. When you define a requirement in a schedule, the requirement is applied to the aggregate

of test elements.

For example, assume that you select every page in a test and define this requirement: Average response time for

page [ms] [For Run] must be less than 5 seconds. This means that if one page in the test has a response time of 6

seconds, the requirement on that page fails. The other pages, which have a response time of less than 5 seconds,

pass.

Assume that you open a schedule and define this requirement: Average response time for all pages [ms] [For Run]

must be less than 5 seconds. This measures the average response time for all of the pages. One page can have a

response time of 30 seconds, but if enough pages have a response time low enough to counter the negative effect of

that one page, the requirement passes.

For information on defining requirements in schedules, see Defining requirements in schedules on page 731.

Adding an authentication folder
Web application servers can include an option to force a login. You might have recorded a test with this option

disabled but want to run the test with the option enabled. Adding an authentication folder to the appropriate test

request lets you do this without recording the test again.

To add an authentication folder to a request:

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. Click the request that will contain the authentication folder.

3. Click Add and select Basic Authentication.

Result

A folder named Authentication is added to the request, and the Test Element Details area displays the Userid,

Password, and Realm fields.

Adding or removing header in batches
You can add or remove HTTP header from multiple HTTP requests or responses in batches to improve the script

efficiency. For example, during the development process, there might be HTTP headers change or addition of new

HTTP headers to the requests. These changes in the HTTP headers will result in the test script failure.

Adding HTTP header to multiple HTTP requests
During the development process, there might be a change in HTTP headers. To modify the test script in a faster and

easier way, you can add the HTTP headers in batches to the requests.

Chapter 7. Test Author Guide

About this task

To add HTTP headers to multiple HTTP requests at once:

1. Open the test.

2. In the test hierarchy, select a request (press Ctrl key to choose multiple requests).

3. From the Options drop-down list, select Add > HTTP Header. The Add/Edit Headers window opens.

4. To add a standard header:

a. In the Available Headers list, locate the header to add and click it. Type the name of the header in the

Quick search field and select the type of header that you are looking for in Header types list to quickly

locate a header in the Available Headers list.

b. Click the right-angle bracket (>). The selected header moves into the Selected headers list and your

cursor is placed in the value column.

c. Type the value for the header.

5. To add a custom header:

457

HCL OneTest Performance

458

a. In the Header types list, select Custom.

b. At the bottom of the window, in the New custom header area, type the header information in the Name

field and the Value field, and then click Insert. The custom header is added to the Selected headers

list.

c. When you have finished adding headers, click OK.

Removing HTTP header from multiple HTTP requests
During the development process, there might be addition of new HTTP headers. To modify the test script in a faster

and easier way, you can remove the HTTP headers in batches from the requests.

About this task

To remove HTTP headers from multiple HTTP requests at once:

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. Right-click the test name, and then select Test Search.

Chapter 7. Test Author Guide

3. In Search for text, type the header name to locate.

4. In the Elements to search list, select the HTTP Requests check box.

5. On the right-hand side, where you can define how to search a selected element. Select the Headers Names or

Header Value check box depending on the input provided in the Search for text field.

459

HCL OneTest Performance

460

6. Click Search. The Test Editor window displays with the number of matches found.

7. In the Search view, select a result (press Ctrl key to choose multiple results).

Chapter 7. Test Author Guide

8. Right-click the selected results and click Delete Header.

Verifying expected behavior
To check whether an expected behavior occurred during a run, you add verification points. When you run a test that

contains a verification point, an error is reported if the expected behavior did not occur. When global verification

points are disabled (the default), you can enable verification points for a specific test.

Enable verification points globally. Click Window > Preferences > Test > Test Generation > HTTP Test Generation.

Specifying the expected page title
Page title verification points verify that the primary request for a page returns the expected page title. If the returned

title is unexpected, the test log reports a failed verdict event. Although the comparison is case-sensitive, it ignores

multiple white-space characters (such as spaces, tabs, and carriage returns).

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. Right-click the test name or a page, and select Enable Page Title VPs.

Your choice determines whether the verification point is added to all pages in the test or to one page.

3. Click the page title to display the editing fields in the Test Element Details area.

4. Ensure that the Expected page title field shows the string that you expect to be included in the response.

Although you can change the string, the value listed is what was returned between the <title></title> tags

during recording.

461

HCL OneTest Performance

462

What to do next

You can also change the preferences so that Page Title verification points are set automatically. To do this:

1. Change the HTML page title. Click Window > Preferences > Test > Test Generation > HTTP Test Generation

> Verification Points, and select HTML Page Title. This changes subsequent tests that you record.

2. Optionally, regenerate existing tests with the changed preference, as shown in Generating a new test from a

recorded session on page 444.

Specifying the expected response code
Response code verification points verify that the response code matches an expected value. If the returned code is

does not match, the test log reports a failed verdict event. You can specify an exact response code or verify that the

code is within the same category.

About this task

You can either change the preferences so that Response Code verification points are set automatically for all the

tests or you can configure each test setting. To set response code in the preferences:

1. Change subsequent tests that you record. Click Window > Preferences > Test > Test Generation > HTTP

Test Generation > Automatically include verification point of, select HTTP Return Code and click Relaxed or

Exact. This changes subsequent tests that you record.

2. Optionally, regenerate existing tests with the changed preference, as shown in Generating a new test from a

recorded session on page 444.

To set response code setting for a test:

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. Right-click the test name, a test page, or a request, and select Enable Response Code VPs.

Your choice determines whether a verification point is added to every request in the test, to every request in a

page, or to a particular request. The following figure shows a response code verification point within a test:

Note: When you modify a test, the modified items appear in italic type. The italic type changes to

regular type after you save the test.

3. Click the verification point to display the response code editing fields in the Test Element Details area.

Chapter 7. Test Author Guide

4. To disable an individual response code verification point, clear the Enable verification point field.

5. From the Select matching method list, click an option to indicate how closely the returned response code

must match the recorded value.

Option Description

Relaxed If the recorded response code is 200, 201, 202, 204,

206, 301, 302, or 304, then a returned response code

of any of those values causes the verification point

to pass. If the recorded response code is any other

value, it is the same as if you had specified an exact

match.

Exact An error is reported if the returned response code

does not match the recorded value.

Specifying the expected response size
Response size verification points verify that the number of bytes returned in a response is what you expected. If the

byte count does not match, the test log reports a failed verdict event. You can specify an exact response size or verify

that the byte count is within a range.

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. Right-click the test name, a test page, or a request, and select Enable Response Size VPs

Your choice determines whether the verification point is added to all test pages, to a page in the test, or to a

particular request. The following figure shows a response size verification point within a test:

463

HCL OneTest Performance

464

Note: When you modify a test, the modified items appear in italic type. The italic type changes to

regular type after you save the test.

3. Click the verification point to display the response size editing fields in the Test Element Details area.

Responses to HEAD requests, by definition, have no contents; the size is always 0.

4. To disable an individual response size verification point, clear the Enable verification point field.

5. From the Select matching method list, click an option to indicate how closely the response size that is

returned in the page request must match the recorded response size.

◦ The default matching method for a primary request is Range, with a percentage adjustment based

on the value in the field on the right. (You can change the percentage basis as well as the matching

method.) When the test is run, an error is reported if the actual response size falls outside the adjusted

range.

◦ For other requests, the default matching method is Exact. When the test is run, an error is reported if

the response size does not exactly match the expected size.

What to do next

You can also change the preferences so that Response Size verification points are set automatically. To do this:

1. Change subsequent tests that you record. Click Window > Preferences > Test > Test Generation > HTTP

Test Generation > Verification Points, and select HTTP Response Size. This changes subsequent tests that

you record.

2. Optionally, regenerate existing tests with the changed preference, as shown in Generating a new test from a

recorded session on page 444.

Chapter 7. Test Author Guide

Specifying the expected content
Content verification points verify that the response contains—or does not contain—an expected string. If the content

returned is unexpected, the test log returns a failed verdict event. You can create a content verification point from

specific response text.

To create a content verification point from a response or a portion of a response:

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. Click the response that contains the contents that you want to use for the verification point. If you do not see

the contents, press Ctrl+Shift+Spacebar in the Test Element Details area, under Content.

3. Select the content for the verification point, right-click, and select Add to Content Verification Point.

Result

The content verification point and the selected string are displayed in the Test Contents area.

4. Edit the new content verification point as needed. You can use the Add, Insert, and Remove buttons to

manipulate content verification points and content verification point strings. After you select a content

verification point or content verification point string in the editor, you can also edit the verification points and

strings by using the controls in the Test Element Details area. For example, you might want to change part of

the hard-coded response contents to a regular expression. To substitute from any data source that exists in

the test, select the entire string or a portion of the text string, and then right-click, and select Substitute.

Note: Responses to HEAD requests, by definition, have no content. Therefore, a content verification

point that attempts to match a string in a response to a HEAD request will fail.

Specifying the expected content for multiple requests
Content verification points verify that the response contains—or does not contain—an expected string. If the content

returned is unexpected, the test log returns a failed verdict event. You can advance through a test and create content

verification points in multiple requests, or in the entire test.

To create content verification points in multiple requests:

1. Adjust the verification point scope. The default is to create content verification points in primary requests only

and to skip responses with binary contents. Click Window > Preferences > Test > Test Editor > HTTP Test.

Select or clear Skip responses with binary content and Create only in primary responses as needed.

2. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

3. Right-click the test name, a test page, or a request, and select Verification Points > Enable Content VPs.

Your choice determines whether the verification point is added to all test pages, to a page in the test, or to a

particular request. Confirm that you want to modify the test elements, and click OK.

465

HCL OneTest Performance

466

4. In the Create/Enable Content Verification Point window, set Verification fails if to either At least one of the

checked strings is found or to None of the checked strings are found.

5. In the list of strings in the Text column, select the strings that the content verification point should search for.

◦ If you are editing an HTTP test, the window lists user-defined strings.

◦ If you are editing a Siebel HTTP test, the window also lists strings of interest in Siebel applications.

6. To create a new string from scratch, click New String. To create a new string by editing another string, click it

and click Duplicate. To edit an existing string, click Edit. To remove a string, click Remove.

7. Optionally, insert a regular expression into the verification point. The most common regular expressions are

* for any number of characters, ? for any single character, and \ for an escape to enter literals. For detailed

information on Java™ regular expressions, see the Java™ documentation.

8. The Create/Enable Content Verification Point window advances through the requests. The preference

settings that you selected in the first step determine whether secondary requests and requests containing

binary data are affected. Select one of the following:

Option Description

Skip Advances to the next request without inserting a veri­

fication point in the current request.

Enable Inserts a verification point into the current request

and advances to the next request.

Enable All Inserts a verification point into every test request (if

the scope is the test) or every page request (if the

scope is a page).

By default, a string that you set for a content verification point is available to all tests. To make the string

available only to a specific test, or to clear the list of strings displayed when you create a verification point,

change the preferences in the Content Verification Points section of Window > Preferences > Test > Test

Editor > General.

Specifying error-handling behavior
You can specify how error conditions are handled when running a test or schedule. Error conditions include

verification point failures, connection failures, server timeouts, custom code alerts, and problems with data

correlation.

About this task

You can specify error-handling behavior for the workbench, schedules, tests, and test elements/steps. The Errors

report displays the error conditions and error behavior that occurred in a test or schedule. When you set the error-

handling behavior for the workbench, it is applied to all the tests in the workbench. To apply it for the workbench, click

Window > Preferences > Test > Test Execution > Error handling.

Starting from 9.2, there is a new Error handling preference - Mobile or Web UI Fatal Error - to allow text execution for

a compound test to continue even after a fatal exception in one of the tests in a compound test.

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Chapter 7. Test Author Guide

1. In the Test Navigator, browse to a test, and double-click it.

Result

The test opens.

2. In the Test editor, complete one of the following steps:

a. To specify error-handling behavior for a request/step or other elements in the test hierarchy, in the Test

Contents section, select the element and in the Test Details section, click the Advanced tab.

b. To specify error-handling behavior for an element such as a connection, verification point, substitution,

or reference, select the element, and then click Change. Skip to step 5.

c. To specify error-handling behavior for a dataset that is associated with a test, on the Common Options

page, select the dataset, and then click Dataset Properties. Click Change. Skip to step 5.

3. Under Error Handling, expand Click to show conditions.

Result

The error condition table is displayed. The error condition table shows all possible conditions that can be

handled in the test.

4. Select the check box next to the condition for which to specify behavior.

Result

A window opens where you can specify the action to take and the message to log when the condition occurs.

5. To apply an action when the specified condition occurs, select the Override action upon error check box .

Option Description

Continue Click to continue running the test.

Exit transaction Click to exit a transaction when the specified condi­

tion occurs. Select the Innermost or Outermost trans­

action, or type the name of a transaction.

Exit loop Click to exit a loop when the specified condition oc­

curs. Select the Innermost or Outermost loop, or type

the name of a loop.

Continue to next iteration of loop Click to continue to the next iteration of a loop when

the specified condition occurs. Select the Innermost

or Outermost loop, or type the name of a loop.

Exit test Click to exit the test when the specified condition oc­

curs.

Exit user Click to stop the virtual user that encounters the

specified condition.

For a Web UI test, this action will stop the test execu­

tion.

Terminate run Click to stop the run when the specified condition oc­

curs.

467

HCL OneTest Performance

468

6. To contribute to the health of the page, transaction, or loop, select the Override contribution to health status

check box and select Yes. The respective reports display the health of the page, transaction, or loop.

7. Optional: To write a message to the test log when the specified condition occurs, select the Override log

message upon error check box and type a message.

8. Click OK.

Exemple

To stop running a test when a substitution failure occurs in data correlation, select the Substitution Failure check

box. Click Exit Test, and then click OK. The error-handling behavior that is specified closest to where an error occurs

takes precedence. If a specific request is set to continue if a substitution fails, and the schedule is set to stop if a

substitution fails, then the schedule will continue running if the substitution fails in that request.

Related reference

Error conditions on page 1379

How loops affect the state of virtual users
If verification points fail unexpectedly during a run, the cause might be that virtual users in loops do not maintain

their original state. To enable each virtual user to enter the loop in the original state, you can modify the test's HTTP

options or add custom code.

About this task

By default, the cookie cache for a virtual user is not reset during a test run. This is consistent with a browser's

behavior. If a test or schedule contains loops, and a web server sets a cookie during the first iteration of the loop, that

cookie is "remembered" on subsequent iterations.

However, in certain instances, you might want to clear all cookies cached for a particular virtual user. For example, if

you want each iteration of a loop to appear as a new user, you must reset the cache. If you do not, although the test

completes, verification points that you have set within the test may fail.

There are two ways to reset the cookie cache, and each way has different effects.

To reset the cookie cache when looping in the schedule, or when the test follows another test in the schedule, use the

following method. This resets the cache whenever the test is entered. Even if your tests do not loop, use this method

if you are running back-to-back tests or Siebel tests.

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. On the HTTP options page, select Clear cookie cache when the test starts.

To reset the cookie cache from one loop iteration to the next when you have put a loop around the entire contents of

the test, and the loop is inside the test, add custom code to the test and call an API, as follows:

Chapter 7. Test Author Guide

1. Run the test or schedule to add the current Java™ libraries to the class path.

2. Open the test and select the test element located at the point where you want the cookie cache to be reset.

Typically, this is at the end of the loop.

3. Click Add or Insert and select Custom Code.

Add appends the custom code to the bottom of the selected element (test or test page). Insert adds the

custom code above the selected page or page request.

4. Add the following Java™ import statement: Import

com.ibm.rational.test.lt.execution.http.util.CookieCacheUtil;

5. Add the following Java™ code inside the exec method: CookieCacheUtil.clearCookieCache(tes);

Exemple

The following example shows a custom code addition that resets the cookie cache. The lines that you add to the

generated custom code template are shown in bold:

Note: For another example of custom code that sets and clears cookies, see Setting and clearing cookies for

a virtual user on page .

package test;

import com.ibm.rational.test.lt.execution.http.util.CookieCacheUtil;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

public class Class1131739398417 implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 public Class1131739398417() {
 }
 public String exec(ITestExecutionServices tes, String[] args) {
 CookieCacheUtil.clearCookieCache(tes);
 return null;
 }
 }

Splitting a test
After you record a test, you can split it into smaller tests. By splitting a test, you can create modular building blocks of

smaller tests and combine them to make bigger tests. The original test is unchanged.

About this task

With the test-splitting capability, you can record a relatively long scenario with many functional steps against an

application and then, in the editor, dissect the test into many smaller test segments, which you can run in various

orders in a schedule. The wizard determines which variables need to persist among the split tests and creates the

linkage so that you do not have to write custom code.

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

469

../topics/rclearcookies.html
../topics/rclearcookies.html
../topics/rclearcookies.html
../topics/rclearcookies.html
../topics/rclearcookies.html

HCL OneTest Performance

470

2. Select one or more elements in the test for splitting into a new test.

You must select contiguous elements. You can select elements, except for variable containers, that are

immediate children of the root node of the test.

3. Right-click the selected elements, and then select Save Selection As New Test.

4. In the Save Selection as New Test window, type a file name for the new test, and optionally provide a

description or comment for the split test.

a. Select Also use description text for comment at beginning of each test to add the Description/

comment field as a comment at the beginning of the split test.

b. Select Mark the selection in the editor to mark the selection in the original test with marks of the form

[N-> where N is a positive integer that corresponds to the number of saved selections. For example,

the first time you save a selection as a new test, the selection in the original test is marked with this

identifier:[1->. If you save three selections, the original test is marked with these identifiers: [1->, [2->,

and [3->.

c. Click Next.

Selecting Mark the selection in the editor makes it easier to split a test into multiple parts. The marks in the

editor are removed when you close the test. You cannot save marked test elements. Right-click and select

Clear Range to remove the marks if you want to save the selected test elements again.

5. Optional: On the next page of the Save Selection as New Test wizard, examine the changes to be performed

as a result of the split.

Typically, you leave Link tests through variables and HTTP Specific Changes selected; clearing these options

might make a split test unusable or produce unpredictable results. However, you can clear specific Link tests

through variables boxes if you do not want certain data to be correlated between the tests.

Chapter 7. Test Author Guide

6. Click Finish.

Results

The new test is created from the selected elements. The test variables that are created by splitting a test are listed

in the Variables Created by Split Test container in the new test. For best results, open the Variables Created by Split

Test container in the new test and make sure that the variables are created and assigned with values by a test that is

executed before the newly split test. For more information on test variables, see About test variables on page

and Declaring and assigning test variables on page .

The original test is marked if you select the Mark the selection in the editor option. To remove the marks, right-click

the selected elements in the original test and select Clear Range. You are also prompted to delete the new test. Click

Yes to delete the new test or No to preserve it.

Exemple

Be aware of the choices that you make when you split a test and rearrange the split tests in a schedule. Assume that

the visitIBM recorded test contains the following actions:

• Logging on to a server.

• Creating an entry on the server and removing the entry.

• Editing an entry, validating that the change occurred, and restoring the entry.

• Logging off of the server.

You want to split the test into four parts: Logon, Create, Edit, and Logoff. You need to split the test four times.

471

../topics/cabouttestvariables.html
../topics/cabouttestvariables.html
../topics/cabouttestvariables.html
../topics/cabouttestvariables.html
../topics/tcreatetestvar.html
../topics/tcreatetestvar.html
../topics/tcreatetestvar.html
../topics/tcreatetestvar.html

HCL OneTest Performance

472

• Open visitIBM and select the logon actions. Name the new test Logon, which contains the Logon actions.

• Select the create actions. Name the new test Create.

• Select the edit actions. Name the new test Edit.

• Select the logoff actions. Name the new test Logoff.

You then create a schedule that runs virtual users selected from a dataset. Each virtual user runs the Logon test,

performs various combinations of the Create and Edit tests, and finally runs the Logoff test.

Be aware, however, that when you split the tests, the Create test might have initialized variables that the Edit test

uses. Therefore, if you reverse the order during the run (that is, run the Edit test before the Create test), make sure that

the variables that the tests share are initialized and set correctly.

Splitting a test page
You can split an HTTP page into two contiguous pages. The page title, think times, primary request, and delay are

automatically recalculated for the affected pages. Customized page titles, think times, primary requests, and delays

revert to the default values.

Before you begin

When you inspect a test, you might notice that some page boundaries are not at the correct place. A common cause

is that, during recording, you did not wait for the page to fully load. Although you can rerecord a test, if your test is

long or complex, it is often easier to split the incorrect page when you edit the test, rather than to rerecord the entire

test.

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. In the test, expand the page that you want to split.

3. Right-click on the request where you want the split to occur, and select Split page here.

4. In the Split HTTP Page window, you can change the location of the split by clicking on another page element.

You can also create a new page, combine the elements above the insertion point with the previous page, or

combine the elements below the insertion point with the next page.

Chapter 7. Test Author Guide

5. To split the page, click Finish.

What to do next

You can also set preferences so that new pages are generated when the delay exceeds a specified value. Click

Window > Preferences > Test > Test Generation > HTTP Test Generation, and click the Protocol tab. Enter a value

for Generate new page if delay between requests is >.

Merging test pages
You can two or more contiguous HTTP pages into one page. The page title, think times, primary request, and delay

are automatically recalculated for the affected pages. Customized page titles, think times, primary requests, and

delays revert to the default values.

About this task

When you inspect a test, you might notice that some page boundaries are not at the correct place. These extra pages

are caused by a variety of reasons. For example, during recording you might hover over a "hotspot" that fetches

473

HCL OneTest Performance

474

images as you move on and off of the spot. In this case, some pages in the test, which properly belong to the previous

page, contain only .gif files. Although you can rerecord a test in the hope of fixing this problem, if your test is long or

complex, it is often easier to merge the incorrect page when you edit the test, rather than to rerecord the entire test.

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. Select the pages to merge (the pages must be contiguous) and select Merge Selected Pages

3. The Merge Pages window lists the pages that you are merging. From this list, select the page that will contain

the other pages.

4. Optionally, click Keep empty pages to keep the same number of pages in the test. For example, if you select

this option and merge two pages, one page will contain all of the requests and the other page will be empty.

What to do next

You can also set preferences so that new pages are not generated when the think time is less than specified value.

Click Window > Preferences > Test > Test Generation > HTTP Test Generation, and click the Protocol tab. Enter a

value for Do not generate new page if think time is <.

Disabling and enabling secondary HTTP requests
You can disable all secondary requests within an HTTP performance test or a subset of requests in the test.

Secondary requests are all requests within a page other than the primary request.

About this task

To disable other elements in tests or schedules (for any protocol), see Disabling portions of a test or schedule on

page .

1. In the Test Navigator, browse to the test, and double-click it.

Result

The test opens.

2. In the Test Element Details area, click the HTTP Options tab.

3. At Secondary request behavior, click Modify.

4. In the Enable or Disable Secondary Requests box, select one or more of the following options:

Option Description

All secondary Selects all secondary requests.

Images Selects all secondary requests that are image-relat­

ed. This selection includes all secondary requests

where the Content-type header of the response con­

tains image or the path of the URI of the request con­

tains a .gif, .png, .jpg, .bmp. or .tif extension.

../topics/tdisabling.html
../topics/tdisabling.html
../topics/tdisabling.html
../topics/tdisabling.html
../topics/tdisabling.html
../topics/tdisabling.html

Chapter 7. Test Author Guide

Option Description

Host/Port based Selects all secondary requests that use the speci­

fied host:port pair for connections. A list of host:port

pairs in the test is displayed.

User-defined Selects all secondary requests where the user-speci­

fied string, or a string matching a user-specified regu­

lar expression, is in the request URI.

5. You typically keep the boxes under Do not disable secondary requests selected, which leaves them enabled.

However, if you have extensive knowledge of the system under test and have already done some

troubleshooting, you might clear these boxes in the following cases:

◦ With responses containing set-cookie headers: If the cookies set in a particular request are not

important to the remaining requests, you may disable them. This decision requires you to know how

the system under test uses cookies.

◦ With data sources used by enabled requests: If a test contains superfluous data correlation, you may

disable it. This decision requires you to know how the system under test uses data correlation.

6. Select Disable or Enable to modify the secondary requests.

Result

The requests are now enabled or disabled.

Adding custom actions to requests
After an HTTP test is generated, you might want to add a few actions before or after a particular request is

processed. For instance, for preprocessors, you can modify the headers before sending them to the server. Similarly,

for postprocessors, you can extract data from the response and set it to a variable.

About this task

The actions to be processed must be coded in Java. Note that the pre processor is the last thing to be sent to the

server after all the processing (data substitution) for the request is complete. Also, a postprocessor is the last thing

to be received after all response processing is complete from the server.

You can add preprocessors and postprocessors at the test level and at the request level. When they are added at both

the levels, the ones at the request level takes precedence.

The preprocessors and postprocessors for the HTTP extension uses the following interfaces and methods:

• IHTTPRequestInterface: Use this interface to process an action before the request is processed.

◦ setURI: Use this method to set or change the URL that is sent to the server.

◦ getHeader: Use this method to get the name of the header that requires a value. If there are more than

one header with the same name, only the first value is returned.

◦ removeHeader: Use this method to remove the name of the header.

475

HCL OneTest Performance

476

◦ setHeader: Use this method to set the name and value for the header. If the header does not exist, it

is created. If the header exists, the value is changed. If there is more than one header with the same

name, only the first header is changed.

◦ getContent: Use this method to view the content of the HTTP request.

◦ setContent: Use this method to set the content or to override the existing content of the HTTP request.

• IHTTPResponseInterface: Use this interface to process an action after the request is processed.

◦ getResponseContent: Use this method to view the content of the response. If the response content

exceeds the specified limit, the content is truncated.

◦ getResponseHeader: Use this method to view the name of the header. If there are more than one

header with the same name in the response, only the first header is returned.

◦ getReturnCode: Use this method to view the return code of the current response.

• IHTTPRequestCommonInterface: Use this interface for both request and response interfaces.

◦ getURI: Use this method to view the current URI of the request.

◦ getHeaders: Use this method to view all of the headers associated with the request for pre processing

or all of the headers associated with the response for post processing.

Preprocessor for the HTTP extension

The following is the sample code for the preprocessor for the HTTP extension:

package customproc;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.execution.http.external.IHTTPRequestPreProcessor;
import com.ibm.rational.test.lt.execution.http.external.IHTTPRequestInterface;

/**
 * @author Sample Provider
 */
public class mypreproc implements
 com.ibm.rational.test.lt.execution.http.external.IHTTPRequestPreProcessor {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public mypreproc() {
 }

 /**
 * For javadoc select 'Help Contents' in the
 * Help menu and select 'Extending HCL OneTest Performance functionality' -> 'Extending test execution
 with custom code'
 */

Chapter 7. Test Author Guide

 public void exec(ITestExecutionServices tes,
 com.ibm.rational.test.lt.execution.http.external.IHTTPRequestInterface arg) {
 // IHTTPRequestInterface allows users to interact with the HTTP request before the request is sent.
 // This is the last thing to happen before the request is sent to the server
 // Users also have the full capability of the tes methods that can be used in custom code. You can
 store values in
 // user data area to retrieve at a later time, logging, and many other things

 // User can retrieve and manipulate header values
 arg.getHeader("Content-Type"); // users can get a header value
 arg.setHeader("sessionId", "123"); // users can add a header or change a header value by calling
 setHeader

 // User can retrieve and manipulate POST/PATCH/PUT content
 arg.getContent(1); // This is used to retrieve the POST/PATCH/PUT data associated with a request.
 // In the case of multi-part mime there can be more than one "chunk". Specify the number of the chunk
 of data you would like

 arg.setContent(1, "This is the content I really wanted"); // user can override what is in the POST
 data chunk with anything they would like

 // User can get and set the URI
 arg.getURI(); // retrieve the current URI
 arg.setURI("/myURIIsGreat/go");

 return;
 }

}

Postprocessor for the HTTP extension

The following is the sample code for the postprocessor for the HTTP extension:

package customproc;

import java.util.List;

import com.ibm.rational.test.lt.execution.http.external.HTTPHeaderData;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * @author Sample Provider
 */
public class mypostproc implements
 com.ibm.rational.test.lt.execution.http.external.IHTTPRequestPostProcessor {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public mypostproc() {
 }

 /**
 * For javadoc select 'Help Contents' in the
 * Help menu and select 'Extending HCL OneTest Performance functionality' -> 'Extending test execution
 with custom code'

477

HCL OneTest Performance

478

 */
 public void exec(ITestExecutionServices tes,
 com.ibm.rational.test.lt.execution.http.external.IHTTPResponseInterface arg) {
 // Users can retrieve information from the response directly without having to create references

 List<? extends HTTPHeaderData> hdrs = arg.getHeaders(); // this returns the entire list of headers
 for (HTTPHeaderData hdr: hdrs){
 if (hdr.name.equals("MyHeader")) {
 // do some processing. // maybe store value in a variable to use later
 tes.setValue("MyVar", ITestExecutionServices.STORAGE_USER, hdr.value);
 break;
 }
 }
 // the alternative to above is to instead just call directory with the header name you want
 arg.getResponseHeader("MyHeader");

 // you can get the response content and perform some kind of data extraction on it
 arg.getResponseContent();

 // you can evaluate the return code and do what you want with it. Maybe make a custom counter and
 report it
 arg.getReturnCode();

 return;
 }

}

To add a preprocessor or postprocessor:

1. Select a request in the Test Content area of the Test editor.

2. Click the Advanced tab in the Test Details area of the Test editor.

3. Click Create in Preprocessor to add a custom action before a request is processed.

4. Specify a name for the Java file, and then click Finish.

Result

A new Java file opens. Add the custom actions to be processed before the request and save the file.

5. Click Create in Postprocessor to add a custom action after a request is processed, and then follow step 4 on

page 478.

What to do next

You can now run the test to verify if the actions specified in preprocessors or postprocessors returned expected

results.

Reusing tests on different hosts: Server connection variables
Your tests represent a significant investment in time and effort. You can share or reuse them for different

configurations and web hosts by changing the variables for the host name and port.

Before you begin

Chapter 7. Test Author Guide

Before you begin, confirm that test generation preferences are set to support data correlation. Click Window >

Preferences > Test > Performance Test Generation > HTTP Test Generation, click the Data Correlation tab, and

verify that Automatically correlate host and port data is selected. If not, select that option and regenerate the test.

About this task

Perhaps you develop the tests on a lab computer and then they want to run them on a production server. If the

application that you are testing is identical on both computers, you can change the host name and reuse the tests on

the production server.

To change the name of the host or proxy server on all requests in a test:

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. Expand the Test Variable section at the top of the test, and click the Server Connection variable that contains

the hostname that you want to change.

3. In the Test Element Details area, perform the following steps:

a. Type the new host name in the Host field.

b. Optional: Type a new port number in the Port field.

Result

The new hostname and port combination is correlated to the test variable, which contains the value currently

being used.

Results

Note: To change the host names and ports of many tests, put the server connection variable in a dataset

and associate the dataset with the tests. When you change the name and port in the dataset, that change is

propagated throughout the tests in the dataset. For more information, see Creating a dataset associated with

a test on page .

Converting tests to use SSL connections
You can convert a test that was recorded without Secure Sockets Layer (SSL) connections to use SSL connections.

About this task

If you develop performance tests on a lab computer that does not use secure connections, and then you must run the

tests against a production server that requires SSL connections, you can add SSL to the server access configurations

and reuse the tests.

To convert a server access configuration to use SSL for all associated connections:

1. In the Test Navigator, browse to the test, and double-click it. The test opens.

2. Expand the Test Resources section at the top of the test.

3. Right-click the server access configuration that corresponds to the server where you want to add SSL, and

then click Add > SSL.

Result

479

../topics/tcreatedpintest_perf.html
../topics/tcreatedpintest_perf.html
../topics/tcreatedpintest_perf.html
../topics/tcreatedpintest_perf.html
../topics/tcreatedpintest_perf.html

HCL OneTest Performance

480

An SSL element is added as a child of the server access configuration.

4. In the Test Element Details area for the server access configuration, type a new number in Port if the server

uses a different port for SSL communication. If the port number is correlated with a server connection

variable, select the port number, right-click, and select Go To > Variable: variable_name to navigate to the

variable. Change the port number in the server connection variable.

5. In the Test Element Details area for the SSL element, make a selection in Protocol, and type or select a name

in Cipher.

6. Repeat the same steps for all server access configurations to convert to use SSL.

Results

When you run the test, the connections that are associated with the server access configurations use SSL.

Working with Server Name Indication (SNI) recordings
If you have recorded against a server that supports Server Name Indication (SNI), an extension of the TLS protocol,

the recording session file displays true for the SNI Extension field. There might be a need for you to access both

SNI and non-SNI applications from the same server. To run the same test without using the SNI extension, you can

manually change the value to false.

About this task

The Server Access Configurations resource of the test script also have SSL entries. Each SSL entry displays which

TLS version and Cipher value was used. To edit multiple SSL entries, select them and in the Detail area, right-click the

entries and click Edit multiple SSLs.

Viewing a test in the Protocol Data view
The Protocol Data view enables you to inspect the actual test data. You can see requests, response headers, and

response contents, as well as the rendered images that you see through your browser. Use this view to obtain the

information you need to add custom code or to manually correlate data. This view also lets you compare the recorded

data with the data retrieved during a run.

Chapter 7. Test Author Guide

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. Click the Protocol Data tab to open the view.

Result

Tip: If you cannot locate the Protocol Data tab, click Window > Show View > Protocol Data.

3. In the test, click the line that corresponds to the page, request, or response that you want to view.

4. In the Protocol Data view, click the tab that corresponds to the type of data or view of interest.

Result

The selected data is displayed in the Protocol Data view.

What to do next

If you have problems during playback, you can compare the data that was recorded with the data that was retrieved

during the run. For information on displaying the data retrieved during the run, see Inspecting HTTP test logs in the

Protocol Data view on page 841.

481

HCL OneTest Performance

482

Testing Siebel applications
When you record a Siebel application, a Siebel-specific test is automatically generated. However, before you run this

test, install the Siebel Test Automation library and edit the test to use built-in Siebel variables.

Note: HCL OneTest™ Performance 64-bit workbench does not support testing Siebel applications.

Prerequisites for Siebel testing
To test Siebel applications, the Siebel Test Automation and the Microsoft™ C++ runtime libraries must be installed on

the workbench computer.

About this task

Siebel applications run only on Windows™ operating system, therefore you must run the Siebel tests only on

Windows™. You must not add a Siebel test to a schedule that you deploy to run on operating systems other than

Windows™.

Note: HCL OneTest™ Performance 64-bit workbench does not support testing Siebel applications.

To install the prerequisites for testing Siebel applications:

1. Obtain the Siebel Test Automation library, ssdtcorr.dll, from Siebel.

2. Copy the ssdtcorr.dll file to the workbench computer in this path: ...\ibm\sdp\rpt\external_files

\deployable\siebel\...\hcl\hclonetest\hot-perf\external_files\deployable\siebel\,

where ...\ibm\sdp\rpt\...\hcl\hclonetest\hot-perf\ is the product installation directory.

If the Siebel Test Automation library is not installed, Siebel tests will fail, and a warning message will display

when you edit a Siebel test. After the library is installed on the workbench computer, it is automatically

deployed as needed to any remote location. The library must be on any computer that runs a Siebel test.

You can use the rptExternal variable in the config.ini file to control where external files must be installed.

By default, the rptExternal variable is set to the product installation directory. Edit the rptExternal variable if you

want to install the .dll files to a different location.

Example

For example, if you set the rptExternal variable to e\:\\ibm\\sdp\\rpte\:\\hcl\\hclonetest\\hot-perf then you

would install the Siebel Test Automation library in e:\hcl\hclonetest\hot-perf\external_files

\deployable\siebel\. Note that you must use an extra backslash before the colon and backslashes in the

path.

3. Copy the appropriate Microsoft™ C++ runtime library to the workbench computer in the same directory as the

ssdtcorr.dll file. Recent version of ssdtcorr.dll (Version 8.1.1.14 for example) require msvcr110.dll. Older

versions of ssdtcorr.dll (like Version 7.7.0.0) need msvcr70.dll.

Chapter 7. Test Author Guide

To download the appropriate Visual C++ runtime library from the Microsoft™ web site, download the Windows

Server 2003 Resource Kit Tools for msvcr70.dll or the Visual C++ Redistributable for Visual Studio 2012

to get msvcr110.dll. The file name is case-sensitive, and must be all lower-case. The file must be named

msvcr70.dll, not MSVCR70.DLL

Once installed in the correct directory on the workbench computer, the Microsoft™ C++ runtime library is

automatically deployed as needed to any remote location.

Differences between Siebel tests and HTTP tests
Siebel tests precisely designate dataset candidates, include an additional type of data source, and store variables

in a proprietary data structure. In addition, page names are created during test generation to help you find pages of

interest.

The primary difference between a Siebel test and a standard HTTP test is in how dynamic data is stored and

substituted during a test run:

• In a standard HTTP test, a data source (dataset variable, custom code, or a reference) is linked to a test value

that is replaced at run time. Siebel tests support standard HTTP data sources and substitution. Datasets,

which are explained in Providing tests with variable data on page , work the same way in Siebel tests

as in standard HTTP tests, but the dataset candidates in Siebel tests are more precisely designated than in

standard HTTP tests. In many cases, dataset substitutions are the only changes that you need to make to a

Siebel test.

• In a Siebel test, an additional type of data source, which is called a built-in data source, contains variables that

you can use to replace a test value.

These variables can be substituted for dates (in defined formats), time stamps, and counters throughout

tests. In some cases, SWE Unique Value can be used as an alternative to a dataset; for example, to supply

variable account names. For detailed instructions, see Correlating a request value with a built-in Siebel

variable on page 484.

Siebel variables are stored in a proprietary data structure called a star array. A star array stores both strings and their

length in hexadecimal format (length_string) or integer format (length*string). Siebel substituters have a method for

substituting data and recomputing the length. You can substitute from a value in a star array (highlight a length_string

or length*string format value, right-click, and then click Substitute). You are then asked whether you want a Siebel

substitution or a standard HTTP substitution. You typically select Siebel data correlation.

Siebel tests are organized inside the test editor much like standard HTTP tests, but with some differences for pages:

483

../topics/tvardata.html
../topics/tvardata.html
../topics/tvardata.html
../topics/tvardata.html

HCL OneTest Performance

484

• The first page of a Siebel test is named Message Bar, which emulates the ticker-tape message that Siebel

application pages display.

• Page names are created during test generation to help you find pages of interest. For example, a typical

change to make to a test before running it is to replace the user name and password that you typed during

recording with values in a dataset. As shown in the example, the page from which you logged into the Siebel

server is named Login - Send UserName/Password, to help you find this page quickly.

Correlating a request value with a built-in Siebel variable
If you are editing a Siebel test, you can correlate request values with built-in Siebel variables.

To correlate a request value with a built-in variable:

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. Locate the value that should be replaced by a built-in variable.

3. Highlight the value: with the left mouse button pressed, drag your mouse over it.

4. Right-click the highlighted value and click Substitute from > Built-in data sources.

Result

The Built-in Datasource Selection wizard displays the types of variables that can be substituted.

5. Select the type of variable and click either Next or Finish.

Choose from:

◦ If you select Current Date, click Next, select the date format, and then click Finish.

◦ If you select SWE Counter, click Next, type values for the counter in the Current Value and Maximum

Value fields, and then click Finish.

Editing SAP tests
After you record a test, you can edit it to include variable data (rather than the data that you recorded) and verification

points (to confirm that the test runs as expected).

SAP test editor overview
You use the test editor to inspect or customize a SAP performance test that you recorded.

The test editor lists the SAP transactions for a test, by title. The following example shows the test MySAPTest,

which was generated from a recording of these tester actions: logon to the server, launch a Material Master Display

transaction (mm03), view the Basic Data screen for the item SCREW, and stop recording.

Chapter 7. Test Author Guide

There are two main areas in the test editor window. The area on the left, Test Contents, displays the hierarchy of the

SAP transactions for the test. The area on the right, Test Element Details, displays details about the currently selected

item (transaction or event) in the test hierarchy. In the preceding example, Test Element Details displays information

about the test because the name of the test, MySAPTest, is selected in the Test Contents area.

When you expand a test transaction, you see a list of SAP screens. Each SAP screen corresponds to a new page or

window in SAP GUI and is reflected by the screen capture in the SAP Protocol Data view.

When you expand a SAP screen, you see the SAPGUI events for the screen, with names that describe the action.

The following example shows the Material Master Display (mm03) transaction expanded with the SAP Easy Access

screen. The set event that described the mm03 text input in the SAP GUI is selected in the Test Contents area.

485

HCL OneTest Performance

486

Values can sometimes be highlighted in green. This highlighting indicates that these requests contain one or both of

the following types of information:

• A dataset candidate: This is a value, usually one specified by the tester during recording, that the test

generator determined is likely to be replaced by values in a dataset. An example of a dataset candidate

is a string that you search for in a recorded test. The string is highlighted as a dataset candidate on the

assumption that, before playback, you might want to associate the string with a dataset column containing

appropriate substitute values..

• Correlated data: These are values in a test, usually one of them in a response and the other in a subsequent

request, that the test generator determined needed to be associated in order to ensure correct test playback.

An example is a material price returned to the browser by a test that searches a material database. The test

generator automatically correlates material names with prices. Suppose that, before running the test with

many virtual users, you replace the material name searched for in the recorded test with names in a dataset.

Because the test correlates the data, each virtual user searches for a different material, and the server returns

an appropriate price.

To see an illustration of color coding in performance tests or to change the color settings, click Window >

Preferences > Test > Performance Test Editor, and then click the Fonts and Colors tab.

The Response data inside each request shows the data that the SAP server returned to the browser based on that

request.

Chapter 7. Test Author Guide

Click Add to add elements to the selected test element. Alternatively, you can right-click a test element and select an

action from a menu. The choices that you see depend on what you have selected. For example, after you select a test,

you can add a new event.

The Insert button works similarly. Use it to insert an element before the selected element.

The other buttons (Remove, Up, Down), are primarily for use when substantially modifying a test; these actions

or choices are likely to break a recorded test. The types of structures that are commonly used in recorded tests

are explained in Adding verification points to a SAP test on page 488 and Adding elements to a SAP test on

page 490.

The test editor synchronizes with the SAP Protocol Data view. When you select a test element in the test editor, the

corresponding screen is displayed as a screen capture in the SAP Protocol Data view. If a specific SAP GUI object is

related to the test element, the object is highlighted in the SAP Protocol Data view. You can also right-click SAP GUI

objects in the SAP Protocol Data view to add associated events or verification points to your test.

Sometimes, the area of the editor where you need to work is obscured. To enlarge an area, move your cursor over one

of the blue lines until your cursor changes shape (to a vertical line with an up arrow at the top and a down arrow at the

bottom) and drag up or down while holding the left mouse button.

Verifying expected behavior
To check whether an expected behavior occurred during a run, you can add verification points. When you run a test

that contains a verification point, an error is reported if the expected behavior did not occur.

487

HCL OneTest Performance

488

Adding an SAP verification point
With SAP get and SAP call elements, you can retrieve a value from the SAP GUI to create verification points on an SAP

screen element.

Before you begin

When you add SAP verification points, SAP get elements, and some SAP calls, retrieve the data from objects in the

SAP GUI, such as windows or text fields. SAP get and SAP call elements are contained in SAP screens in the test

suite. SAP screens can be windows, dialog boxes, or transaction screens that are part of a recorded transaction.

You can use either the test editor or the SAP Protocol Data view to create or edit SAP get and SAP call elements

and place verification points on them. When using the SAP Protocol Data view, you can select SAP screen elements

from the screen capture to specify the SAP GUI identifier for the get event. Using this method to create or edit an SAP

verification point is easier than adding it manually from the test editor.

The SAP Protocol Data view contains two pages that are synchronized with each other and with the test editor:

• Screen Capture displays a graphical screen capture of the SAP GUI. You can select all GUI objects such as

windows, buttons, fields or areas.

• Object Data provides information about the selected GUI object: identifier, type, name, text, tooltip, and

subtype.

1. Open the test editor and the SAP Protocol Data view.

If the SAP Protocol Data view is not open, click Window > Show View > Other > Test > SAP Protocol Data.

2. In the Test Contents area of the test editor, expand a transaction and an SAP screen.

The SAP Protocol Data view displays a screen capture of the selected transaction.

3. Inside the transaction, select the item for which you want to enter a new value.

Result

The Screen Capture page of the SAP Protocol Data view displays the screen capture of the SAP GUI with the

corresponding GUI object highlighted in red.

4. In the SAP Protocol Data view, right-click the GUI field that you want to verify, and then select Create

Verification Point.

If you want to create an advanced verification point using an SAP GUI call method, then you can select Create

Element instead.

5. In the Create Verification Point or Create Element window, specify the expected value for the verification

point.

Choose from:

Chapter 7. Test Author Guide

◦ If you want to verify a text value in the SAP GUI object, ensure that Verify text is selected, and type the

Expected value that you want to verify; then click Finish.

◦ If you want to verify advanced properties of the SAP GUI object, you can select Advanced, and

then specify the properties attached to the GUI object as well as the Expected values. Refer to SAP

documentation for information about these properties.

◦ If you selected Create Element to create a verification point on an SAP call, then select Advanced,

choose an Element type that returns a value, and then specify the properties attached to the GUI

object. Refer to SAP documentation for information about these properties.

What to do next

After creating the event, you can use the test editor to easily change the value. You can also enable and disable SAP

verification points on SAP get and SAP call elements in the test editor.

Specifying an expected screen title
Screen title verification points report an error if the title of an SAP screen is different from what you expected.

1. Select the SAP screen in the test editor and ensure that screen title verification is enabled for the SAP screen.

The Test Element Details area includes a Screen Title Verification Point section.

◦ If screen title verification was enabled for the entire test, the Enable verification point check box is

selected for all SAP screens in the test.

◦ If screen title verification was enabled for a specific SAP screen, the Enable verification point check

box is selected for the selected SAP screen.

You can enable or disable screen title verification for a specific SAP screen in the test editor by selecting or

clearing the Enable verification point check box.

2. Ensure that the Expected screen title field shows the string that you expect to be included in the page title that

is returned when this page is loaded.

When the test was recorded, SAP returned a default title for this screen. This value is displayed in the

Recorded title field, and is automatically copied to the Expected page title field when the Enable verification

point check box is selected. You can change the string in the Expected page title field as needed.

Result

Whenever the test runs with page title verification enabled, an error is reported if the title returned for the page

does not contain the expected title. Although the comparison is case-sensitive, it ignores multiple white-space

characters (such as spaces, tabs, and carriage returns).

Verifying response times
SAP request response times measure the delay between the moment the user submits a server request and the

moment the server responds. Response time data is provided by the server. You can set a verification point on a

response time threshold value. If the test encounters a response time above the threshold, the verification point is

failed.

489

HCL OneTest Performance

490

Before you begin

When the Verification points for SAP request response time threshold option is selected in the SAP Test Generation

preferences, all SAP server request elements contain a response time verification point. The default threshold value

is calculated by applying a multiplier to the recorded response time. You can change the default multiplier in the SAP

Test Generation preferences. The response time measurements are displayed in the SAP server request element,

which is the last element in an SAP screen.

To define a response time verification point:

1. In the test editor Test Content area, select an SAP server request element inside an SAP screen element.

2. In the Test Element Details, select Enable verification point, and then enter the Response time threshold in

milliseconds.

If the test encounters a response time that is higher than the threshold, the verification point is failed.

Adding elements to an SAP test
You can add a variety of elements to an SAP performance test, such as loops, conditions, SAP set, verification point

or sequence elements.

Adding an SAP set, SAP get, or SAP call element
You can use SAP set, SAP get, or SAP call elements in performance tests to add items such as a field selection, a

keyboard entry, a get element for reference use, or any advanced interaction with the SAP client GUI.

Before you begin

SAP set elements represent user interactions with the SAP GUI, such as entering a value into a field. SAP set

elements are contained in SAP screen elements. SAP screen elements can be windows, dialog boxes or transaction

screens that are part of a recorded transaction.

SAP get elements enable you to retrieve information from the SAP GUI, such as field values. SAP get elements

are contained in SAP screen elements. The primary use of an SAP get element is to create a reference field or a

verification point in the test. An SAP verification point is actually an SAP get element with a verification point enabled.

SAP call elements represent all the various user interactions that are neither an SAP set or an SAP get element. For

example, selecting an object, scrolling, or pressing the Enter key generates an SAP call.

You can use either the test editor or the SAP Protocol Data view to create or edit SAP set, get, or call elements.

When using the SAP Protocol Data view, you can select SAP screen objects from the screen capture and copy the

information directly to the new SAP set, get, or call element. Using the SAP Protocol Data view to create or edit an

SAP event is much easier than adding an event manually from the test editor.

The SAP Protocol Data view contains two pages that are synchronized with each other and with the test editor:

Chapter 7. Test Author Guide

• Screen Capture displays a graphical screen capture of the SAP GUI. You can select all GUI objects, such as

windows, buttons, fields or areas.

• Object Data provides information about the selected GUI object: identifier, type, name, text, tooltip, and

subtype.

To add an SAP set, get, or call element:

1. Open the test in the test editor and the SAP Protocol Data view.

If the SAP Protocol Data view is not open, click Window > Show View > Other > Test > SAP Protocol Data

2. In the Test Contents area of the test editor, expand a transaction and an SAP screen.

The SAP Protocol Data view displays a screen capture of the selected transaction.

3. Inside the transaction, select the item for which you want to enter a new value.

Result

The Screen Capture page of the SAP Protocol Data view displays the screen capture of the SAP GUI with the

corresponding GUI object highlighted.

4. In the SAP Protocol Data view, right-click the GUI object for which you want to create the SAP set, get, or call

element, and then click Create Element.

Result

This opens the window, which already contains the Identifier from the recorded session.

5. In the Create Element window, specify the type of SAP element that you want to create. Enter the value that

you want to add, and then do one of the following procedures, depending on your testing objectives:

Choose from:

◦ To create a simple SAP set element, select Set text, and then type the text value that you want to input

into the SAP GUI.

◦ To create an SAP get or an SAP call element, select Advanced, and then select SAP Set, or SAP Call

in the Element type list. Use a SAP set to input a value into the SAP GUI client. Use a SAP call to call

a method for advanced interaction with the SAP GUI. Specify the property to get or the method of the

call. Refer to SAP documentation for information about SAP call methods and properties. SAP call

elements are created with default values that you can change in the test editor. You can use SAP call

methods to define a verification point or for data correlation.

◦ To create a non-text SAP set element, select Advanced, and then select SAP Set in the Element type

list. Specify the property to set and enter a value if that property requires one.

6. Click Finish.

What to do next

After creating elements, you can use the test editor to change values. You can also replace values with a dataset

variable or a reference.

Adding an SAP sequence element
You can use SAP sequence elements to specify complex interactions with the SAP GUI that involve multiple actions

within a single object.

491

HCL OneTest Performance

492

Before you begin

SAP sequence elements represent complex user interactions with the SAP GUI, and contain multiple SAP set, get,

or call child elements where each child element of the sequence is an action that relies on the return result of the

preceding child element. In most cases, SAP sequences are recorded when you interact with complex SAP GUI

objects. However, with advanced knowledge of the SAP API, you can use SAP sequences to create complex actions

or verification points.

SAP sequence elements are contained in SAP screen elements.

You can use either the test editor or the SAP Protocol Data view to create or edit SAP sequences. When using the

SAP Protocol Data view, you can select SAP screen objects from the screen capture and copy the information directly

to the new SAP sequence element.

The SAP Protocol Data view contains two pages that are synchronized with each other and with the test editor:

• Screen Capture displays a graphical screen capture of the SAP GUI. You can select all GUI objects such as

windows, buttons, fields or areas.

• Object Data provides information about the selected GUI object: identifier, type, name, text, tooltip, and

subtype.

1. Open the test in the test editor and the SAP Protocol Data view.

If the SAP Protocol Data view is not open, click Window > Show View > Other > Test > SAP Protocol Data

2. In the Test Contents area of the test editor, expand a transaction and a SAP screen.

The SAP Protocol Data view displays a screen capture of the selected transaction.

3. Inside the SAP screen, select where you want to enter the new sequence.

Result

The Screen Capture page of the SAP Protocol Data view displays the screen capture of the current SAP

screen.

4. In the SAP Protocol Data view, right-click the SAP GUI object for which you want to create the SAP sequence

element, and then click Create Element.

Result

This opens the Create Element window, which already contains the Identifier from the recorded session.

5. Select Advanced, select SAP Sequence in the Element type list, and then click Finish.

6. In the Test Contents area of the test editor, select the SAP sequence and click Add > Element to add a SAP

set, get, or call element to the SAP sequence.

7. In the Test Contents area of the test editor, select the SAP sequence, and then click Add or Insert to add

sequence child elements as required. In the Create Element window, use the Cast button to cast the results

of the previous child element to match the expected input type. See the SAP API documentation for detailed

information on SAP objects and calls.

Chapter 7. Test Author Guide

Adding a batch input transaction
You can import batch input transactions that were recorded from the SAP GUI into an SAP batch input test. A batch

input test can contain multiple batch input transactions.

Before you begin

You can add batch input transactions only to a batch input test, not to a regular SAP performance test. First create a

new batch input test.

Batch input tests access the SAP server at a low level, bypassing the SAP GUI interface, and therefore cannot contain

any verification points or SAP GUI elements. Their main purpose is to simulate a load on the server when added to a

test schedule that already contains SAP performance tests. Only the SAP performance tests provide accurate SAP

application performance measurement.

To add an SAP batch input transaction to a batch input test:

1. Open the batch input test in the test editor.

2. In the Test Contents area of the test editor, right-click the test node, and click Add > Transaction.

Placing the batch input transaction inside a transaction is not mandatory, but it is a good practice, because

the performance report shows the results for each transaction separately.

3. Right-click the transaction and click Add > SAP Batch Input Transaction.

Result

This opens the SAP Batch Input File Selection window.

4. Select a batch input transaction file that was recorded with the SAP GUI batch input recorder, and then click

Open.

What to do next

After creating elements, you can use the test editor to change values. You can also replace values with a dataset

variable or a reference. You can also place the batch input transaction inside a loop to make it repeat several times

during the test.

Adding a verification point to an SAP GUI Grid View object
You can add a verification point to an SAP object in the SAP GUI Grid View to verify the state of the SAP object after

the SAP recording is complete.

Before you begin

• Verified that SAP GUI scripting is enabled on the SAP server and the SAP GUI client. See Configuring SAP for

performance testing on page 158.

• Working SAP GUI client that you can connect to an SAP server.

About this task

493

HCL OneTest Performance

494

When you record an SAP test, the recording wizard displays the SAP GUI client and records all the interactions

that occur in the SAP client. The SAP Protocol Data tab in the test editor displays a screen capture of the selected

transaction in an SAP GUI Grid View.

Note: The SAP GUI Grid View presents a tabular view of the SAP cell entries.

You can then add verification points to an SAP cell entry and save the test. After you save the SAP test, you can run

the test and verify the verification point details.

You must install the latest version of SAP GUI when you want to record an SAP test in HCL OneTest™ Performance.

For more information about supported SAP GUI versions, see System Requirements on page 27.

1. Open HCL OneTest™ Performance.

2. Click the New Test From Recording icon , and then click SAP Test.

Result

The Select Location page is displayed.

3. Create a test by performing the following steps:

a. Select a project, and then select a folder from the project.

b. Enter a name for the test.

c. Optionally, click Recording encryption level, and then select the encryption level when you are

recording any sensitive data.

4. Click Next.

Result

The Select Client Application page is displayed.

5. Click SAPGUI For Windows, and then select Next.

Result

The SAP Connection page is displayed.

6. Enter the SAP connection details on the SAP Connection page by performing one of the following methods:

◦ Select SAP Logon, and then select the SAP connection name from the SAP system name drop-down

list.

Note: You must have created an SAP system connection entry on the SAP Logon page.

◦ Select Service information, and then enter the information provided by the SAP administrator for the

fields specified in the following table:

Chapter 7. Test Author Guide

Fields Action

Application server Enter the SAP application server IP or hostname.

System number Enter the system number that corresponds to an

SAP instance of the SAP server (For example, 00).

7. Click Finish.

Result

The SAP GUI window is displayed.

8. Record an SAP transaction with a screen that contains a Grid View (For example, SM04).

9. Select a column (For example, User ID) after you record the SAP transaction, and then select Sort in

Descending Order to sort the entries in descending order.

10. Click User > Exit or Close to exit the SAP GUI Transaction page.

11. Close the SAP session.

Result

A Test Generation Progress window is displayed while the test is being generated.

The following message is displayed on the progress window: Test Generation completed.

12. Select Open Test.

Result

The test is displayed in the test editor.

13. Select an SAP element from the Test Contents section.

Result

The Screen Capture in the SAP Protocol Data tab displays the transaction details that you selected, in the SAP

GUI Grid View.

Note: If the SAP Protocol Data tab is not open, click Window > Show View > Other > Test > SAP

Protocol Data to open the SAP Protocol Data tab.

14. Right-click a cell entry from the SAP GUI Grid View object, and then click Create Verification Point.

Result

The Create Verification Point dialog is displayed.

15. Verify the expected value of the verification point, and then click Finish.

16. Save the test.

Results

You have added a verification point to an SAP object in the SAP GUI Grid View of a recorded SAP test.

495

HCL OneTest Performance

496

What to do next

You can run the SAP test and verify the execution details of the verification point from the following pages:

• SAP Summary tab in the SAP Statistical Report page

• SAP Verification Point Report page

• Test Log page

Related reference

SAP Performance report on page 1033

Splitting an SAP test
After you record a test, you can split it into smaller tests. Splitting tests enables you to create modular building blocks

of smaller tests and combine them to make bigger tests. The original test is unchanged. You can recombine these

building blocks in a schedule, including loops and conditions.

Before you begin

When reusing split tests in a schedule, you must ensure that the general test structure is consistent including SAP

session logon and logoff details. For example, if split test a contains the session logon details and split test c

contains the logoff transaction, you must place them in the correct order in the schedule user group.

SAP tests can be split only at the transaction level. When the test is executed in the schedule, it must start with a SAP

logon transaction and end with a SAP logoff transaction.

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. Right-click a SAP transaction in the test, and select Split Test. The page that you click is the first page of the

new test.

3. In the New Test Names window, confirm the location of the split, optionally provide names and descriptions

for the split tests, and click Next.

4. In the Split Test window, examine the changes to be performed as a result of the split, and click Finish.

Exemple

For example, you could record a test that contains the following actions:

• Logging on to a server.

• Creating an entry on the server and removing the entry.

• Editing an entry, validating that the change occurred, and restoring the entry.

• Logging off of the server.

You then split the test into four parts: Logon, Create, Edit, and Logoff. You create a schedule that runs virtual users

selected from a dataset. Each virtual user runs the Logon test, performs various combinations of the Create and Edit

tests, and finally runs the Logoff test.

Chapter 7. Test Author Guide

Viewing GUI data in the SAP Protocol Data view
The SAP Protocol Data view provides a graphical view of screens as they are displayed in the SAP GUI. In addition, it

provides a view of the SAP GUI object data. The data displayed in the SAP Protocol Data view is synchronized with the

test elements selected in the test editor.

To view test contents in the SAP Protocol Data view:

1. Open the test.

2. Click the SAP Protocol Data tab to activate the view.

Result

As shown in the example, the tab color changes to blue and the tabs for the Protocol Data view are displayed.

If you cannot locate the SAP Protocol Data tab, you can open this view by clicking Window > Show View >

Other > Test > SAP Protocol Data.

3. In the test editor, click the line corresponding to the transaction, screen or SAP event that you want to view.

4. In the SAP Protocol Data view, click the tab corresponding to the type of data or view of interest.

◦ Clicking Screen Capture opens a page that displays the corresponding screen as recorded in the SAP

GUI client. If a SAP event is selected, the corresponding field, button or GUI object is highlighted in red.

◦ Clicking Object Data opens a page that displays the SAP GUI object data for the corresponding object.

This data can be used to identify the object in a test element.

Editing Citrix tests
After you record a test, you can edit it to include variable data (rather than the data that you recorded), verification

points (to confirm that the test runs as expected), transactions, conditional processing, and custom code.

Citrix test editor overview
With the test editor, you can inspect or customize a test that you recorded.

The test editor lists the window events for a test, in sequential order. New windows are displayed in bold. The

Windows™ operating system assigns each window an ID number. This number changes on each execution of the test,

but usually remains the same within the test, providing a means of identifying each window object.

Note: In some cases, the operating system recycles destroyed window IDs. The test recorder identifies these

properly by appending an extra number at the end of the window ID if necessary.

There are two main areas in the test editor window. The area on the left, Test Contents, displays the chronological

sequence of events in the test. The area on the right, Test Element Details, displays details about the currently

selected item (window, mouse event, key event, or screen capture) in the test hierarchy. The Common Options and

Citrix Options apply to the entire test.

Under the test is the Citrix session, which contains information about the connection and Citrix XenApp client options,

such as color depth and resolution.

497

HCL OneTest Performance

498

Window events are the primary test elements in a Citrix test and represent graphic objects that are drawn by the Citrix

server, such as actual window, dialog boxes, menus, or tooltips. A Window event is recorded each time a window is

created, destroyed, moved, or resized. The first occurrence of a window, a create window event, is displayed in bold.

Window objects are typically identified by their title. If there is no window title, for example on menus or tooltips, then

the test editor uses the window ID number.

Inside windows, you see a list of events for the window, such as create window events, screen captures, mouse or key

board actions.

Some actions contain data that is highlighted. This highlighting indicates that the data contains one or both of the

following types of information:

• A dataset candidate: This is a value, usually one specified by the tester during recording, that the test

generator determined is likely to be replaced by values in a dataset. An example of a dataset candidate

is a string that you search for in a recorded test. The string is highlighted as a dataset candidate on the

assumption that, before running the test, you might want to associate the string with a dataset column

containing appropriate substitute values.

• References: These are values in a test, usually one of them in a response and the other in a subsequent

request, that the test generator determined needed to be associated in order to ensure correct test execution.

An example is a photograph returned to the browser by a test that searches an employee database. The test

generator automatically correlates employee names with photographs. Suppose that, before running the test

with many virtual users, you replace the employee name searched for in the recorded test with names in a

dataset. Because the test correlates the data, each virtual user searches for a different employee, and the

server returns an appropriate photograph.

To see an illustration of color coding in performance tests, click Window > Preferences > Test > Test Editor, and then

click the Fonts and Colors tab.

Click Add to add elements to the selected test element. Alternatively, you can right-click a test element and select an

action from a menu.

The choices that you see depend on what you have selected. For example, inside a window, you can add a mouse

action or a text input. The Insert button works similarly. Use it to insert an element before the selected element. The

Remove button allows you to delete an item.

Note: Because Citrix performance tests rely on low level interaction with the server, manually changing test

elements is likely to break a recorded test.

Citrix synchronization overview
During the run of a Citrix session, the test uses window events or image recognition to ensure that the correct user

input actions are maintained on track with the application events coming from the Citrix server.

Chapter 7. Test Author Guide

The synchronization mechanism enables the test to remain synchronized without relying only on the timing, which

could vary with the load on the Citrix server.

Synchronization is different from the function of verification points. Verification points check specified values

of the application, such as window synchronizations, and produce a test status: pass, fail, error, or inconclusive.

Synchronization is used for test execution and produces synchronization timeouts in the test log when the test fails

to recognize the server output.

Synchronization occurs on window events or through the recognition of a screen area that you specify.

• Window event synchronization is produced automatically by the Citrix server. When the test is run, the virtual

users send emulated user actions to the server, such as keyboard or mouse actions and the server responds

with window events such as create, activate, or destroy. The test waits for the expected window events

to occur before sending the next user actions to the server. The test uses window styles, and optionally,

locations, sizes, and window titles, to recognize windows.

• Image synchronization enables you to require additional recognition of screen area contents. The test can

synchronize on either a unique bitmap hashcode that is calculated from the image or on a text string retrieved

from the image through optical character recognition. In some applications, such as web browsers or word

processors, the actual window content changes more frequently then the window objects. In these cases, you

must manually add image synchronization to critical parts of the test during the recording so that the test can

synchronize with the window contents.

During test execution, the test waits for the window event or the image recognition to synchronize the user actions

independently from the load on the server. If an expected window event fails to occur or an expected image is not

recognized, then the test produces a synchronization timeout that is reported in the test log. The test will attempt to

resume the execution at the next synchronization point.

The base timeout delay is specified in the Citrix test generation preferences; however, the actual delay varies with the

level of synchronization.

There are three levels of synchronization for window events and images that can be specified for each element in the

test editor:

• Conditional: This is the default behavior for main windows and dialog boxes. If the synchronization fails, the

test tries to continue and the synchronization timeout is logged in the Citrix performance report and the test

log.

• Mandatory: If the synchronization fails after a period that is three times the base timeout delay (by default),

the test exits with an error status and the connection with the Citrix server is closed. The test execution

continues to run until test results are finalized.

• Optional: Synchronization is not required but is logged in the test log. A timeout occurs after 1/10th of the

base timeout delay.

The default timeout values can be overridden for each synchronization element in the test editor. The test recorder

automatically sets the recommended synchronization level for window events depending on their nature:

499

HCL OneTest Performance

500

• Main window create events are set to mandatory.

• Other window create events are set to conditional.

• Main window destroy events are set to conditional.

• Other window destroy events are set to optional.

• Image synchronizations are set to conditional.

Verifying application behavior
To check the expected behavior of the application during a Citrix performance test, you can add verification points at

strategic points in the test. You can use window verification points to check that a specific window opens during the

test, regardless of its contents, or you can use image synchronization to verify the displayed contents. During the run,

verification points produce a pass, fail, error, or inconclusive status in the Citrix Verification Point report. You can also

measure response times between two test elements.

Enabling Citrix window verification points
You can use verification points on window titles to check whether a window with a specific caption is created during

the test. Alternatively you can set a verification point on the synchronization criteria of the window to check whether

the window position, size, and style match the expected criteria, regardless of the contents. You can enable window

verification points for a specific test or generate them automatically by setting the test editor preferences.

Before you begin

During the run, verification points produce a pass, fail, error, or inconclusive status in the Citrix Verification Point

report and in the test log.

Mandatory window synchronization events always have a verification point enabled. This setting causes the test to

have a fail status if the window does not synchronize.

About this task

To automatically enable verification points each time a window title changes during the recording, click Window >

Preferences > Test > Performance Test Generation > Citrix Test Generation, and select Verification point on every

window title change.

When verification points are disabled, you can enable verification points for a specific test:

1. Open the test.

2. In the test editor, select a session or a window event.

Your choice determines whether the verification point that you select is added to all windows in the test or to a

particular window in the test.

3. Right-click, and select Enable Window VPs.

Chapter 7. Test Author Guide

To inspect or set your verification points, see Specifying window verification point criteria on page 501.

Note: Verification points on mandatory window synchronization elements cannot be disabled.

Enabling Citrix image synchronization verification points
You use verification points on image synchronization elements to check whether the contents of a screen area match

either an expected bitmap or a text string. You can add image synchronization verification points to a recorded image

synchronization element.

Before you begin

During the run, verification points produce a pass, fail, error, or inconclusive status in the Citrix Verification Point

report and in the test log.

To add a verification point to a recorded image synchronization element:

1. In the test editor, select an image synchronization test element that you added during the recording.

2. In the Test Element Details area, on the Synchronization page, select the verification method:

Choose from:

◦ Select Bitmap hash code to verify the exact contents of the image.

◦ Select Optical character recognition to verify the recognized text in the captured screen area, and then

click Extract Text to obtain the text that is expected.

If the text extraction is unsuccessful, try changing the text recognition settings on the Options page.

However, accuracy of the recognized text is not essential. It is only important that the recognized text

is consistent each time the test runs for the verification to pass.

3. In the Test Element Details area, on the Settings page, select Enable verification point on synchronized

image.

Related reference

Citrix image synchronization details on page 1433

Citrix test generation preferences on page 1394

Related information

Citrix synchronization overview on page 498

Synchronizing tests with screen areas on page 506

Adding values to an image synchronization on page 509

Specifying window verification point criteria
Window verification points produce a fail status in the test execution report if they differ from the specified expected

criteria.

501

HCL OneTest Performance

502

1. In the test editor, select a window event element.

You can set a verification point on any window event that creates, activates, or destroys a window that

contains a title.

2. Ensure that Enable verification point on synchronized window event is enabled for the selected window event

element.

3. In the test editor, select the window element that contains the window event.

4. Select the event synchronization criteria:

◦ X position and Y position: Select these options to specify that the top left corners of the window must

be located at the same coordinates.

◦ Width and Height: Select these options to specify that the window must be the same size.

◦ Title: Select this option to specify that the window must have the same title.

The window styles are a mandatory criteria and cannot be disabled.

5. If you selected Title, the Window title field shows the expected title.

If necessary, you can change the expected title in the Window title field.

You can use standard regular expressions to specify the expected title by selecting Use regular expressions.

Results

Whenever the test runs with a verification point enabled on a window create, activate, or destroy event, a fail status

is reported in the test log if the criteria returned by the Citrix server for the window does not contain the expected

criteria.

Measuring response times
A response time measures the delay between a specified start event and a specified stop event. Typically, the start of

the measurement is set to a mouse or keyboard input. Similarly, the stop is set to a window create, window activate,

or window destroy event that is a response to the input event, or an image synchronization element that was recorded

with the test.

Before you begin

Response time measurements require a start element and a stop element. If either of these are missing, the response

time definition is displayed with an error or warning marker.

About this task

When the Response time for main windows option is selected in the Citrix Test Generation preferences, recorded

tests are generated with a response time measurement each time a main window is created. Generated

measurements start on the event that occurred immediately before a main window is created and stop when the main

window is created.

You can view all the response times of a test by selecting the Citrix test element in the test editor. Response times are

listed in the Response Time Definitions table where they can be edited, renamed, or deleted.

Chapter 7. Test Author Guide

1. In the test editor Test Contents area, select a test element to start the response time measurement.

2. Press the Ctrl key, and select another test element to stop the response time measurement.

The two elements are selected in the test. The first element is the start of the response time measurement

and the second is the stop.

3. Right-click either the start or stop element, and click Create Response Time.

4. A Create Response Time window displays information about the new response time measurement. If the new

response time measurement replaces a previous one, click Yes. Otherwise, click OK.

5. Optional: To view all the response times that are defined for the test, click the test element in the test

navigator, and select the Citrix Response Time page.

Note: By default, response time measurements are included in the test results, even when the

synchronization fails with a timeout. To exclude failed synchronizations from the response time

results, clear the State option in the Response Time Definitions list.

Adding elements to a Citrix test
You can add a variety of elements to a test, such as user input actions, comments, loops or conditions.

Editing a mouse action
You can edit mouse actions to manually specify how the mouse interacts with the Citrix server.

Before you begin

Mouse actions describe low-level user actions using the mouse such as mouse movements, clicks and double-

clicks, or drag-and-drop operations. Mouse actions can be added only inside window events or mouse sequences. For

example, a drag-and-drop operation is described as a mouse down action at a specific location, a sequence of mouse

move actions, and a mouse up action at the destination location.

In most cases, you will rely on the mouse actions that were recorded with the test. However, in some cases, you might

want to manually refactor mouse action sequences that are redundant or poorly recorded. For example, a double-click

event can sometimes be recorded as a mouse down, a mouse up, and a click. The result will be the same as a double

click action but the test will be more difficult to read.

Note: Because Citrix tests contain low level user input and synchronizations, minor changes can prevent the

test from working. When editing these tests, you must ensure that they are functionally identical.

1. Open the test in the test editor.

2. Expand a window action.

Choose from:

◦ To edit a mouse action, select the event in the Test Contents area.

◦ To create a new action at a specific location, select an action and click Insert and Citrix Mouse.

3. In the Test Element Details area, specify the type of event.

503

HCL OneTest Performance

504

◦ Mouse move: This indicates that the mouse is moved from the current coordinates to the coordinates

specified in X Position and Y Position.

◦ Mouse click: This indicates that the mouse is clicked at the coordinates specified in X Position and Y

Position. In the Buttons area, select the button that is clicked.

◦ Mouse double click: This indicates that the mouse is double clicked at the coordinates specified in X

Position and Y Position. In the Buttons area, select the button that is double clicked.

◦ Mouse down: This indicates that a mouse button is pressed at the coordinates specified in X Position

and Y Position. In the Buttons area, select the button that is double clicked.

◦ Mouse up: This indicates that a mouse button is released at the coordinates specified in X Position

and Y Position. In the Buttons area, select the button that is double clicked.

4. You can specify the think time for the mouse action. This emulates the time spent by a user before initiating

the current event.

Viewing a mouse sequence
You can use mouse sequences to view complex mouse movements on the screen.

Before you begin

Mouse sequences provide a graphical view of a series of mouse move events. This is particularly useful when a

large number of mouse move events are meaningful to the application. For example, drawing the letter e in a paint

program is represented as a mouse down event, a mouse sequence, and a mouse up. In the test editor, the sequence

graphically displays how the letter e is drawn in the application. If any screen captures were taken during the recorded

session, the sequence will be shown over the screen capture.

In most cases, you will rely on the mouse sequences that were recorded with the test. However, in some cases, you

might want to manually refactor mouse events into sequence.

Note: Because Citrix tests contain low level user input and synchronizations, minor changes can prevent the

test from working. When editing these tests, you must ensure that they are functionally identical.

1. Open the test in the test editor

2. Expand a window event and select the sequence in the Test Contents area.

3. In the Test Element Details area, you can view the following information:

Display mouse sequences for

This option specifies how you want to display previous, current, or all mouse sequences in the

current mouse sequence:

Current® sequence

Only the current mouse sequence is displayed in the test editor. This option is

selected by default.

Previous and current sequences

The current mouse sequence is displayed with any previous mouse sequences.

Chapter 7. Test Author Guide

All sequences

All mouse sequences are displayed simultaneously.

Fit screen to visible area

Select this option to adjust the display of the mouse sequence to the available area in the test

editor. If disabled, the screen capture will be the actual size, which might require scrolling. This

option is enabled by default.

Screen capture area

This area represents the mouse movements on the screen. If a screen capture was recorded, it

is displayed in the background. Mouse sequences are displayed as specified.

Editing a keyboard action
You can edit keyboard actions to manually specify how the keyboard interacts with the Citrix server.

Before you begin

Keyboard actions describe low level user actions using the keyboard such as text inputs or keyboard shortcuts.

Keyboard actions can be added only inside window events.

In most cases, you will rely on the keyboard actions that were recorded with the test. The recording tries to factor

multiple key presses into text input actions. However, in some cases, you might need to manually factor keyboard

actions that are redundant or poorly recorded. For example, in some cases, a text input string Hello can be recorded

as a press on the Shift key, a press on the H key, a release of the Shift key, a stroke of the E key, and finally a text

input of llo. By manually factoring keyboard actions into text inputs, you can handle text from dataset variables and

references.

Note: Because Citrix tests contain low level user input and synchronizations, minor changes can prevent the

test from working. When editing these tests, you must ensure that they are functionally identical.

1. Open the test in the test editor

2. Expand a window event.

Choose from:

◦ To edit a keyboard action, select the action in the Test Contents area.

◦ To create a new keyboard action at a specific location, select an action and click Insert and Citrix

Keyboard.

3. In the Test Element Details area, specify the type of action.

◦ Key Stroke: This indicates that a key is pressed and released.

◦ Key Down: This indicates that a key is pressed and held down.

◦ Key Up: This indicates that a pressed key is released.

The Key Code field displays the key code as interpreted by the Windows™ operating system and is translated

in the Character field. Use the modifiers to specify the whether the Control key, Shift key, or Alt key is also

pressed.

505

HCL OneTest Performance

506

4. You can manually enter any Unicode character that is not normally available through single keystrokes by

using the Character Edition area. Select the input field and enter the character on your keyboard.

The Key Code and Character fields display the corresponding character.

Note: The workbench uses some key combinations as keyboard shortcuts. Such combinations can be

intercepted and cause undesirable actions instead of displaying a particular character in the Character

field..

5. You can specify the think time for the keyboard event. This emulates the time spent by a user before initiating

the current event.

Editing a text input
You can edit text inputs to replace a sequence of keyboard events with text strings that are easier to handle as

dataset variables or references.

Before you begin

Text inputs describe a series of low-level keyboard events as a single text string. Text inputs can be added only inside

window events.

In most cases, you will rely on the text inputs that were recorded with the test. The recording attempts to factor

multiple key presses into text input events. However, in some cases, you might need to manually factor keyboard

events that are redundant or poorly recorded. For example, in some cases, a text input string Hello can be recorded

as a press on the Shift key, a stroke of the H key, a release of the Shift key, a stroke of the E key, and finally a text

input of llo. By manually factoring keyboard actions into text inputs, you can handle text from dataset variables and

references.

Note: Because Citrix tests contain low level user input and synchronizations, minor changes can prevent the

test from working. When editing these tests, you must ensure that they are functionally identical.

1. Open the test in the test editor

2. Expand a window event.

Choose from:

◦ To edit a text input, select the action in the Test Contents area.

◦ To create a new text input at a specific location, select an action and click Insert and Citrix Text.

3. In the Test Element Details area, edit the text string that will be entered during the test.

4. You can specify the think time for the keyboard event. This emulates the time spent by a user before initiating

the current event.

Synchronizing tests with screen areas
Image synchronization enables Citrix performance tests to keep track of the contents of a screen area during replay

instead of focusing only on window events.

Chapter 7. Test Author Guide

Before you begin

You can use image synchronization elements in a test to facilitate the test replay in applications that do not create or

modify many windows, but update the contents of the window regularly.

The contents of an image are processed as a value that is either a calculated bitmap hashcode or a text string

obtained by optical character recognition. During test execution, the test waits for the contents of a screen area to

match the expected image synchronization value before proceeding with the test. If the value is not matched during

the synchronization period, an image synchronization timeout is produced in the test log.

You can also add verification points to image synchronizations in the test editor. The verification point passes if the

synchronization succeeds and fails if a timeout occurs.

You insert image synchronizations during test recording.

1. Start recording a Citrix performance test and record a sequence of user actions.

2. To add an image synchronization to the recorded test, in the Citrix Recorder Control window, click the Insert

image synchronization button, select an area of the screen that will be used for synchronization, and then

click the Insert image synchronization button again.

3. Continue the recording. When you have completed the sequence of actions to be tested, end the Citrix session

cleanly and close the Citrix XenApp client.

Result

A progress window opens while the test is generated. On completion, the Recorder Control view displays the

message Test generation completed, the Test Navigator lists your test, and the test opens in the test editor.

4. In the test editor, select the Image synchronization element.

a. Set the synchronization state to Conditional, Mandatory or Optional. In most cases, because you are

explicitly requesting for a synchronization to occur, you should leave the synchronization state as

Conditional.

b. Specify one of two synchronization methods.

▪ Select Bitmap hash code if you want the synchronization to occur when the selected area

matches exactly the recorded image. A single pixel of difference will cause a synchronization

timeout.

▪ Select Optical character recognition if you want the synchronization to occur when a text

string is recognized in the selected area. Click Extract text to test the text recognition on the

recorded image. Note that for synchronization purposes the text recognition results must be

repeatable, not necessarily accurate.

507

HCL OneTest Performance

508

Note: On Windows 2008, it is recommended to use the Bitmap hash code

synchronization method for a Citrix test.

You can click Extract text several times to make sure that the text recognition results are

repeatable. If the recognized text differs, click Options to change the Zoom factor or other

optical character recognition settings. You should not manually correct the recognized text.

You can click Add to specify multiple expected text strings, Use regular expression to specify a

text string as a regular expression, or Factorize to automatically generate a regular expression

from multiple expected text strings.

c. Specify whether you want to enable a verification point on the image synchronization. This enables the

test to produce a pass or fail status in the Citrix Verification Points report.

Manually adding an image synchronization
You can manually add an image synchronization element to an existing test to ensure that the test synchronizes

correctly or to add a verification point. To do this, you must create the image synchronization element, and then

perform a single run of the test to retrieve the image hash code or text detected by optical character recognition

(OCR).

1. Open the test in the test editor.

2. Select the location where you want to create the image synchronization and click Insert and Citrix Image

Synchronization.

Result

This creates a new image synchronization element that is set to Conditional and has several values disabled.

This is because the test does not yet contain the image hash code or recognized text.

3. In the screen capture area, move and resize the black rectangle to specify the zone of the image that will be

used for the synchronization.

Alternatively, you can specify the pixel values in X position, Y position, Width and Height.

4. Select File > Save to save the test, and then, in the test navigator, right-click the test and select Run As >

Performance Test.

Result

This runs the test once to retrieve the image hash code or recognized text.

5. After running the test, right-click the test report, select Display Test Log, and then select the Events page.

6. Click the Events tab.

7. Expand the top line of the Events hierarchy and navigate to the Image timeout element that was produced

during the run.

8. Select the image timeout to open the Citrix Image Synchronization view.

Chapter 7. Test Author Guide

If necessary, you can open the Citrix Image Synchronization view manually by selecting Window > Show View

> Other > Test > Citrix Image Synchronization. This view shows the actual screen area encountered during the

test and the expected image, as well as the corresponding hash codes or recognized text values.

9. To add the actual hash code or recognized text to the image synchronization, click the Add value button.

Adding values to an image synchronization
You can replace or add alternative values in an image synchronization element so that synchronization is not

restricted to the exact recorded image. Alternative values can also be useful in updating the test if the behavior of the

application changes.

Before you begin

If you are using optical character recognition, simply click Add in an image synchronization element in the test editor

to add an alternative value, and enter a new text string in the Expected text field.

If you are using the bitmap hash code synchronization or optical character recognition, you can use the following

method to add an alternative hash code or recognized text value.

To add an alternative value to an image synchronization:

1. After inserting an image synchronization element, run the test from the Run menu.

If possible, arrange for the alternative condition to occur before starting the run. The test should produce an

image synchronization timeout when the alternative condition is encountered.

2. In the Performance Test Runs view, right-click the test log container, and then select Display Test Log.

The test log opens in the editor with the Overview page selected.

3. Click the Events tab.

4. Expand the top line of the Events hierarchy and navigate to the Image timeout element that was produced

during the run.

5. Select the image timeout to open the Citrix Image Synchronization view.

If necessary, you can open the Citrix Image Synchronization view manually by selecting Window > Show View

> Other > Test > Citrix Image Synchronization. When an image timeout is selected, this view shows the actual

screen area encountered during the test and the expected image, as well as the corresponding hash codes or

recognized text values.

6. You can either add the new hash code or recognized text value to the image synchronization as an alternative

value or you can replace the existing value with the new value.

Choose from:

◦ To add the actual hash code or recognized text as an alternative value, click the Add value button.

◦ To replace the expected value with the new value, click the Replace value button.

Using custom code with a Citrix test
You can write custom Java™ code to expand the functions of HCL OneTest™ Performance.

Before you begin

509

HCL OneTest Performance

510

Custom code requires knowledge of Java™ programming and the use of the HCL OneTest™ Performance API. See

Executing test execution with custom code on page for more information.

About this task

To use custom code for test synchronization:

1. In the test navigator, select the test element location to insert the custom code.

2. Click Insert > Custom Code.

Result

A custom code test element is created in the test.

3. On the Test Element Details page, click Generate Code to create a Java™ class based on the HCL OneTest™

Performance API.

You can click View Code to edit an existing class.

4. In the Java™ editor, add the import statement for Citrix tests: import

com.ibm.rational.test.lt.execution.citrix.customcode.*;

5. Complete the exec method to specify the function to create.

6. Save and close the Java™ class.

Exemple

The following example is custom code class that can be used as a starting point to evaluate the results of a

synchronization point. You can use this template to write a class that performs a synchronization when image

synchronization and window-event synchronization are not practical for your test.

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import org.eclipse.hyades.test.common.event.VerdictEvent;
import com.ibm.rational.test.lt.execution.citrix.customcode.CitrixCustomCodeImpl2;
import com.ibm.rational.test.lt.execution.citrix.customcode.ICitrixCustomCode2;

public String exec(ITestExecutionServices tes, String[] args) {
 ICitrixCustomCode2 thisCode = new CitrixCustomCodeImpl2(tes);

 // to get the last VP status
 int verdict = thisCode.getLastVerificationPointVerdict();
 if (verdict != VerdictEvent.VERDICT_PASS) {

 // this example reports a message but must be adapted to your specific needs
 tes.getTestLogManager().reportMessage("last VP status: " + thisCode.verdictEventToString(verdict));

 }
 return null;
}

The following example demonstrates how you can record a screen capture during playback for debugging purposes.

The screen capture is recorded in the test log and can be viewed in the Citrix image synchronization view.

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.execution.citrix.customcode.*;

public String exec(ITestExecutionServices tes, String[] args) {

../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html

Chapter 7. Test Author Guide

 ICitrixCustomCode2 thisCode = new CitrixCustomCodeImpl2(tes);

 // To capture and log the full screen:
 thisCode.logFullScreenCapture();

 // To capture and log a part of the screen:
 // thisCode.logPartialScreenCapture(x, y, width, height);

 // To capture and log a part of the screen to a file:
 // thisCode.savePartialScreenCapture(filename, x, y, width, height);

 return null;
}

What to do next

After creating a custom code test, you can run the test as usual. If you need to debug the test, you can use the

monitoring panel to insert breakpoints or to interact with the Citrix environment during execution.

Related information

Debugging Citrix tests on page 843

Editing service tests
After you record a service test, you can edit the calls and message returns to include variable data (rather than the

data that you recorded). You can add verification points (to confirm that the test runs as expected), transactions,

conditional processing, and custom code.

Web service test editor overview
With the test editor, you can inspect or customize a test that you recorded.

The test editor lists the web service call elements for a test, in sequential order.

There are two main areas in the test editor window. The area on the left, Test Contents, displays the chronological

sequence of test elements in the test. The area on the right, Test Element Details, displays details about the currently

selected item (test, call, message return, or verification point) in the test hierarchy.

Window events are the primary test elements in a Citrix test and represent graphic objects that are drawn by the Citrix

server, such as actual window, dialog boxes, menus, or tooltips. A Window event is recorded each time a window is

created, destroyed, moved, or resized. The first occurrence of a window, a create window event, is displayed in bold.

Window objects are typically identified by their title. If there is no window title, for example on menus or tooltips, then

the test editor uses the window ID number.

A service request node name can be updated automatically or you can use custom code or dataset to supply different

names. To apply a dataset to a node name, in the test editor, select the node name. In the Request Details area of the

test editor, clear the Update node name automatically, select the name and substitute it with dataset.

511

HCL OneTest Performance

512

Web service calls can contain web service message return elements, which display the results of the web service call.

The XML message content can be displayed either in Form, Tree or Source view. Each of these views displays the

same message content in different forms:

• Form view provides a simplified view of the call elements focused on editing the values of the XML message

content.

• Tree view provides a hierarchical view of the XML structure, including elements, namespaces, and the

associated values. Tree view also allows you to manipulate XML fragments.

• Source view displays the XML contents of a web service or XML call or the plain text contents of a simple text

message.

Message return elements can contain verification point elements that check that the actual return results match

expected criteria.

Some actions contain data that is highlighted. This highlighting indicates that the data can be used as a dataset

candidate or as a reference. See Data correlation overview on page for more information.

In service calls and message returns, you can use datasets and data correlation on values contained in the XML or on

XML fragments. To use data correlation on XML fragments, switch to the Tree view, right-click the XML element and

select Create XML Fragment.

To view or modify the color coding in web service tests, click Window > Preferences > Test > Test Editor, and then

click the Fonts and Colors tab.

Click Add to add elements to the selected test element. Alternatively, you can right-click a test element and select an

action from a menu.

The choices that you see depend on what you have selected. For example, inside a web service call, you can add

a web service message return. The Insert button works similarly. Use it to insert an element before the selected

element. The Remove button allows you to delete an item.

Verifying application behavior
To check the expected behavior of the application during a service test, you can add verification points after a

message return. During the run, verification points produce a pass, fail, error, or inconclusive status in the Web Service

Verification Point report.

Adding equal verification points
Equal verification points enable you to check that the contents returned by a service match exactly the contents

specified in the verification point.

About this task

When you add verification points, the results from a service response are compared with the expected data specified

in the verification point test element. Equal or contain verification points enable you to directly compare the XML

document that the service returns.

../topics/cdatacorr.html
../topics/cdatacorr.html
../topics/cdatacorr.html
../topics/cdatacorr.html

Chapter 7. Test Author Guide

• Contain verification points return a Pass status when the response XML document contains the expected

XML data.

• Equal verification points return a Pass status when the response XML document matches exactly the

expected XML data.

Complex service requests or verification points might have empty XML elements that are not needed in a test script.

When playing back the test, you can skip such empty XML elements. In Window > Preferences > Test > Test editor >

Service test ensure that the Display the 'Skip if empty' column in XML tree viewer check box is selected. This option

displays a Skip if empty column in the tree view of the request. You can then choose the XML elements to skip.

1. Open the test editor, and right click a response element and select Add > Equal Verification Point.

2. Select the verification point, and in the Test Element Details area of the test editor, type a name for the

verification point.

3. Select the verification options:

◦ Select Test using XML namespaces to perform the verification on the qualified structure of the XML

document, including the namespace tagging, instead of the simple name. Disable this option to check

only the simple name of the element and the final return value.

◦ Select Text XML text nodes to include the content of text elements in the verification.

◦ Select Text XML attributes to include the content of attributes in the verification.

4. On the Message page, select the Form, Tree, or Source view to specify the expected XML data.

For an equal verification point, the expected XML data contains the XML document from the response test

element. If necessary, you can edit the expected XML data.

You can specify standard Java™ regular expressions in the Tree view. To do this, select the Regular

expression column on the line of an attribute or text value and type the regular expression in the Value

column. For example, the following regular expression checks for a correctly formatted email address: /^([a-

zA-Z0-9_\.\-])+\@(([a-zA-Z0-9\-])+\.)+([a-zA-Z0-9]{2,4})+$/

When using regular expressions, the number of XML nodes or XML fragments in the verification point must

match the quantity of expected nodes.

What to do next

You can enable or disable each verification point by right-clicking the verification point in the test editor and clicking

Enable or Disable.

Adding contain verification points
With contain verification points, you can check that one or several elements of the XML content returned by a service

match the XML fragment that is specified in the verification point.

About this task

When you add verification points, the results from a service response are compared with the expected content that is

specified in the verification point test element. Equal or contain verification points enable you to directly compare the

XML contents that the service returns.

513

HCL OneTest Performance

514

• Contain verification points return a Pass status when the response XML contents contain the expected XML

fragment.

• Equal verification points return a Pass status when the response XML contents match exactly the entire

expected XML content.

Complex service requests or verification points might have empty XML elements that are not needed in a test script.

When playing back the test, you can skip such empty XML elements. In Window > Preferences > Test > Test editor >

Service test ensure that the Display the 'Skip if empty' column in XML tree viewer check box is selected. This option

displays a Skip if empty column in the tree view of the request. You can then choose the XML elements to skip.

1. Open the test editor, and select a service response element.

2. In the Test Element Details area, click the Message tab and select the Form or Tree view.

3. Expand the envelope line, right click the element that you want to check, and then click Create Contain

Verification Point. This action creates a contain verification point that includes the XML element from the

recorded response.

Note: You can also create a contain verification point with the message response by selecting the

message response in the Test Contents pane and clicking Add > Contain Verification Point. However,

the result is effectively the same as an equal verification point because the verification point contains

the entire XML content of the message response.

4. Select the verification point, and in the Test Element Details pane, type a name for the verification point.

5. Select the verification options:

◦ Select the Test using XML namespaces check box to perform the verification on the qualified

structure of the XML document, including the namespace tagging, instead of the simple name. Disable

this option to check only the simple name of the element and the final return value.

◦ Select the Test XML text nodes check box to include the content of text elements in the verification.

◦ Select the Test XML attributes check box to include the content of attributes in the verification.

6. If necessary, select the Form, Tree, or Source views to edit the expected XML fragment.

For an equal verification point, the expected XML data contains the XML document from the response test

element. If necessary, you can edit the expected XML data.

You can specify standard Java™ regular expressions in the Tree view. Select the Regular expression column

on the line of an attribute or text value and type the regular expression in the Value column. For example, the

following regular expression checks for a correctly formatted email address: /^([a-zA-Z0-9_\.\-])+\@(([a-zA-

Z0-9\-])+\.)+([a-zA-Z0-9]{2,4})+$/

When using regular expressions, the number of XML nodes or XML fragments in the verification point

must match the number of expected nodes. The verification point returns a Pass status when all regular

expressions in the XML fragment are matched.

Exemple

Chapter 7. Test Author Guide

You can use a contain verification point to check that the message response contains only a specific element with a

specific value. For example, consider the following message response:

<s:Envelope
 xmlns:a="http://www.w3.org/2005/08/addressing"
 xmlns:s="http://www.w3.org/2003/05/soap-envelope">
 <s:Header>
 <a:Action
 s:mustUnderstand="1">http://www.w3.org/2005/08/addressing/soap/fault</a:Action>
 <a:RelatesTo>uuid:ed9bc447-d739-452f-989d-cd48344d494a</a:RelatesTo>
 </s:Header>
 <s:Body>
 <s:Fault>
 <s:Code>
 <s:Value>s:Sender</s:Value>
 <s:Subcode>
 <s:Value
 xmlns:a="http://schemas.xmlsoap.org/ws/2005/02/sc">a:BadContextToken</s:Value>
 </s:Subcode>
 </s:Code>
 <s:Reason>
 <s:Text
 xml:lang="en-US">The message could not be processed. This is most likely because the action
 'http://Samples.ICalculator/Add' is incorrect or because the message contains an invalid or
 expired security context token or because there is a mismatch between bindings. The security context
 token would be invalid if the service aborted the channel due to inactivity. To prevent the service
 from aborting idle sessions prematurely increase the Receive timeout on the service endpoint's
 binding.</s:Text>
 </s:Reason>
 <s:Node>http://www.w3.org/1999/xlink</s:Node>
 <s:Role>http://www.w3.org/1999/xlink</s:Role>
 <s:Detail
 xmlns:tns0="http://schemas.com/2003/10/Serialization/"
 xmlns:tns15="http://Samples.Windows"
 tns0:Id="id"
 tns0:Ref="idref">
 <tns15:GetCallerIdentityResponse>
 <tns15:GetCallerIdentityResult>str</tns15:GetCallerIdentityResult>
 </tns15:GetCallerIdentityResponse>
 </s:Detail>
 </s:Fault>
 </s:Body>
</s:Envelope>

To check for the Subcode element, the expected content of the contain verification point is the following XML

fragment:

<s:Subcode
 xmlns:a="http://www.w3.org/2005/08/addressing"
 xmlns:s="http://www.w3.org/2003/05/soap-envelope">
 <s:Value
 xmlns:a="http://schemas.xmlsoap.org/ws/2005/02/sc">a:BadContextToken</s:Value>
</s:Subcode>

By default, the contain verification point checks whether an element named Subcode contains one element named

Value. You can use the following options:

515

HCL OneTest Performance

516

• Test using XML namespaces: With this option, the verification point checks whether an element named

"http://www.w3.org/2003/05/soap-envelope":SubCode contains one element named "http://www.w3.org/

2003/05/soap-envelope":Value.

• Test XML text node: With this option, the verification point also checks whether the element named Value

contains the text a:BadContextToken.

• Test XML attributes: With this option, the verification point also checks that the attributes match the expected

XML fragment. In this example, the Test XML attributes option is not necessary because the Subcode element

does not have any attributes.

To check that the Detail element properly returns a specific value for GetCallerIdentityResult, the expected content

of the contain verification point is the following XML fragment:

<s:Detail
 xmlns:a="http://www.w3.org/2005/08/addressing"
 xmlns:s="http://www.w3.org/2003/05/soap-envelope"
 xmlns:tns0="http://schemas.com/2003/10/Serialization/"
 xmlns:tns15="http://Samples.Windows"
 tns0:Id="regular_expression"
 tns0:Ref="idref">
 <tns15:GetCallerIdentityResponse>
 <tns15:GetCallerIdentityResult>IdentityValue</tns15:GetCallerIdentityResult>
 </tns15:GetCallerIdentityResponse>
</s:Detail>

You can use the following options:

• Test XML text node: With this option, the verification point also checks whether the element named

GetCallerIdentityResult contains the text IdentityValue.

• Test XML attributes: With this option, the verification point also checks that the attribute Id referred to by

tns0:Id has the expected value. You can specify a regular expression for this value by using the Regular

expression column in the Tree view of the verification point. For example, tns0:Id="[a-zA-Z]" checks that the

value does not contains numbers.

What to do next

You can enable or disable each verification point by right-clicking the verification point in the test editor and clicking

Enable or Disable.

Adding Xpath query verification points
With service query verification points, you can check that a response matches an Xpath query.

Before you begin

When you add verification points, the results from a service response are compared with the expected data that is

specified in the verification point test element. With query verification points, you can check that the number of nodes

returned by an XML Path language query matches the expected number of nodes specified in the verification point.

Refer to the XPath specification for details on expressing an XPath query: http://www.w3.org/TR/xpath.

http://www.w3.org/TR/xpath

Chapter 7. Test Author Guide

You can use the test editor to create or edit verification points.

1. Open the test editor, and select a web service response element.

2. Click Add, and select Query verification point.

3. In the Test Element Details area of the test editor, type a name for the verification point.

4. Type a valid XPath expression or click Build Expression to open the XPath Expression Builder.

The XPath Expression Builder helps you build and evaluate XPath expressions based on the recorded

contents of the response.

5. Specify a Comparison operator (=, >, or <), and the expected number of nodes that the query should return.

Click Evaluate to update the Expected Count with the actual result based on the recorded contents of the

response.

What to do next

You can enable or disable each verification point by right-clicking the verification point in the test editor and clicking

Enable or Disable.

Note: Because XPath expressions require that the qualified name have a prefix, XPath expressions will return

null for the default namespace declared with xmlns.

Adding attachment verification points
Service attachment verification points enable you to check that the attachment of a service response matches the

specified criteria.

Before you begin

When you add verification points, the results from a service response are compared with the expected data that are

specified in the verification point test element. Attachment verification points enable you to verify that an expected

attachment is delivered with the response.

Attachment verification points return a Pass status when all the criteria of an attachment match the expected criteria

specified in the verification point test element. If any of the criteria do not match, the verification point returns a Fail

status.

You can use the test editor to create or edit verification points.

To add attachment verification points to a performance test:

1. Open the test editor and select a service response element.

2. Click Add and select Attachment Verification Point.

3. In the Test Element Details area of the test editor, type a name for the verification point, and specify the

criteria to be verified. All criteria must match in order for the verification point to pass.

517

HCL OneTest Performance

518

a. In the case of multiple attachments, set the Index of attachments to the index number of the

attachment to be checked. Type 1 if there is only one attachment in the response.

b. Specify the expected size in bytes of the attachment.

c. Specify the MIME type and encoding of the attachment.

What to do next

You can enable or disable each verification point by clicking Enable verification point in the test editor.

Adding Text verification points
To check the text content that is returned by the service response, you can add a text verification point in the service

test. When you add the verification point, you can check whether the text matches equally with the response or

whether the response contains the text.

1. Open the Test editor, right-click a response element and select Add > Text Verification Point.

2. In Verification Point Name, specify a name for the verification point.

3. In the Operator field, select the basis of comparison between the text to be verified and the response content.

4. To search between the offset values, select From Offset and To Offset check boxes and specify the offset

values.

5. To search between two string values, select From String and To String check boxes and specify the strings.

You must also specify the number where the strings occurred.

For example, if there are four occurrences of 'My Text' in the content and you want to verify the text that is

between second and third occurrence, you should specify 2 and 3 in From String and To String respectively.

6. To do a case-sensitive match, select the Case sensitive check box.

7. To ignore carriage return/ line feed in the response, select the Ignore CL/LF when matching check box.

8. Save the test and run it.

Results

The Service Verification Point Report shows the number of Text Verification Points that passed or failed.

Adding properties verification points to a test response
You can add verification points for the properties in a service test so that these properties in the test response are

verified and validated when you play back the test.

Before you begin

You must have recorded or created a service test using the test editor.

About this task

When you add verification points, results from a service response are compared with the expected data specified as

the verification point test element. You can add the verification point for the properties to an existing test response

when the test is manually created or recorded. After you add the verification point for the properties to a test

response, you can verify the selected response properties during the test run.

Chapter 7. Test Author Guide

1. Identify the service test from Test Navigator and double-click the service test to open it in the test editor.

2. Select a service response for a service request from the service test.

3. Right-click the service response, click Add > Properties Verification Point.

Result

The Properties Verification Point is added based on the existing properties of the service response.

Note: You can add multiple verification points for the properties, if required.

4. Perform any of the following on the verification points for the properties in the Properties Verification Point

Details pane.

To Do... Do This...

To add a new property and its value Click Add.

To edit the value of an existing property Click Edit.

To remove the property that you do not want to verify

during the test run

Click Remove.

Note: You can remove multiple properties in

a group at the same time.

5. Select or clear the Apply And Operator check box based on the requirement as follows:

◦ To verify all the listed properties, select the Apply And Operator check box.

◦ To verify one of the listed properties, clear the Apply And Operator check box.

6. Optionally, you can substitute the value of one or more properties in the verification point by using a test

variable, data set, custom java code, or built-in variables.

7. Verify all the verification points for the properties that you entered, and then click Save.

Results

The verification points that you added for the response properties are added to the service test.

What to do next

You can run the test and after the test run, you can view and analyze the properties verification point details from

the following page and reports:

• Verdict List pane in the Test Log page. Click any of the verification point from the list and view the details.

• Response Properties Verification Points tab in the Service Verification Point Report. Click the Response

Properties Verification Points tab and view the verification point details.

• Verification points verdicts pane from the Functional Test report page. Click any of the verdict status to verify

the expected value and actual value of the verification point for the properties.

519

HCL OneTest Performance

520

Related reference

Web Service Verification Points report on page 1047

Adding XSD verification points
XSD verification points enable you to check that the XML content of a service response comply with the rules defined

in an XML Schema Definition (XSD) file.

Before you begin

When you add verification points, the results from a service response are compared with the expected data that are

specified in the verification point test element. XSD verification points return a Pass status when the XML contents of

the response are compliant with the associated XSD or a Web Service Description Language (WSDL) file that contains

XSD information.

If you add multiple XSD files to the verification, then the XML content of the response must comply with all of the XSD

files.

You can use the test editor to create or edit verification points.

To add an XSD verification point to a test:

1. Open the test editor and select a service response element.

2. Click Add and select XSD Verification Point.

3. In the Test Element Details area of the test editor, type a name for the verification point.

4. Click Add XSD to add a an XSD file to the validation list or Add WSDL to add a WSDL that contains XSD

information.

Click Open to display the XSD or WSDL contents.

What to do next

You can enable or disable each verification point by right-clicking the verification point in the test editor and clicking

Enable or Disable.

Working with Server Name Indication (SNI) recordings
If you have recorded against a server that supports Server Name Indication (SNI), an extension of the TLS protocol,

the recording session file displays true for the SNI Extension field. There might be a need for you to access both

SNI and non-SNI applications from the same server. To run the same test without using the SNI extension, you can

manually change the value to false.

About this task

Chapter 7. Test Author Guide

The Server Access Configurations resource of the test script also have SSL entries. Each SSL entry displays which

TLS version and Cipher value was used. To edit multiple SSL entries, select them and in the Detail area, right-click the

entries and click Edit multiple SSLs.

Adding elements to a socket test
A socket test provides the flexibility to add close, send, and receive elements to the test.

Adding a service request
You can use service request elements in tests to send a request to the service.

About this task

Complex service requests or verification points might have empty XML elements that are not needed in a test script.

When playing back the test, you can skip such empty XML elements. In Window > Preferences > Test > Test editor >

Service test ensure that the Display the 'Skip if empty' column in XML tree viewer check box is selected. This option

displays a Skip if empty column in the tree view of the request. You can then choose the XML elements to skip.

1. Open the test in the test editor, and select the first element in the test.

2. Click Add and select a service request.

3. If you selected WSDL service request, select one or several WSDL files in your workspace for the web service

that you want to test and click Next.

If necessary, you can import a WSDL file into the workspace with the Add button.

4. Select either HTTP, JMS, or WebSphere MQ depending on the transport protocol used by the web service, and

provide the correct transport protocol configuration to perform the call.

You can create a New transport configuration or reuse an existing one.

5. Click Finish.

Result

This creates the web service request in the test editor.

521

HCL OneTest Performance

522

6. On the Message page of the request, select the Form, Tree, or Source views to edit the service request

contents.

7. If any resource files are to be attached to the request, select the Attachment tab. Use Add, Remove, or Edit to

specify the resources that are to be attached to the request.

8. If the service uses encryption, signature or other security protocols, select the Security for Request and

Security for Response pages to configure the security for this particular service request or to open the WSDL

security editor.

What to do next

After creating elements, you can use the test editor to edit service requests. You can create a service response

element to test the performance and behavior of the service. You can also replace some content values with dataset

variables or a references.

Updating a service response from the service
While you are developing a service test, you can send a request from the test editor to record or update the response

element.

Before you begin

Service response elements are children of service request elements. Service tests use response elements to measure

the response time between a call and the corresponding response. Response elements can also contain verification

points.

You can click Update Response in the request element to complete one of the following actions:

• Record a response from the service: This method sends the request and records the actual response from the

service. For services that use the IBM® WebSphere® MQ or JMS transport protocols, multiple responses can

be recorded.

• Update the current response content: If a response exists, its contents are replaced. If multiple responses are

received, the number and order of the responses are updated.

Important: After updating the response content, data correlation or verification points that referred to

replaced content might no longer work.

You can use the test editor to create or edit response elements in a service test. There are three methods of adding a

service response:

• Generate a response from Web Services Description Language (WSDL): If the service uses WSDL, then the

response is created with the content structure that the WSDL specifies.

• Add a text response: In this response type, you specify free formatted content for the response.

• Record a response from the service: This method sends the request and records the actual response from the

service.

Chapter 7. Test Author Guide

WebSphere® MQ and JMS requests can contain multiple response elements.

To add a response element to a service test:

1. Open the test in the test editor, and select a service request element.

2. On the Test Element Details page, click Update Response.

Alternatively, right-click the service request element, and click Add > Response from Request.

Result

This action performs the service request. If the request is valid, the Update Response window opens and

displays the response data.

3. In the Return Preview window, review the content of the response to ensure that it is correct.

For the WebSphere® MQ and JMS protocols, if multiple responses are received, then click the arrows to view

each response.

a. Click the Message tab to view the contents of the response in the Form, Tree or Source view.

b. Click the Attachment tab to view any resource files that were attached to the response.

c. Click the Response Properties tab to view the properties of the response.

4. To use the received response in the test, click Update Test.

This creates the response elements as a child of the request element or updates the existing response

elements with the new data.

What to do next

After creating or updating response elements, you can create verification points on the response contents to test the

behavior of the service.

Related information

Manually adding a response element on page 523

Verifying application behavior on page 512

Manually adding a response element
You can add service response elements to specify the received content of a service request. You can use the test

editor to create or edit response elements in an existing service test.

Before you begin

Service response elements are children of service request elements. Service tests use response elements to measure

the response time between a call and the corresponding response. Response elements can also contain verification

points. IBM® WebSphere® MQ and JMS requests can contain multiple response elements.

Depending on the type of request, you can manually create several types of response elements:

523

HCL OneTest Performance

524

• Response from Web Services Description Language (WSDL): For web services, this response type uses the

WSDL file to create the specified XML structure of the response.

• XML response: This response type creates an empty response element in which you must manually create

the expected XML structure. You can use an XML Schema Definition (XSD) document from the XSD catalog to

assist you.

• Text response: This response type creates an empty response element, which can contain freely formatted

text.

Alternatively, you can automatically create and update response content by recording the actual response content

that the service returns. See Updating a service response from the service on page 522 for more information.

To add a response element to a service test:

1. Open the test in the test editor, and select a service request element.

2. Create one of these elements:

Choose from:

◦ For web service requests, click Add > Response from WSDL.

◦ If the expected response contains XML content, click Add > XML Response.

◦ If the expected response contains plain text, click Add > Text Response.

Result

This action creates the corresponding response element in the test. If the request uses the WebSphere® MQ

or JMS format, then you can create multiple responses.

3. Edit the message content of the response element to reflect to actual content that the service returns.

a. Click the Message tab to view the contents of the response in the Form, Tree or Source view.

b. Click the Attachment tab to view any resource files that were attached to the response.

c. Click the Response Properties tab to view the properties of the response.

What to do next

After creating a message return, you can create verification points on the contents to test the behavior of the service.

Related information

Updating a service response from the service on page 522

Verifying application behavior on page 512

Managing JMS/MQ connections in a service test
When you run a service test that includes JMS or MQ protocol, the socket connections are created and closed in the

background. When you include multiple tests in a compound test or a schedule, in this context, is used to refer to both

VU Schedule and Rate Schedule, multiple connections are created and closed. Starting from 9.2, when you run service

tests in a schedule, you can select a pooling strategy for these JMS/MQ connections so that when the connections

are created, they do not close and are reused subsequently for the other JMS/MQ calls, if required.

Chapter 7. Test Author Guide

About this task

You can set the scope of JMS/MQ connections to a test, compound test, or schedule. When you set the scope to

test, existing behavior comes into play wherein duplicate connections could be created and closed. When you set the

scope to a compound test or a schedule, the connections are reused for JMS/MQ calls within a compound test or a

schedule.

1. In the Test Navigator, browse to the schedule and double-click it. The schedule is displayed.

2. Select a schedule. In the VU Schedule Details area, click the Advanced tab and under Protocol-specific

options, click Edit Options.

3. In JMS/MQ connections scope, select the scope of the connections.

4. Use the following options to control the underlying MQ Connection Manager to create only the specified

number of connections. These options are generally used by the MQ expert:

a. In Maximum quantity of connections, specify a number to ensure that a certain number of

connections are open at a time only for MQ Java.

b. In Maximum quantity of unused connections, specify the maximum number of connections that

should be unused among the open connections.

c. In Connection timeout (ms), specify a time after which there is no attempt to establish the connection.

Results

When you run a schedule, the JMS/MQ connections are reused.

Editing WSDL security profiles
To ensure that your service test uses the correct security protocols to access a SOAP-based service, you must specify

a security profile for the (Web Service Description Language) WSDL file. After a security profile is set up, it can be

reused in multiple web service calls.

WSDL security editor overview
With the WSDL security editor you can create the SOAP algorithm stacks that are associated with a web service

operation. Algorithm stacks contain digital certificate information and the security algorithms that are applied to

messages to perform secure communication with a web service.

After you create an algorithm stack, you associate it with an operation that is specified in the Web Services

Description Language (WSDL) file of the web service. Algorithm stacks remain available in the workspace and you

can reuse them with other WSDL files. You can also edit a test to make the same web service call several times with

different security configurations.

You use the WSDL security editor to create and edit security configurations. The WSDL security editor contains two

pages that correspond to the steps of setting up a security configuration:

• Describing a security stack

• Associating a security stack with each WSDL operation

525

HCL OneTest Performance

526

Algorithm stacks

Algorithm stacks contain one or several algorithm blocks that are arranged in a sequence of steps. Each algorithm

block modifies or transforms the message content. Algorithm blocks can add timestamps to, add tokens to, encrypt,

or sign messages.

Use the Algorithm Stacks page of the WSDL security editor to create stacks for service requests and responses.

When a message is sent or received, each algorithm block in the stack is executed in the specified order. For example,

you can define a request stack for outgoing requests that adds a timestamp, signs, and then encrypts the message

content, and you can define a response stack that decrypts incoming responses. You can create as many algorithms

as your application requires.

You can edit algorithm blocks and move them up and down in the stack. Encryption and signature blocks can use

keystores for digital certificates. Some algorithm blocks display messages that help you enter correct information. If

the contents of the algorithm block are invalid, an error icon is displayed.

Raw transaction data view

When a stack is associated with a service request or response, viewing the results of each transformation step that

is applied to the XML message content can be useful. You can use the Raw Transaction Data view to look at the

message content before and after each algorithm in the stack.

Digital certificate keystores

You can add digital certificate keystores to a security stack to use with encryption or signature algorithms. Keystores

must be declared with their associated passwords before the algorithms that use them. Digital certificates are

contained in Java™ keystore files (KS, JKS, JCEKS, PKCS12, and PEM) that must be located in your workspace.

Associating stacks with WSDL operations

Use the Algorithms by WSDL operations page of the WSDL security editor to associate a security algorithm stack

with each web service call and message return in the WSDL file.

Creating security profiles for WSDL files
You can create SOAP security profiles for the web service calls or message returns that require message encryption,

signature or other advanced security algorithms.

Before you begin

You must have a Web Services Description Language (WSDL) file in your workspace.

If the security profile uses digital certificates for encrypting or signing requests or responses, you must have the

corresponding keystore files (KS, JKS, JKECS, PKCS12, or PEM) in your workspace.

About this task

Chapter 7. Test Author Guide

If the WSDL is simple and you want to check its security, in the Request Stack tab of the test editor, click Override

Stack > Tools > Analyze Security from Pasted Content. Paste the SOAP XML message and click Next. The next page

shows the different security algorithms used in the XML. Click Finish to add the security algorithms to the editor.

Note: When you add a secured SOAP XML message in Message > Source tab of the test editor, certain

security related warnings are displayed in the Error Message view. If you are aware of the secured SOAP

XML message and do not want to view the warnings, click Window > Preferences > Generic Service Client >

Message Edition and select the Analyze pasted SOAP content check box.

If the WSDL uses WS-Policy, you must configure security as follows:

1. In the test navigator or project explorer, right-click the WSDL file and select Edit WSDL Security.

Result

The WSDL security editor is displayed.

2. Click the Security Algorithms tab.

Security profiles are described by adding elements to a stack. When a service request is sent or a response

is received, each element in the stack is applied to the message in a specified order. If necessary, create one

security profile for outgoing requests and one for incoming responses.

3. In the Security Algorithms area, click Add to create a new algorithm stack, and click Rename to change the

default name.

4. In the Algorithm Stack Details area, click Add to add a new algorithm element to the stack.

You can add time stamps, username tokens, encryption, or signatures.

5. Edit each element in the stack according to the requirements of the web service.

You can apply encryption and signature stack elements to portions of the web service call or message return

document by specifying an Xpath query in User Xpath part selection. For example, you can encrypt one XML

element with one encryption stack element, and another element with another stack element. You can use the

Web Service Protocol Data view to help identify the correct Xpath query for this option.

You can check whether the security stack is valid by clicking Tools > Validate Selected Algorithm.

6. When all the stack elements are complete, ensure that the execution order is correct.

If necessary, use the Up and Down buttons to change the order of elements in the stack.

7. Repeat steps 4 through 7 to create as many algorithms as are required for security profile.

8. Click the Algorithms by WSDL Operations tab.

This page enables you to associate a security profile with each request or response operation in the WSDL.

9. In the WSDL Contents column, select a service request or response.

10. In the Algorithm Stack column, select a security profile from the list.

If necessary, click << to open the stack on the Security Algorithms page.

Results

After saving the security profile, the Web Service Protocol Data view displays the effect of the security profile on the

XML data of the web service.

527

HCL OneTest Performance

528

Related reference

WSDL security editor reference on page 1443

Related information

Using a security policy on page 528

Adding WS-Addressing to a security configuration on page 539

Implementing a custom security algorithm on page 537

Using a security policy
The WS-Policy specification enables web services to use XML to publish their security policies either as part of the

Web Services Description Language (WSDL) file (compliant with the WS-PolicyAttachment specification) or as a

separate XML document. With the WSDL Security Editor, you can create a security profile that uses a policy that

complies with the WS-Policy specification.

Before you begin

Before creating a security configuration, you must have a WSDL file in your workspace.

If the security policy uses digital certificates for encrypting or signing requests or responses, you must have the

corresponding keystore files (KS, JKS, JKECS, PKCS12, or PEM) in your workspace.

When you import a WSDL that contains a policy (with WS-PolicyAttachment), a security profile is automatically

generated for each operation in the WSDL security editor.

1. In the test navigator or project explorer, right-click the WSDL file, and select Configure WSDL Security.

Result

This opens the WSDL security editor.

2. Click the Security Algorithms tab.

Security profiles are described by adding elements to a stack. When a service request is sent or a response is

received, each element in the stack is applied to the message in the specified order.

3. In the Security Algorithms area, click Add to create a profile, and click Rename to change the default name.

4. In the Algorithm Stack Details area, click Add > WS-Policy to add the WS-Policy element to the stack.

You can also add time stamps, user-name tokens, encryption, or signatures.

5. If the policy is included in the WSDL file, click Use policy included in WSDL (WS-PolicyAttachment), and edit

the WS-Policy settings as required:

Policy

If you are not using the WS-PolicyAttachment specification, specify the XML policy file. Click

Browse to add a policy file from the workspace or to import a policy file.

Signature configuration

Select this option to specify a keystore for any signature that is specified in the policy. Click Edit

Security to add a keystore from the workspace or to import a keystore.

Chapter 7. Test Author Guide

Encryption configuration

Select this option to specify a keystore for any encryption that is specified in the policy. Click

Edit Security to add a keystore from the workspace or to import a keystore.

Decryption configuration

Select this option to specify a keystore for any decryption that is specified in the policy. Click

Edit Security to add a keystore from the workspace or to import a keystore.

Retrieve token from security token server (WS-Trust and WS-SecureConversation)

Select this option, and click Configure to specify a Security Token Server (STS) to use with the

policy.

Additional properties

Use this table to specify settings for the advanced properties or specific implementations of the

WS-Security specification. Click Add to add a property name and to set a value.

6. Check that the security profile is valid by clicking Tools > Validate Selected Algorithm.

7. Click the Algorithms by WSDL Operations tab.

On this page, you can associate a security profile with each request or response operation in the WSDL.

8. In the WSDL Contents column, select a web service request or response operation.

9. In the Algorithm Stack column, select a security profile from the list.

If necessary, click << to open the stack on the Security Algorithms page.

What to do next

After saving the security profile, the Web Service Protocol Data view displays the result of the security profile on the

XML data of the web service.

Related information

Creating security profiles for WSDL files on page 526

Adding WS-Addressing to a security configuration on page 539

Implementing a custom security algorithm on page 537

Adding security stacks
To provide better WSDL security, you can make use of many security algorithms in the service test.

About this task

1. From the Test Navigator view or from the Request Library section of Generic Service Client, right-click the

WSDL file and select Edit WSDL Security.

2. In the Security Algorithms area of Algorithm Stacks tab, click Add to create a profile.

3. In the Stack Contents area, click Add and add any of the following security algorithms:

529

HCL OneTest Performance

530

Custom Security Algorithm

If you want to use a Java™ class as a custom security algorithm, then use this stack element to

apply the custom algorithm to the service.

Java™ Project

If you have not implemented a custom Java™ class, select Java Project, type a

name for the new project, and click Generate to create a new Java™ class with the

default structure for custom security implementations.

Note: If you are using IBM® Security AppScan®, this field is not available.

Implementation class

Specify the name of the class that implements the custom security algorithm.

Click Browse Class to select an existing Java™ class from the workspace.

Properties

Use this table to send any specific properties and associated values to the custom

security algorithm.

WS-Addressing Algorithm

Use this block if your service uses either WS-Addressing 2004/08 or the WS-Addressing 1.0 Core

standard.

Namespace

Specify the namespace for either WS-Addressing 2004/08 or WS-Addressing 1.0

Core.

Action if request uses WS-Addressing

Select the action to complete if WS-Addressing is already in the request.

Replace anonymous address in Reply-to with:

Select this option to generate the specified address in the Reply-to header instead

of an anonymous address.

Remove WS-Addressing from response

Select this option to strip any WS-Addressing headers from the response.

Encrypted Key

This block defines an encrypted key that can be used in an XML signature or XML encryption

block. The encrypted key block must be before a block that uses the encrypted key.

Actor / Role name

Specify the name of the recipient of the algorithm header element, if required.

Chapter 7. Test Author Guide

Must understand

Select whether it is mandatory that the algorithm header is processed by the

recipient, if required. The recipient is either the Actor name or the server.

Key name

Specify the name of the encrypted key.

Identifier type

Select the type of key identifier to be used for the key. The following key identifiers

are available, as defined in the the Web Service Security (WSS) specification X509

profile and OASIS WSS 1.1 specification:

◦ ISSUER_SERIAL

◦ BST_DIRECT_REFERENCE

◦ X509_KEY_IDENTIFIER

◦ THUMBPRINT_IDENTIFIER

◦ SKI_KEY_IDENTIFIER

Key size

Specify the size of the key in bits.

Key encoding algorithm name

Specify the algorithm to be used for encoding the key.

Keystore

Select a keystore or click Edit Security to define a new keystore or to manage the

existing keystores.

Name

Select a key contained in the specified keystore.

Password

Type the password for the selected key name.

XML Signature

The XML signature security algorithm specifies how the XML document is signed. For details on

security algorithms, refer to the web service security specification.

Actor / Role name

Specify the name of the recipient of the algorithm header element, if required.

Must understand

Select whether it is mandatory that the algorithm header is processed by the

recipient, if required. The recipient is either the Actor name or the server.

531

HCL OneTest Performance

532

Security token

Select the type of key identifier to be used for the signature. The following

key identifiers are available, as defined in the the Web Service Security (WSS)

specification X509 profile and OASIS WSS 1.1 specification:

◦ ISSUER_SERIAL

◦ BST_DIRECT_REFERENCE

◦ X509_KEY_IDENTIFIER

◦ SKI_KEY_IDENTIFIER

◦ KEY_VALUE

◦ USER_NAME_TOKEN

◦ CUSTOM_SYMM_SIGNATURE

In addition, the following identifiers are available when the signature is based on a

UsernameToken profile:

◦ USER_NAME_TOKEN

◦ CUSTOM_SYMM_SIGNATURE

User XPath part selection

Specify an XPath query that describes parts of the XML document that can be

the subjects of the algorithm. By default, the body is the subject. Click the XPath

Helper button to build the Xpath expression.

Key

Select the key used for the encryption. The details of each key vary.

◦ x509 key: This key specifies the name and password of the x509 key and

the keystore where it is located.

◦ User name token key: This specifies a user name and password for the

signature.

◦ Encrypted key: This specifies a reference to an encrypted key that was

previously defined in the security stack. Click Insert a new encrypted key to

create a new encrypted key definition block.

Signature algorithm name

Specify the signature method algorithm as described in the XML Signature Syntax

and Processing specification.

Canonicalization

Specify the canonicalization method to be used as described in the XML Signature

Syntax and Processing specification.

Digest algorithm method

Specify which digest method to be used based on the algorithm method used on

the server side.

Chapter 7. Test Author Guide

Inclusive namespaces

Specify whether the canonicalization is exclusive as described in the Exclusive

XML Canonicalization specification.

XML Encryption

The XML encryption security algorithm specifies how the XML document is encrypted. For

details on security algorithms, refer to the web service security specification.

Actor / Role name

Specify the name of the recipient of the algorithm header element, if required.

Must understand

Select whether it is mandatory that the algorithm header is processed by the

recipient, if required. The recipient is either the Actor name or the server.

Identifier type

Select the type of key identifier to be used for the encryption. The following

key identifiers are available, as defined in the Web Services Security (WSS)

specification X509 profile and the OASIS WSS 1.1 specification:

◦ ISSUER_SERIAL

◦ BST_DIRECT_REFERENCE

◦ X509_KEY_IDENTIFIER

◦ SKI_KEY_IDENTIFIER

◦ EMBEDDED_KEYNAME

◦ THUMBPRINT_IDENTIFIER

◦ ENCRYPTED_KEY_SHA1_IDENTIFIER

User XPath part selection

This enables you to specify an XPath query that describes parts of the XML

document that can be subjects of the algorithm. By default, the body is the subject.

Key

Select the key used for the encryption. The details of each key vary.

◦ x509 key: This specifies the name and password of the x509 key and the

keystore where it is located.

◦ Raw key: This specifies the name and the byte value of your SecretKey in

hexadecimal.

◦ Encrypted key: This specifies a reference to an encrypted key that was

previously defined in the security stack. Click Insert a new encrypted key to

create a new encrypted key definition block.

Encoding Algorithm Name

Specify the encryption method to be used as defined in the XML Encryption Syntax

and Processing specification.

533

HCL OneTest Performance

534

Key Encoding Algorithm

Specify the standard algorithm for encoding the key as defined in the XML

Encryption Syntax and Processing specification.

User name token

The user name token security algorithm adds a user name token to the XML document in the

message. For details on security algorithms, refer to the web service security specification.

Actor / Role name

Specify the name of the recipient of the algorithm header element, if required.

Must understand

Select whether it is mandatory that the algorithm header is processed by the

recipient, if required. The recipient is either the Actor name or the server.

Name

Type the name of the user.

Password

Type the password of the user.

Password type

Specify the password type for the security algorithm as defined in the Web

Services Security UsernameToken profile.

Use nonce

Select this check box to add the Nonce element to the User Name Token XML

code. In most cases, the Nonce ID is required.

Use created

Select this check box to add current timestamp to the Created XML element in the

User Name Token XML.

Time Stamp

The time stamp security algorithm adds time stamp information to the XML document in the

response. For details on security algorithms, refer to the web service security specification.

Actor / Role name

Specify the name of the recipient of the algorithm header element, if required.

Must understand

Select whether it is mandatory that the algorithm header is processed by the

recipient, if required. The recipient is either the Actor name or the server.

Expiration delay

Specify the delay after which the time stamp expires.

Chapter 7. Test Author Guide

Millisecond precision

Select this option to produce a time stamp that uses millisecond precision instead

of the default (1/100th second).

SAML Assertion Block

To use the self-signed SAML assertion security algorithm, add the SAML Assertion stack to the

request or WSDL files.

User XPath part selection

Specify an XPath query that describes parts of the XML document that can be the subjects of

the algorithm. By default, the body is the subject. Click the XPath Helper button to build the

Xpath expression.

Key

Select the key used for the encryption. The details of each key vary.

◦ x509 key: This key specifies the name and password of the x509 key and the keystore

where it is located.

◦ User name token key: This specifies a user name and password for the signature.

◦ Encrypted key: This specifies a reference to an encrypted key that was previously

defined in the security stack. Click Insert a new encrypted key to create a new encrypted

key definition block.

Signature algorithm name

Specify the signature method algorithm as described in the XML Signature Syntax and

Processing specification.

Canonicalization

Specify the canonicalization method to be used as described in the XML Signature Syntax and

Processing specification.

Digest algorithm method

Specify which digest method to be used based on the algorithm method used on the server side.

Inclusive namespaces

Specify whether the canonicalization is exclusive as described in the Exclusive XML

Canonicalization specification.

Signed Assertion

Select this check box to self-sign the SAML Assertion.

Issuer

Specify the description of the issuer of the SAML Assertion or protocol message.

535

HCL OneTest Performance

536

Subject

Specify the principal that is the subject of all of the statements in the assertion. It might contain

an identifier or a series of one or more subject confirmations.

Subject Qualifier

Specify the Name Qualifier of the Subject

Subject Format

Specify the format used for the Subject.

Subject Locality DNS

Specify the DNS domain name for the system from which the assertion subject was

authenticated.

Subject Locality IP

Specify the IP address for the system from which the assertion subject was authenticated.

Statement Type

Specify the authentication method to use for the assertion.

Authentication: The assertion subject was authenticated

Attribute: The specified subject is associated with the supplied attributes.

Authorization decision: Permission to allow a subject to access the specified resource.

Requested Resource

When Authorization decision option is used, specify the resource for which you need access.

Action

Specify what action to take to access the resource.

Confirmation number

Confirmation methods define the mechanism by which an entity provides evidence (proof) of the

relationship between the subject and the claims of the SAML assertions.

Sender vouches: Select this option when a server needs to share the client identity with SOAP

messages on behalf of the client. This method is similar to identity assertion, but it has the

added flexibility of using SAML assertions to share not only the client identity, but also client

attributes.

Holder of key: Select this option when the proof of the relationship between the subject and

claims is established by signing part of the SOAP message with the key specified in the SAML

assertion. Because there is key material associated with a holder-of-key token, this token can be

used to provide a message-level protection (signing and encryption) of the SOAP message.

Chapter 7. Test Author Guide

Bearers: Select this option when the proof of the relationship between the subject and claims

is implicit. No specific steps are taken to establish the relationship. Because there is no key

material associated with a bearer token, protection of the SOAP message, if required, must be

performed using a transport-level mechanism or another security token, such as an X.509 or

Kerberos token, for message level protection.

Version

Specify the SAML version used.

4. Optional: To verify simple SAML code, use the Analyze Security from Pasted Content option.

For more information about that option, see Creating security for WSDL profiles on page 526.

Implementing a custom security algorithm
You can define your own security algorithms for SOAP security profiles by implementing custom security Java™

interfaces that can be used in the WSDL security editor. With custom security algorithms, you can implement

proprietary security algorithms that transform the XML before sending and after receiving message content.

Before you begin

The custom security interface and the JAR file that contains it are provided with the product in the

customsecuritydefinition folder of the com.ibm.rational.ttt.common.models.core plugin. You need

these interfaces to create your own algorithms. If you are using HCL OneTest™ Performance , see Extending test

execution with custom code on page for more information about extending test capabilities with Java™ code.

1. In the test navigator or project explorer, create a new Java™ class in your web service test project folder.

2. Implement a security algorithm in Java™ using the following interface:

/**
* ***
* IBM Confidential
*
* (c) Copyright IBM Corporation. 2008. All Rights Reserved.
*
* The source code for this program is not published or otherwise
* divested of its trade secrets, irrespective of what has been
* deposited with the U.S. Copyright Office.
* ***
*
*/

package com.ibm.rational.test.lt.models.wscore.datamodel.security.xmlsec;

import java.util.Properties;
import org.w3c.dom.Document;

public interface ICustomSecurityAlgorithm {

 /**
 * The following methods can be used in both case:

537

../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html

HCL OneTest Performance

538

 * Execution in the workbench and execution of the test.
 */

 /**
 * Called to process de Document that is sent over a transport.
 * @param subject
 */
 void process(Document subject);
 /**
 * Called to un process a document that is received from a server.
 * @param subject
 */
 void unProcess(Document subject);

 /**
 * Properties defined in the UI of the CustomSecurityAlgorithm.
 * @param map
 */
 void setProperties(Properties map);

 /**
 * The following methods can only be used in terms of cast to test service interface,
 * or in terms of access to the previous XML information, when the jar containing
 * the custom security algorithm is deployed in the performance test project. In
 * this case you cannot use the algorimth directly from the workbench.
 */

 /**
 * This object corresponds to the ITestExecutionService object.
 * This applies only to an algorithm that must link to the execution of the test.
 * If you plan to use this object you will need to deploy the jar containing the
 * implementation into your performance test project and not directly into the JRE.
 *
 * In case of a need of the previous xml document received from the execution you can
 * obtain the value using:
 * IDataArea area =
 ((ITestExecutionService)executionObject).findDataArea(IDataArea.VIRTUALUSER);
 *String previousXML = (String) area.get("PREVIOUS_XML"); //$NON-NLS-1$
 *
 */
 void setExecutionContext(Object executionObject);

The process method modifies the XML before it is sent to the server.

The unprocess method modifies the XML after it is received from the server.

The setProperties method retrieves any properties that are defined in the security editor for this custom

security interface.

The setExecutionContext method is called during test with the object ITestExecutionServices that

corresponds to the message using this custom security interface.

3. The custom security interface can be used either in the WSDL security editor for web services or in XML call

elements in the Local XML security tab.

Chapter 7. Test Author Guide

Choose from:

◦ If you are testing a WSDL-based web service, right-click the WSDL file in the test navigator or project

explorer to open the WSDL security editor, select the Security Algorithms page; then, under Details of

selected security algorithm stack, click Add > Custom Security Algorithm.

◦ If you are testing an XML call, open the XML call element in the test editor, select the Local XML

Security tab, and then, click Add > Custom Security Algorithm

4. In custom security, click Browse Class to select the class name of the custom security algorithm, for

example : ICustomSecurityAlgorithm.

5. Type an Algorithm name for the custom security algorithm.

6. In the properties list, use Add, Remove, or Edit to specify any properties that are used by the setProperties

method in your custom security algorithm.

What to do next

After saving the security configuration or the call element, the Web Service Protocol Data view displays the effect of

the security algorithm on the XML data of the web service.

Related reference

WSDL security editor reference on page 1443

Adding WS-Addressing to a security configuration
The WS-Addressing specification provides transport-neutral mechanisms that enable SOAP-based web services to

communicate addressing information. You can use WSDL security algorithms to add WS-Addressing to your service

tests.

Before you begin

Before adding WS-Addressing to a security configuration, you must have a service test with requests and responses

that are related to a valid WSDL.

To add WS-Addressing to a WSDL security algorithm:

1. Open the test, select a service request, and in the Raw Transaction Data view, select Enable the display of the

XML document after the security processing.

2. On the Request Stack page, click Edit WSDL Security .

Tip: If you need to edit separate security or processing algorithms for incoming responses, click Show

Response Stack to add a Response Stack page to the editor.

Result

The WSDL security editor opens.

3. Select the Algorithm Stacks page of the WSDL security editor, and in the Security Algorithm list, select or

create a security algorithm.

539

HCL OneTest Performance

540

4. In the Stack Contents list, click Add > WS-Addressing and specify the settings that are implemented by the

service.

WS-Addressing Algorithm

Use this block if your service uses either WS-Addressing 2004/08 or the WS-Addressing 1.0 Core

standard.

Namespace

Specify the namespace for either WS-Addressing 2004/08 or WS-Addressing 1.0

Core.

Action if request uses WS-Addressing

Select the action to complete if WS-Addressing is already in the request.

Replace anonymous address in Reply-to with:

Select this option to generate the specified address in the Reply-to header instead

of an anonymous address.

Remove WS-Addressing from response

Select this option to strip any WS-Addressing headers from the response.

5. Save the WSDL security algorithm, and select the test editor.

Result

The WS-Addressing namespace and header XML content is displayed in the Raw Transaction Data view.

Related reference

WSDL security editor reference on page 1443

Related information

Creating security profiles for WSDL files on page 526

Implementing a custom security algorithm on page 537

Testing asynchronous services
Use the asynchronous callback services for inter-object communications in a service test.

Asynchronous service testing overview
Asynchronous services use a callback interaction pattern for inter-object communications. Asynchronous services

can be used, for example, in publish-subscribe systems that are provided by message-oriented middleware vendors or

in system and device management domains.

WS-Notification services

Asynchronous services are standardized in the WS-Notification specifications:

Chapter 7. Test Author Guide

• WS-BaseNotification defines the web services interfaces for NotificationProducers and NotificationConsumers.

This specification includes standard message exchanges that are implemented by service providers that want

to act in these roles, along with the associated operational requirements.

• WS-BrokeredNotification defines the web services interface for a NotificationBroker. A NotificationBroker

is an intermediary which, among other things, enables entities that are not service providers themselves to

publish messages. It includes standard message exchanges that are implemented by NotificationBroker

service providers, along with the associated operational requirements of service providers and requestors that

participate in brokered notifications.

• WS-Topics defines a mechanism to organize and categorize items of interest for subscription known as

topics. These are used in conjunction with the notification mechanisms defined in WS-BaseNotification and

WS-BrokeredNotification.

You can test web services and XML services that implement the WS-Notification specification by creating an

asynchronous request inside a test. The asynchronous request contains the interfaces for the corresponding WS-

Notification specification, along with a callback structure.

Proprietary asynchronous services

You can test proprietary asynchronous services that do not implement WS-Notification specifications. To test these

services, you manually create a service request that contains the interfaces for the service, and then, you can add the

asynchronous callback structure to the request.

The XML data of the asynchronous request must contain an endpoint that specifies the URL of the callback receiver.

During the test, this endpoint is used to redirect the callback to the tester instead of the real receiver.

Callback structure

To test asynchronous services, you must create an asynchronous request structure in your test as shown in the

following diagram:

A web service request or a plain XML request provides the subscription action and contains a callback element, which

describes the behavior of the test in three states:

541

HCL OneTest Performance

542

• Parallel contains test elements that are run after the subscription request and while waiting for the notification

response.

• Receive contains test elements that are run when the notification response has been received from the

service.

• Timeout contains test elements that are run if the notification response is not received after a delay that is

specified in the callback element.

When everything contained in the parallel, receive, and timeout elements have finished running, the run continues with

the next element in the test after the asynchronous request.

The method for generating the asynchronous callback structure in the test depends on whether the asynchronous

service uses the WS-Notification specification:

• WS-Notification services: Create the asynchronous request in the test.

• Proprietary services: Manually create a web service request or XML request in the test, and then add the

asynchronous callback structure to the request.

Creating an asynchronous request structure
You can create an asynchronous request based on the WS-Notification specification, which contains an callback

structure.

1. In the test editor, select the test, and click Add, and then click Specification-based Structure.

Result

The New Web Service Test wizard opens.

2. On the Web Services Specification Selection page, Select WS-Notification, and click Next.

3. On the WS-Notification Details page, if the service has a Web Services Description Language (WSDL) file, click

Add to associate it with the call.

4. Specify the Subscription identifier.

You can select default identifiers for Websphere Application Server or Apache Muse; or if your service does

not use a standard identifier, you can select Custom, and type the Name and Namespace of the identifier.

5. In the Topic area, replace the default Name and Namespace values with those of topic of your service.

6. Specify the Subscription duration.

Because this is a test environment, the subscription expires after the specified delay to save server resources.

7. If this is a WS-BrokeredNotification service, which implements a notify call when the subscription is received,

you can select Add notify call, and type the message to be sent.

8. Click Next.

9. On the Configure Protocol page, select a Protocol configuration, and specify the options of the configuration.

Select Generate SOAP 1.2 envelope if you are testing a SOAP 1.2 web service.

10. Click Finish.

Result

This action generates in the test editor a web service call or an XML request with a callback structure that

contains a parallel, a receive, and a timeout element.

Chapter 7. Test Author Guide

What to do next

In the callback structure, add test elements to the parallel, receive, and timeout elements to specify the behavior of

the test:

• Parallel contains test elements that are run after the asynchronous call has been sent.

• Receive specifies the message return of the callback and contains test elements that are run after the

callback is received.

• Timeout contains test elements that are run if the callback is not received after a specified delay.

Adding an asynchronous callback to a service request
To test a proprietary asynchronous service that does not implement the WS-Notification specification, you can add an

asynchronous callback to a service request or XML request.

Before you begin

Manually create a web service call or XML call that invokes the asynchronous service. The call must contain an

endpoint that specifies the URL of the callback receiver. This endpoint is used to redirect the callback to the tester.

If the service implements the WS-Notification specification, create the asynchronous call structure with the Create

New WS-Notification Request and Callback wizard instead. See Creating an asynchronous request structure on

page 542.

1. In the test editor, select a web service or XML request, click Add, and then click Asynchronous Callback.

Result

The Create New Asynchronous Callback wizard opens.

2. On the Select Callback Endpoint page, select the XML element of the request where the endpoint URL of the

callback is located.

3. If you have a web Services Description Language (WSDL) file for the web service, click Next. Otherwise, skip to

step 5.

4. On the Bind Message to WSDL Port page, select a port from the WSDL file. If the WSDL file for the service is

not listed, click Add to add a WSDL file from the workspace or to import a WSDL file.

5. Click Finish.

Result

This generates a callback structure that contains a parallel, a receive, and a timeout element, in the test editor.

What to do next

In the callback structure, you can add test elements to the parallel, receive, and timeout elements to specify the

behavior of the test:

543

HCL OneTest Performance

544

• Parallel contains test elements that are run after the asynchronous request has been sent.

• Receive specifies the message return of the callback and contains test elements that are run after the

callback is received.

• Timeout contains test elements that are run if the callback is not received after a specified delay.

Creating a reliable messaging call structure
You can create a test structure dedicated to testing service calls based on the WS-ReliableMessaging specification.

Before you begin

The WS-ReliableMessaging specification provides for a series of SOAP messages to be delivered reliably between

distributed applications in the presence of software component, system, or network failures. In the context of a

service test, a reliable messaging call structure consists of a series of calls that conform to the specification. The

structure can be created either as a sequential list of unique service calls or a loop that contains a call element and

uses a dataset to identify the unique calls.

1. In the test editor, select the test, and click Add, and then click Specification-based Structure.

Result

The New Web Service Test wizard opens.

2. On the Web Service Specification Selection page, Select WS-ReliableMessaging, and click Next.

3. Select one or several Web Services Description Language (WSDL) files in your workspace for the web service

that you want to test, and click Next.

If necessary, you can import a WSDL file into the workspace with the Import push button.

4. On theConfigure Protocol page, select an existing HTTP transport configuration, or click New to create a new

configuration.

a. Specify the URL of the service, the HTTP Method, and Version.

b. In the Header table, click Add to specify any specific headers that need to be added to the call.

c. In the Cookies table, click Add to specify any specific cookies that need to be used by the call.

d. Click Next.

5. On the Sequence Options page, specify how the sequence structure will be created in the test.

a. In Message count, specify the number of calls in the list or the number loop iterations.

b. Select Create service call list to generate a list of calls with the number of messages or Create loop

with dataset to generate a loop with a dataset.

The dataset defines the call number for each call in the loop.

c. Select Shuffle sequence if you want the call numbers to be generated in a random order.

6. Click Finish.

Result

This action generates a reliable messaging service call structure in the test.

Chapter 7. Test Author Guide

Editing Socket tests
Improve the Socket tests by adding test elements.

Socket API test editor overview
You use the test editor to inspect or customize a socket API test that you recorded.

The test editor lists the connections and data exchanges for a test as they occurred during the recording.

The test editor window has two main areas. The area on the left, Test Contents, displays the flow of the socket events

that constitute the test. The area on the right, Test Element Details, displays details about the currently selected test

element in the test hierarchy.

Values can sometimes be highlighted in green. This highlighting indicates that these requests contain one or both of

the following types of information:

• A dataset candidate: This is a value, usually one specified by the tester during recording, that the test

generator determined is likely to be replaced by values in a dataset. An example of a dataset candidate

is a string that you search for in a recorded test. The string is highlighted as a dataset candidate on the

assumption that, before playback, you might want to associate the string with a dataset column that contains

appropriate substitute values.

• Correlated data: These are values in a test, usually one of them in a response and the other in a subsequent

request. An example is a product price returned to the browser by a test that searches a product database.

You can use these values as references that can be reused later in the test. Suppose that, before running the

test with many virtual users, you replace the product name searched for in the recorded test with names in a

dataset. Because the test correlates the data, each virtual user searches for a different product, and the server

returns an appropriate price.

To see an illustration of color coding in performance tests or to change the color settings, click Window >

Preferences > Test > Fonts and Colors.

Click Add to add elements to the selected test element. Alternatively, you can right-click a test element, and select an

action from a menu. The choices that you see depend on what you have selected. For example, after you select a test,

you can add a new event.

The Insert button works similarly. Use it to insert an element before the selected element.

Use the other buttons (Remove, Up, Down) primarily when you substantially modify a test.

Tip: Performing actions with these buttons or choices are likely to break a recorded test.

Sometimes, the area of the editor where you need to work is obscured. To enlarge an area, move your cursor over one

of the blue lines until your cursor changes shape to a vertical line with an up arrow at the top and a down arrow at the

bottom, and drag up or down while holding the left mouse button.

545

HCL OneTest Performance

546

Displaying binary data

With the Socket Details view, you can display the binary data for send and receive elements in the test. The text area

of the Socket Details view supports many international character encoding standards. To open the Socket Details

view, right-click a socket send or receive element, and click Show Socket Details.

In the test log, the Socket Details view also displays actual the actual binary data sent and received during a test run.

Manipulating elements in the socket test editor

Socket tests are often made of a long series of send and receive elements to or from various connections. The

test editor helps you to locate specific elements and to manipulate certain types of elements in the test editor. The

following examples demonstrate how you can select and manipulate large sets of test elements:

• To select all the send or receive elements in the test: Click the Select button and click Socket Send or Socket

Receive.

• To locate all the connections in the test: Click the Select button and click Socket Connection.

• To disable or remove all send and receive actions to or from a specific connection: Right click a test element,

click Manage Socket Connections, click Only disable them, and select the connections that you want to

disable or remove.

• To reenable all disabled send and receive actions to or from a specific connection: Right click a connection

element, click Select All Related Actions, right-click again, and click Enable.

Related information

Merging socket send and receive elements on page 551

Changing multiple socket send and receive elements on page 552

Adding elements to a socket test
A socket test provides the flexibility to add close, send, and receive elements to the test.

Adding a socket close
You can manually add a socket close element to a socket API performance test.

Before you begin

In a performance test, socket close elements close the connection to a server. A socket close element relates to a

specific socket connection.

Ensure that for each socket connection, there is a corresponding socket close. If not, during the test run, the operating

system can run out of socket handles, causing the test to fail.

1. Open the performance test in the test editor.

Chapter 7. Test Author Guide

2. In the Test Contents area of the test editor, right-click the test node, and click Add > Socket Close.

3. In the Test Element Details section, click Change and select the socket connection that you want to close.

You can specify a Think Time delay before the test establishes the connection.

Results

After you have closed a connection, you can no longer send or receive data from that connection. If any test elements

use a connection after the close element, they are flagged with an error in the test editor.

Adding a socket send
You can manually add a socket send element to a socket API performance test.

Before you begin

In a performance test, socket send elements describe how data is sent over a connection. A socket send element

relates to a specific socket connection.

1. Open the performance test in the test editor.

2. In the Test Contents area of the test editor, right-click the test node, and click Add > Socket Send.

3. In the Test Element Details section, click Change, and select the socket connection that you want to send data

to.

You can specify a Think Time delay before the test establishes the connection.

4. In the Data area, type the data that you want to send.

By default, data is sent as 7-bit alphanumeric characters. To specify hexadecimal bytes, prefix the data with \x,

for example: \x00\xff

Adding a socket receive element
You can manually add a socket receive element to a socket API performance test.

About this task

In a performance test, socket receive elements describe how data is received over a connection. A socket receive

element relates to a specific socket connection.

1. Open the performance test in the test editor.

2. In the Test Contents area of the test editor, right-click the test node, and click Add > Socket Receive.

3. In the Test Element Details section, click Change and select the socket connection that you want to receive

data from.

You can specify a Think Time delay before the test establishes the connection.

4. Specify the End Policy.

This specifies when the receive element stops receiving data and the test resumes:

547

HCL OneTest Performance

548

◦ Detects inactivity: The receive action stops when no bytes are received from the connection after

a delay specified in Inactivity threshold (in milliseconds). After this delay, the remote computer has

finished sending the response and is considered inactive. This is the default setting.

◦ Receives exact number of bytes: The receive action stops when the recorded number of bytes is

received. Specify a Timeout (in seconds) after which the receive action produces an error in the test

log, if the correct number of bytes is not received. If Link data size is enabled, the receive action

expects the number of bytes displayed in the Data area. If Link data size is disabled, the receive action

expects the number of bytes displayed in Bytes.

◦ Receives until end of stream: The receive action stops when the connection is closed by the remote

computer. If Accepts empty response is selected, then the reception of a single byte is not required

and the Response Timeout is ignored. Specify a Timeout (in seconds) after which the receive action

produces an error in the test log, if the correct number of bytes is not received.

◦ Matches a string: The receive action stops when a specified sequence of bytes is received. Specify

a Timeout (in seconds) after which the receive action produces an error in the test log, if the correct

number of bytes is not received.

◦ Recognizes a regular expression: The receive action stops when a sequence of bytes that matches a

regular expression is received. Specify a Timeout (in seconds) after which the receive action produces

an error in the test log, if the correct number of bytes is not received.

5. In the Data area, type the data that you expect to receive.

By default, data is sent as 7-bit alphanumeric characters. To specify hexadecimal bytes, prefix the data with \x,

for example: \x00\xff.

Verifying application behavior
Add the different verification points to verify the responses in a socket test.

Verifying received content
With content verification points, you can check that actual received data matches the expected data that is specified

in the verification point.

About this task

When you add verification points, the received data is compared with the expected data that is specified in the

verification point test element. With content verification points enable, you can directly compare the content data that

the server returns and return a Pass status when the criteria is met.

To add a content verification point to a socket test:

1. Open the test editor, right click a socket receive element, and select Add > Content Verification Point.

2. Select the verification point, and in the Test Element Details area of the test editor, specify the verification

criteria:

Chapter 7. Test Author Guide

Comparison operator

Specify the criteria to use to perform the verification, among the following operators:

Equals

The verification point returns a Pass status if the received data exactly matches

the text or binary content that is specified in the Data area.

Contains

The verification point returns a Pass status if the text or binary content that is

specified in the Data area occurs at least once in the received data.

Starts with

The verification point returns a Pass status if the text or binary content that is

specified in the Data area occurs at the beginning of the received data.

Ends with

The verification point returns a Pass status if the text or binary content that is

specified in the Data area occurs at the end of the received data.

Differs from

The verification point returns a Pass status if the received data does not exactly

match the text or binary content that is specified in the Data area.

Does not contain

The verification point returns a Pass status if the text or binary content that is

specified in the Data area does not occur at least once in the received data.

Does not start with

The verification point returns a Pass status if the text or binary content that is

specified in the Data area does not occur at the beginning of the received data.

Data

Specify the data that is expected to be received through the connection.

Binary

In this view, edit the expected content as binary data.

Raw ASCII

In this view, edit the expected content as raw ASCII data. Bytes are expressed as

7-bit alphanumeric characters or two-digit hexadecimal bytes preceded with \x.

Additionally, \r and \n stand for carriage-return and line-feed, while \\ represents

the backslash character.

What to do next

You can enable or disable each socket verification point by clicking Enable verification point in the test editor.

549

HCL OneTest Performance

550

Verifying received message size
With size verification points, you can check that actual received data matches the expected data size in bytes as

specified in the verification point.

About this task

When you add verification points, the received data is compared with the expected data that is specified in the

verification point test element. With size verification points, you can check the number of bytes in a socket receive

element and return a Pass status when the criteria is met.

To add a size verification point to a socket test:

1. Open the test editor, right click a socket receive element, and select Add > Size Verification Point.

2. Select the verification point, and in the Test Element Details area of the test editor, specify the verification

criteria:

Comparison operator

Specify the criteria that is used to perform the verification with these operators:

◦ Is

◦ Is less than

◦ Is less or equals

◦ Is more than

◦ Is more than or equal to

◦ Is not

Value (bytes)

Specify the size criteria for the verification point.

What to do next

You can enable or disable each socket verification point by clicking Enable verification point in the test editor.

Verifying received data with custom Java™ code
With custom verification points, you can use Java™ code to verify the data received through a connection.

Before you begin

Using Java™ custom code requires knowledge of the Java™ programming language and of the HCL OneTest™

Performance API. See Executing test execution with custom code on page for more information.

About this task

When you add verification points, the received data is compared with the expected data that is specified in the

verification point test element. Custom verification points return a Pass status when the custom class returns a Pass

status after performing a verification written in Java™ code.

../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html

Chapter 7. Test Author Guide

To add a custom verification point to a socket test:

1. Open the test editor, right click a socket receive element, and select Add > Custom Verification Point.

2. Select the verification point, and in the Test Element Details area of the test editor, click Generate Code.

Result

This action generates a Java™ class that is based on the template of the HCL OneTest™ Performance API for

socket custom verification points.

3. Edit the Java™ code to define the specific verification action to perform.

4. Save and close the Java™ class.

What to do next

To modify the custom class, click View Code to open the code in the Java™ editor. You can enable or disable each

socket verification point by clicking Enable verification point in the test editor.

Merging socket send and receive elements
With the Organize wizard, you can merge consecutive send or receive elements that use the same connection to

improve the clarity of your socket test.

Before you begin

The wizard can perform the following actions when merging socket test elements:

• Merge consecutive socket send elements that use the same connection.

• Merge consecutive socket receive elements that use the same connection.

• Delete all socket receive elements except for the last one, which is necessary to synchronize the test.

To perform a merge, the selected elements must be consecutive and must be to or from the same connection.

To merge send or receive elements in a socket test:

1. Select the socket send or receive elements that you want to merge.

Press the Shift key to select multiple consecutive elements in the test editor.

2. Right-click the selection and click Organize Send and Receive Actions. This opens the Organize wizard.

3. Choose one of the following options:

Choose from:

◦ Select Merge all selected send or receive actions to merge the selected elements.

◦ Select Merge all selected send and keep a single receive to delete all socket receive elements except

the last one.

4. Click Next.

5. If your selection contained send elements that could be merged, specify the Custom Code settings that

should be retained for the merged element, and click Next.

6. If your selection contained receive elements that could be merged, specify the Response Timeout and End

Policy settings that should be retained for the merged element, and click Next.

7. Click Finish to perform the merge.

551

HCL OneTest Performance

552

Related information

Socket API test editor overview on page 545

Changing multiple socket send and receive elements on page 552

Changing multiple socket send and receive elements
You can perform global changes to multiple send and receive elements in a socket test.

About this task

With the Organize wizard, you can perform the following global changes on multiple send and receive elements:

• Change the Custom Code data manipulation settings on selected send elements.

• Change the Response Timeout and End Policy settings on selected receive elements

You can also apply a global change strategy that applies to all the selected send and receive elements. A change

strategy can change the settings and merge send and receive elements at the same time.

To perform global changes on a series of send or receive elements:

1. Select the socket send or receive elements that you want to merge.

Press the Shift key to select multiple consecutive elements in the test editor. Use the Select button to select

a specific type of test element. Right-click a connection and click Select All Related Actions to select all

elements that use a specific connection.

2. Right-click the selection and click Organize Send and Receive Actions. This opens the Organize wizard.

3. Choose one of the following options:

Choose from:

◦ If you want to modify the selected elements, select Change settings on all selected send and receive

elements.

◦ If you want to modify all elements that use a specific connection, select Change settings on all

elements related to a specific connection, click Next, and then select the connections for which you

want to change the settings.

4. Click Next.

5. If you want to change send elements, select Globally change, specify the new custom code settings for data

manipulation that you want to apply to all send elements, and then click Next.

6. If you want to change receive elements, select Globally change, specify the new response timeout or end

policy settings that you want to apply to all receive elements, and then click Next.

7. Click Finish to apply the changes.

Chapter 7. Test Author Guide

Related information

Socket API test editor overview on page 545

Merging socket send and receive elements on page 551

Splitting a socket test
After you record a test, you can split it into smaller tests. Splitting tests enables you to create modular building blocks

of smaller tests and combine them to make bigger tests. The original test is unchanged. You can recombine these

building blocks in a schedule, including loops and conditions.

Before you begin

When reusing split tests in a schedule, you must ensure that the general test structure is consistent including

socket connection and close elements. For example, you must ensure that all socket send and receive elements are

preceded with a corresponding socket connection and followed by a socket close element. When the split tests are

recombined in the schedule, you must place them in the correct order.

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. Right-click a socket send or receive element in the test, and select Split Test. The page that you click is the

first page of the new test.

3. In the New Test Names window, confirm the location of the split, optionally provide names and descriptions

for the split tests, and click Next.

4. In the Split Test window, examine the changes to be performed as a result of the split, and click Finish.

Exemple

For example, you could record a test that contains the following actions:

• Logging on to a server.

• Creating an entry on the server and removing the entry.

• Editing an entry, validating that the change occurred, and restoring the entry.

• Logging off of the server.

You then split the test into four parts: Logon, Create, Edit, and Logoff. You create a schedule that runs virtual users

selected from a dataset. Each virtual user runs the Logon test, performs various combinations of the Create and Edit

tests, and finally runs the Logoff test.

Using custom code to specify an end policy
You can write a custom Java™ class to specify when a socket receive element stops receiving. This offers the most

flexibility, but requires that you write your own Java™ class using the HCL OneTest™ Performance extension API.

Before you begin

553

HCL OneTest Performance

554

The end policy specifies how the receive element stops receiving and allows the test to resume. There are several

predefined end policies that you can choose from, for example after a certain number of bytes has been received, or

when a specific string is detected. However, in some cases, a complex condition must be defined. This can be done

by delegating the decision to custom code.

To create a new custom code class:

1. In the test editor, select a socket receive element.

2. In the End policy section, select Delegated to custom code and click Generate Code.

Result

This creates a Java™ class template that follows the HCL OneTest™ Performance extension API. The Java™

class in created in the src folder of the current project.

3. Write the custom code by extending the generating class. See Extending test execution with custom code on

page for more information about extending HCL OneTest™ Performance with Java™ code.

4. Save the custom code and the test.

You can click View Code to edit the Java™ class later.

Exemple

The following example is a sample custom class that demonstrates how to configure a custom end policy for the

internet time protocol:

package test;

import java.text.DateFormat;
import java.util.Date;
import java.util.TimeZone;

import com.ibm.rational.test.lt.execution.socket.custom.ISckCustomReceivePolicy;
import com.ibm.rational.test.lt.execution.socket.custom.ISckReceiveAction;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * Custom receive policy CustomReceive_TimeReceiver.
 * For javadoc of ITestExecutionServices, select 'Help Contents' in the Help menu and select
 * 'Extending HCL OneTest™ Performance functionality' -> 'Extending test execution with custom code'
 */
public class CustomReceive_TimeReceiver implements ISckCustomReceivePolicy {

 // static {
 // static blocks are called once on each run and allow for example to bind
 // to an external dynamic library
 // }

 ISckReceiveAction receiveAction;
 ITestExecutionServices testExecutionServices;

 public CustomReceive_TimeReceiver() {
 // The constructor is called during the test creation, not at the time of the execution of
 // the customized receive action
 }

../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html

Chapter 7. Test Author Guide

 public void setup(ITestExecutionServices tesRef,
 ISckReceiveAction receiveActionRef) {
 testExecutionServices = tesRef;
 receiveAction = receiveActionRef;
 }

 public boolean onRead(int readByte) {
 // TIME protocol (RFC 868): a connected server returns 4 bytes and closes the connection
 // Those 4 bytes are the number of seconds since 1900/1/1
 // The test is simply made of a connection to one TIME server on port 37
 // (public servers are listed here: Got time server host name from
 http://tf.nist.gov/service/time-servers.html),
 // Then a receive delegated to this custom code class,
 // Then a close
 try {
 if (readByte == EndOfStream) {
 /* In case of success: */
 receiveAction.receiveSuccess();
 String message = extractAndCheckTime(receiveAction.getConnectionHolder().getFinallyReceivedBytes());
 /* A message is appended in the Test Log just after this receive action: */
 testExecutionServices.getTestLogManager().reportMessage(message);
 return true;
 }
 } catch (Throwable t) {
 /* In case of exception: */
 receiveAction.handleException(t);
 return true;
 }
 if (receiveAction.getConnectionHolder().getCurrentlyReceivedBytesCount() > 4) {
 /* Unexpected condition: */
 receiveAction.handleException(new Exception("Time protocol server returned more than 4 bytes"));
 return true;
 }
 /* We need further bytes to complete this receive */
 return false;
 }

 private String extractAndCheckTime(byte[] bytes) {
 // This is network order, i.e. big endian
 long remoteTime = ((((long)bytes[0]) & 0x00000000000000ff) << 24) +
 ((((long)bytes[1]) & 0x00000000000000ff) << 16) +
 ((((long)bytes[2]) & 0x00000000000000ff) << 8) +
 (((long)bytes[3]) & 0x00000000000000ff);
 // 1900 to 1970: a difference of reference, see RFC 868 and java.util.Date javadoc
 remoteTime -= 2208988800L;
 Date remoteDate = new Date(remoteTime*1000);
 Date localDate = new Date();
 DateFormat dateFormat = DateFormat.getDateTimeInstance();
 dateFormat.setTimeZone(TimeZone.getTimeZone("GMT"));
 String message = "Remote time: " + dateFormat.format(remoteDate) + " GMT (TIME server is " +
 receiveAction.getConnectionHolder().getHostName() + ", port 37)\n" +
 "Local time: " + dateFormat.format(localDate) + " GMT\n";
 long diff = localDate.getTime()/1000 - remoteTime;
 if (diff == 0) {
 message += "-> No difference";
 } else {
 message += "-> Difference (seconds): " + diff;
 }

555

HCL OneTest Performance

556

 return message;
 }

}

Using custom code to manipulate data
You can write a custom Java™ class to manipulate data in a send element. This offers flexibility for injecting data in

test, but requires that you write your own Java™ class using the HCL OneTest™ Performance extension API.

Before you begin

In some cases, complex methods of generating data are required to send specific content to the server. This can be

done by manipulating data with custom code.

To create a new custom code class:

1. In the test editor, select a socket send element.

2. Select Manipulate data with custom code and click Generate Code.

Result

This creates a Java™ class template that follows the HCL OneTest™ Performance extension API. The Java™

class in created in the src folder of the current project.

3. Write the custom code by extending the generating class. See Extending test execution with custom code on

page for more information about extending HCL OneTest™ Performance with Java™ code.

4. Save the custom code and the test.

You can click View Code to edit the Java™ class later.

Editing Kerberos tests
You can change the Kerberos realm, user name, and password when editing tests.

1. In the Test Navigator, browse to the test, and double-click the test name. The test opens.

2. Click the Security tab.

3. Expand Kerberos.

To edit the Kerberos information in a test, Enable Kerberos authentication must be selected.

4. Edit the Kerberos client realm name, client key distribution center (KDC), user name, and password as

necessary.

Result

The realm name, user name, and password are used for all Kerberos connections and requests in the test.

5. Select Server is in a different realm than client to edit the server realm name and server KDC if the server is in

a different realm than the client.

6. Optional: Click Edit krb5.ini, and then type a realm name, to edit the Kerberos configuration file.

What to do next

Kerberos user names and passwords can be associated with a dataset. See the related topic on providing tests with

variable data to learn more about datasets.

../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html

Chapter 7. Test Author Guide

Related information

Providing tests with variable data (datasets) on page

Adding test elements
You can add a variety of elements to a test, such as transaction blocks, IF-THEN conditions, loops, and comments.

Adding a comment
You can add a comment to document a test.

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. In the test, select the item that you want to comment.

3. Click Add and then click Comment.

Result

The comment icon is placed before the selected item and the Comment text field opens.

4. Add the comment to the Comment text field. The comment is added to the test.

Adding a transaction to a test
A transaction is a specific group of test elements whose performance you are interested in. When viewing the test

results, you can view performance data about any transactions that you have added.

To put a group of test elements into a transaction:

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. In the test, select the test elements to group together. Use Shift+click to select multiple contiguous elements;

use Control+click to select multiple noncontiguous elements.

3. Click Add (to place the transaction after the selected element) or Insert (to place the transaction immediately

before the selected element or block), and click Transaction.

4. You are prompted whether to move the selected objects into the transaction. Click Yes or No.

5. Optional: In the transaction details, you can give the transaction a meaningful name. This is useful in the

Transactions report, which lists transactions by name.

Adding conditional logic
You can add IF-THEN conditional logic around portions of a test/compound test or a schedule, in this context, is used

to refer to both VU Schedule and Rate Schedule to make those portions run if a specific condition is met.

Before you begin

557

../topics/tvardata.html
../topics/tvardata.html
../topics/tvardata.html
../topics/tvardata.html

HCL OneTest Performance

558

A conditional block can run portions of a test depending on the value of a reference or field reference. The reference

or field reference must exist in the test and precede the conditional block. If the reference or field reference that the

conditional block uses for input does not exist, you must create the reference as explained in Creating a reference or

field reference on page 633.

About this task

The test might already contain the test elements that are to be run. If the test does contain the elements to be run,

you must select the requests in step 2 of the procedure, and click Insert. The following instructions explain how to

add a conditional block that contains such requests.

Otherwise, you can create an empty conditional block at the end of the selected item (test or request). Click the

object, and then click Add.

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens. You can also open a compound test or a schedule.

2. Click a page or page request.

The conditional block is inserted before the selected item. By completing step 5, you can move the selected

items into the block.

3. Press Shift or Ctrl when clicking to select multiple pages or requests to be moved into the block.

In step 6, if you add an Else block, you can select one or more of these items to be moved into the Else

branch.

4. Right-click the item and select Insert > Condition (IF).

Result

A prompt Would you like to move selected objects into the new IF? is displayed.

5. Click Yes or No.

Result

The If block is inserted into the test. If you click Yes, as shown in the example, the items that you selected are

moved under If in the Test Contents area. The following example shows an If block with an HTTP test.

Chapter 7. Test Author Guide

6. To add an Else block:

a. In the Test Contents area, under If, select the items to be moved to the Else block. Press Shift or Ctrl

when clicking to select multiple items.

b. Right-click and select Insert > Condition (IF) - ELSE Block.

Result

A prompt Would you like to move selected objects into the new ELSE? is displayed.

c. Click Yes or No.

Result

559

HCL OneTest Performance

560

The Else block is inserted into the test. If you click Yes, as shown in the example, the items that you

selected are moved under Else in the Test Contents area and into the Else field in the Test Element

Details area. The following example shows an If-Then-Else block with an HTTP test.

7. In the Test Element Details area, under Condition, add conditions:

a. Next to the First operand field, click Data Source, and then select a data source to be compared with

the string in the Second operand field, or type a value in the First operand field.

b. In the Operator field, indicate the basis of comparison of the two operands.

Note that the two operands are strings.

Starting from 9.1.1.1, you can use the Matches regex operator to match the operands. Click Verify to

verify whether the regular expression finds a match in the data source. If there is a match, the Verify

button is disabled. If there is no match, a message is displayed. If the regular expression is invalid, a

message is displayed for that also.

c. Next to the Second operand field, click Data Source, and select a data source to be compared with the

First operand, or type a value in the Second operand field.

When the defaults are used (both operand fields set to true and the Operator field set to Equals), the

block is always processed.

8. In the Test Element Details area, under Options, choose the required comparison type by selecting or clearing

the check boxes.

Chapter 7. Test Author Guide

Synchronizing users in tests
By inserting a synchronization point, you can coordinate the activities of a number of virtual users by pausing and

resuming activities. You can synchronize all virtual users at the beginning of a test and stagger the release times so

that the users do not overload the system. Synchronization points are also useful in stress testing.

About this task

You can insert a synchronization point into a schedule or a test. You typically insert synchronization points into

schedules, because they are more visible at the schedule level and you can set the Release and Timeout options

within a schedule only, not within a test. However, in the following cases, insert a synchronization point into a test:

• You must control where the synchronization point is encountered. For example, you can insert a

synchronization point just before a test sends a request to a server.

• You have edited a test, and the execution of a synchronization point depends on the logic that you have

added.

Synchronization points within loops are not reset. In other words, after a synchronization point has been released (in

the first iteration of a loop), the synchronization point stays released for all further iterations.

To insert a synchronization point into a test:

1. In the Test Navigator, browse to the test, and double-click it.

Result

The test opens.

2. Click the test element just below the place to add the synchronization point, and then click Insert >

Synchronization point. Depending on the nature of the test element, you can insert a synchronization point at

some points in the test hierarchy but not at others.

3. Type a name for the synchronization point, or select the name of an existing synchronization point.

Result

The synchronization point opens in the test. Note that Release Type and Timeout are not available for

synchronization points in tests. Release Type and Timeout are available only for synchronization points in

schedules.

4. To change the Release Type or Timeout, open the synchronization point within a schedule, and make the

changes. The changes affect all instances of the synchronization point.

Adding a loop to a test
You can define part of a test as a loop that runs a specified number of times. If the loop contains a synchronization

point, the synchronization point is released after the first iteration of the loop and stays released for all further

iterations.

About this task

You can set a loop within a schedule or a test. The following table shows the advantages of both methods:

561

HCL OneTest Performance

562

Loop

loca­

tion Results

Sched­

ule

Loops in schedules are easy to locate and modify.

Loops in schedules close the server connection at the end of each iteration and reopen it at the beginning of

the next iteration. This action models the behavior of a user closing and reopening a browser.

Use this method to run a test at a set rate. For more information, see Running tests at a set rate on

page 737.

Test Loops in tests can be more granular, and thus provide a higher level of control.

Loops in tests reuse the server connection during each loop iteration.

Use this method, with loops that have high iteration counts, to stress test a server.

1. In the Test Navigator, browse to the test, and double-click it.

Result

The test opens.

2. Click the page or the request that will be inside the loop.

Press Ctrl when clicking to select multiple pages or requests.

3. Click Insert, and select Loop.

4. You are asked whether you want to move the selected elements into a the loop. Click Yes.

If you click No, an empty loop is inserted into the test.

5. In the Loop Details area, type the number of iterations for the loop to repeat.

Option Description

Count-based Runs for the number of iterations that you select.

Time-based Runs for at least the time that you specify. The loop

always finishes the iteration. For example, if you

select a time of 1 second and a loop takes 10 sec­

onds to run, the loop finishes one iteration, and then

checks the time.

Infinite Runs until the test stops.

Note:

If a test or a schedule includes multiple loops with dataset values and a new dataset value is required

for the first iteration of the second loop, then a dataset increment is required before the second loop

runs. To do this, you must insert a data source controller by clicking Insert > Data Source Controller

before the second loop starts and then select the required dataset. You can then select the Increment

Chapter 7. Test Author Guide

option for the data source from the Data Source Controller Details pane that triggers the retrieval of

the dataset value to automatically choose the new dataset value.

6. Optional: Select Control the rate of iterations, and type your preferences for the pacing rate.

In specifying a number of iterations for a unit of time, you set a fixed period for the iterations to complete. If

you select Randomly vary the delay between iterations, the total delay is randomly distributed. If you clear this

check box, the same delay occurs between each iteration.

Note: Statistically, the Randomly vary the delay between iterations option sets delay amounts at

random from a negative exponential distribution with the same mean as the fixed delay value. The

negative exponential distribution has a long "tail," which means that a very small number of delays

will have very large values. Therefore, make sure that the application you are testing is not negatively

affected by long periods of inactivity (such as a timeout that disconnects the user).

Adding Dataset Mapper
You can include a Dataset Mapper in a compound test or a schedule to assign the dataset values to the variables that

are defined in multiple tests. In previous releases, to apply the dataset values to multiple tests, you had to associate

the dataset to each test. The Dataset Mapper is able to map the dataset columns with the variables.

Before you begin

You must have created at least one dataset. See Creating a dataset in a workspace on page 584.

About this task

For the Dataset Mapper to fetch the test variables, in the Variable Details section of the Test editor, you must set the

Visible In field for the variable to All tests for this user. You can also fetch the variables from the custom code calls.

If the compound test or the schedule includes a Dataset Mapper that retrieves values from one dataset and a test in

the compound test or schedule is also associated with another dataset, the run uses both the datasets.

Note: When you run the schedule or compound test with a Dataset Mapper, by default the test picks up the

dataset values from the first row. For the test to pick up all of the dataset values, you must put the test in a

loop.

1. In the Schedule or Compound test editor, click Add > Dataset Mapper.

2. In the Select Dataset dialog, select a dataset to use for the tests and click OK.

To change the dataset after it is associated, in Dataset Mapper Details, click Browse and select another

dataset.

3. Select the Open mode for the dataset. This mode determines the view that virtual users have of the dataset.

This option is useful when you do a parallel test run.

563

HCL OneTest Performance

564

Option Description

Shared (per test execution) (default)
When you choose the Shared (per test execution) op­

tion, the virtual users running in the test share the

dataset values in sequential order.

For example, if your dataset has 10 rows, the dataset

values are taken from row 1, row 2, row 3, and so on

when you select this option.

Private
Each virtual user draws dataset values from a private

view of the dataset, with dataset rows apportioned to

each user in sequential order.

This option ensures that each virtual user gets the

same data from the dataset in the same order. Be­

cause each user starts with the first row of the

dataset and accesses the rows in order, different vir­

tual users will use the same row. The next row of the

dataset is used only if you add the test that is using

the dataset to a loop in the schedule with multiple it­

erations.

Shared (for all test executions)
When you choose the Shared (for all test executions)

option, the virtual users running in multiple tests

share the dataset values from the current row.

For example, if your dataset has 10 rows and when

you set the current row as row 5, the dataset values

are taken from row 5 instead of row 1 when you se­

lect this option. If you had set the current row as row

1 and used the dataset values until row 5, the dataset

values are retrieved from row 6 when you run the test

next time.

4. Select the Access mode for the dataset:

Chapter 7. Test Author Guide

◦ Sequential: Rows in the dataset are accessed in the order in which they are physically stored in the

dataset file, beginning with the first row and ending with the last.

◦ Random: Rows in the dataset are accessed in any order, and any given row can be accessed multiple

times or not at all. Each row has an equal chance of being selected each time.

◦ Shuffled: Before each dataset access, the order of the rows is changed that results in a different

sequence. The rows are accessed randomly but all rows must be selected once before a row is

selected again.

5. Select whether the test will reuse data when it reaches the end of the dataset.

By default, when a test reaches the end of a dataset or dataset segment, it reuses the data from the

beginning. To force a test to stop at the end of a dataset or segment, clear the Wrap when the last row is

reached check box. Forcing a stop might be useful if, for example, a dataset contains 15 records, you run

a test with 20 virtual users, and you do not want the last five users to reuse information. Although the test

is marked Fail because of the forced stop, the performance data in the test is still valid. However, if reusing

dataset data does not matter to your application, the default of wrapping is more convenient. With wrapping,

you need not ensure that your dataset is large enough when you change the workload by adding more users or

increasing the iteration count in a loop.

6. Select whether the test will make the data in the dataset record permanent for each virtual user.

By default, one row is retrieved from the dataset for executing each test, and the data in the dataset row is

available to the test only for the duration of the test. Select Fetch only once per user to specify that every

access of the dataset from any test being run by a particular virtual user will always return the same row.

To illustrate how these options affect the rows that are returned, assume that a test contains a loop which

accesses a dataset. The loop has 2 iterations. The following table shows the row that is accessed in each

iteration:

Dataset option Iteration 1 Iteration 2

Sequential and Private row 1 row 2

Shared and Shuffled row x row y

Fetch only once per user row x row x

7. In the Columns mapping table, the Column is automatically filled with the column names from the dataset.

8. To use the variable names from the test, click the cell and click the Ellipsis button and select the variable.

By default, the variable names are also created with the same names as the dataset columns.

9. If the dataset that you selected in step 2 was generated by HCL® OneTest™ Data, you can choose to update

the data by clicking Update dataset or update the data automatically for every run by selecting the Update

dataset during deployment check box.

10. To fetch all the dataset values, put the Dataset Mapper in a loop. Select the Dadtapool Mapper in the schedule

and click Insert > Loop.

11. Save the changes.

565

HCL OneTest Performance

566

Adding data source controller
Use this test element to control how the data is fetched from the data sources to be used by the test. You can use

data from dataset, array variables, built-in data sources, and correlation.

About this task

In the Test editor, the pages/requests succeeding the data source controller makes use of the data source associated

to the controller. So, if there are 3 pages in your test and the first controller is placed before the first page and the

second controller is before the last page, the first two pages use data associated with the first controller. The last

page will use data associated with the second controller.

1. In the Test editor, select the pages for which you want to substitute data and click Insert > Data Source

Controller.

2. Select the data source from where you want the succeeding pages to pick data and click Select.

Result

The data source controller is added to the test.

3. In Data Source Controller Details section, select Increment for the test to automatically pick the next value

from the data source or select Reset to pick the first available value from the data source.

4. Optional: To change the data source, click Data Source and save the test.

Controlling the flow of test
A test is usually run in the order it was recorded. However, you might want to add some conditions to the test that the

users would actually face when interacting with the application under test. For example, if you select a product, you

want to know its manufacturing date. If the date is not available, you want to exit. You can now add such control to

the test.

1. In the Test Navigator view, browse to the test and double-click it.

2. Select the request or page that uses the IF condition and click Insert > Test Flow Control.

3. In the Test Flow Control Details section, specify one of the following actions:

Action Description

Continue Continue running the test.

Exit Transaction Exit the transaction and continue running the test.

If there are multiple levels of transactions, specify

whether you want to exit the innermost or outermost

transaction.

Exit Loop Exit the loop and continue running the test. If there

are multiple levels of loops, specify whether you

want to exit the innermost or outermost loop.

Chapter 7. Test Author Guide

Action Description

Continue to next iteration of loop Continue to run the next iteration of the loop after the

existing iteration completes.

Exit test Exit the test.

Exit user Exit the currently running virtual user and start run­

ning with the next user.

Terminate Run Stop the schedule, in this context, is used to refer to

both VU Schedule and Rate Schedule.

Searching within tests
Search request data or response content by right-clicking in the data or content and selecting Find. To search for

specific element types and to display the results in a table, click Select. For a still more powerful search and replace,

use the Test Search function.

About this task

You can use a number of different methods to search within a test.

• Use the Find option to search within the Test Details area and, optionally, to replace text.

• Use the Select button to search within the Test Contents area and display a table of like test elements.

• Use the powerful Test Search function to search within the Test Contents and the Test Details areas. For

example, you can search for a type of verification point and also declare whether the result should include

enabled verification points, disabled verification points, or verification points in both states. The specific data

that you can search for and the search options are protocol-dependent.

Locating specific types of test elements
A test script can include multiple requests and responses with many test elements and attributes. To locate elements

of a specific type in the Test Contents area, click Select. The results are displayed in a table, and you can sort the

table columns. This option is also useful for viewing attributes of test elements that are the same type.

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. To restrict the search to specific instances of elements, select them in the test. For example, you might want

to search for text in specific responses, rather than in all responses.

3. Click the test editor tree to give it focus, and then click Select.

Result

A list of element types opens. This list is generated dynamically based on the contents of the test. For

example, if a test does not contain verification points, they are not listed.

567

HCL OneTest Performance

568

4. To include only the elements that you selected, select Restrict To Highlighted Elements.

5. To include only the elements that contain specific text from the Test Contents area, select Use Filter Text.

6. Select the type of test element to view from the list.

7. If you selected Use Filter Text, enter the filter text in the prompt, and then click OK.

To use regular expressions in the filter text, click the Search Options icon to the right of the prompt, and then

select Regular expression. By default, if Regular expression is not selected, the asterisk (*) and question mark

(?) are interpreted as wildcard characters. To search for a URL that contains an asterisk or question mark, type

a backslash (\) before the asterisk or question mark.

Results

The Test Element Details area displays the results under the heading Multiple Items.

Exemple

The following example shows results for an HTTP request. Other protocols might display less detailed information.

Double-click a table row to locate the element within the test.

Searching and replacing text in tests
With the Test Search function, you can search for text in a test or search within specific test elements and optionally

replace the found text.

1. In the Test Navigator, browse to the test and double-click it.

Result

Chapter 7. Test Author Guide

The test opens.

2. Right-click the test name, and then select Test Search.

3. In Search for text, type the text to locate.

You can leave this field blank, depending on your search strategy. For example, if you know that a string

occurs in elements or element instances that you are not interested in, by using the options described in steps

4, 6, and 8, you can locate the elements or element instances of interest before entering the search text into

this field.

4. If you have selected pages or requests within the test, click More Options, and then select Restrict search to

elements highlighted in Test Contents.

This restricts the search to the selected pages and requests.

5. To perform a case-sensitive search, select Case sensitive. To search with regular expressions, select Regular

expression.

In regular expression mode, press Ctrl and type a space in Search for text for content assistance. Content

assistance lists the regular expression patterns and the content that they match.

6. To highlight found elements in the Test Contents area, click More Options, and then select Highlight found

elements in Test Contents.

You can use this option with the option that is described in step 4 to designate the element instances of

interest before specifying the text of interest.

7. To have the search include children of the selected element, click More Options, and then select Recursive.

This option is selected by default. If Recursive is cleared, then only the selected element is searched.

8. To have the search locate both encoded and decoded versions of the specified text, click More Options, and

then select Match encoded and decoded values.

This option is selected by default. The type of encoding that the search supports varies depending on the

protocol.

Example

For example, when searching in HTTP data, abc%123 and abc%25123 match.

9. In the Elements to search list, select all test elements to search.

Selecting the check box in step 4 restricts the elements that you can select in this step to the instances that

are selected in the Test Contents area. For example, if you select HTTP Pages here and only one page is

selected in the Test Contents area, only that page is found. If the check box in step 4 is cleared, every test

page is found.

10. Optional: Click selected elements to define how to search them.

A new area opens, where you can define how to search a selected element.

To locate items, continue to the next step. To replace found strings, click Replace, and go to step 12.

11. Click Search.

Result

The results of your search are displayed in two views

569

HCL OneTest Performance

570

◦ The Search view, which lists the objects that contain matches

◦ The Test Search Match Preview view, which displays the matches that were found

12. In the Search view, complete any of these search actions:

◦ To preview a found string in the Test Search Match Preview, click the object.

◦ To open your test at the location where an instance is found, double-click the object.

◦ To perform a different search action (such as proceed to the next match or previous match, replace),

right-click the object, and select your choice.

13. If you clicked Replace in step 9, the Replace window opens. In the With field, type the replacement text.

14. Select the replacement action by clicking the appropriate push button.

Result

If you are making selective replacements, found instances are displayed in the same order as in the Test

Search Match Preview view. Click Replace or Skip until all found instances have been displayed.

Exporting a test
To share the test scripts with manual testers or reviewers who do not have the workbench, export the test scripts to

text files. You can export one file at a time.

1. In the Test Navigator view, double-click a test.

2. In the test editor, right-click the root node of the test and click Export Contents to File.

3. Select a project and specify the name of the file to export to.

4. To add a separator between two steps or lines, select the Add line separators after each step check box and

click Finish.

Results

The text file opens on another tab in the workbench and is saved in the directory it is exported to.

Copying test assets with dependencies
You can export test assets, and then import them into another project or workspace without losing any dependencies.

Test assets include projects, schedules, and tests. You can export and import test assets to collaborate with other

testers.

Before you begin

If you plan to export assets with dependencies, make sure that you have migrated the test assets to the current

version of the product before you start to export.

About this task

When you copy a test with dependencies, any datasets or custom code referred to by the test are also copied. When

you copy a schedule with dependencies, any locations or tests referred to by the schedule are also copied. When you

copy results, any schedules or tests referred to by the results are copied.

1. In the Test Navigator view, right-click the test assets to export, and then click Export.

You can export projects, schedules, tests, and test results with dependencies.

Chapter 7. Test Author Guide

2. In the Export window, expand the Test folder, and then click Test Assets with Dependencies.

You can export test assets with dependencies if the test assets were created in the current version of the

product. You cannot export test assets with dependencies if the test assets were created in a previous version

of the product and the assets have not been migrated to the current version of the product.

3. Click Next.

4. Specify the path and name of the archive file into which you want to export the selected test assets.

5. Click Finish.

The assets are exported to the archive file. You are prompted if the total size of the test assets is larger than 4

GB, or if any individual test asset file is larger than 4 GB. To copy test asset files that are larger than 4 GB, copy

the files manually.

6. If the target workspace is on a different computer, transfer the archive file to a location that is accessible to

that computer.

7. In the Test Navigator view, select the test project into which you want to import the test assets.

The target project must have the same name as the source project. Optionally, you can import test assets with

dependencies into a workspace where no projects exist. If you import test assets with dependencies into a

workspace where no projects exist, the Import wizard creates projects based on information from the archive

file. To import test assets into a project with a different name, you must first import the test assets into a

project with the same name, and then manually move the assets into the project with the different name.

8. Click File > Import.

9. In the Import window, expand the Test folder, and then click Test Assets with Dependencies.

10. Click Next.

11. In the Import with dependencies window, click Browse, and then select the archive file.

The test assets are displayed in the File contents list.

12. Click Finish to import the test assets with dependencies from the archive file into the target project.

If a file that you are attempting to import already exists in the target workspace, you will be prompted to

choose whether to overwrite the file. You can also choose to overwrite all files that already exist in the target

workspace, or not to overwrite any files that already exist in the workspace. If you choose to overwrite all

files that already exist in the target workspace, you will be prompted again if the import process encounters a

.classpath or .project file in the source archive file.

Copying projects
You can export a test project from a workspace and import it into another workspace.

About this task

If you export test assets to an archive file and then import them to another project, ensure that both project names

are the same. Otherwise, you might not be able to locate your imported test assets.

571

HCL OneTest Performance

572

Note: You can also export the test project with all the dependent assets in to an archive file. See Copying test

assets with dependencies on page 570 for the instructions.

1. Start HCL OneTest™ Performance, and select the source workspace.

2. Export the test project to an archive file.

For instructions, see Exporting resources to an Archive file. Datasets can be located either in the same project

as the tests that use them or in different projects. Be sure to export all the datasets that the exported tests

require.

3. If the target workspace is on a different computer, transfer the archive file to a location that is accessible to

that computer.

4. Start HCL OneTest™ Performance, and select the target workspace.

5. Click File > Import. Expand the General folder, and click the Existing Projects into Workspace icon; then click

Next.

6. Click Select archive file, and then click Browse to select the archive file. Click Finish to import the source

project from the archive file into the target workspace.

7. Optional: If the imported project contains custom code or tests that have been run, you might need to change

the Java™ build path.

The following examples are cases that might require a change to the Java™ build path:

◦ The Java™ build path was manually changed in the project from which it was exported. In this case,

the same changes need to be made in the imported project. While importing, you are asked whether to

overwrite the class path file, which stores the Java™ build path for project. Answering Yes reduces the

likelihood that the build path will need to be changed.

◦ The project was imported onto a different computer with a different Java™ installation configuration.

In this case, missing libraries must be removed from the build path.

◦ The project was imported into a workspace on a different disk drive. When you are asked whether

to replace the class path file, answering No reduces the likelihood that the build path will need to be

changed.

For instructions on changing the build path, see the Java™ Build Path page.

What to do next

If you encounter errors after importing a test project or when using an existing workspace with a new version of the

product, you might need to delete .java files from the src folder in the workspace:

1. Click Window > Open Perspective > Resource to open the Resource perspective.

2. In the Navigator window, expand the test project folder, and locate the src folder.

3. Delete all .java files in the src folder, except for those that contain custom code.

4. Return to your test perspective: Click Window > Open Perspective, and select Performance Test.

http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.user/tasks/tasks-59ag.htm
http://help.eclipse.org/juno/topic/org.eclipse.jdt.doc.user/reference/ref-properties-build-path.htm
http://help.eclipse.org/juno/topic/org.eclipse.jdt.doc.user/reference/ref-properties-build-path.htm
http://help.eclipse.org/juno/topic/org.eclipse.jdt.doc.user/reference/ref-properties-build-path.htm

Chapter 7. Test Author Guide

Disabling portions of a test
When you disable portions of a test, you can still see the disabled portion, but it is not executed during a run. You can

also disable portions of a schedule by using the following procedure.

About this task

To disable secondary HTTP requests, see Disabling and enabling secondary HTTP requests on page 474.

To disable an element:

1. In the Test Navigator, browse to the test, and double-click it.

Result

The test opens.

2. Right-click the element that you want to disable, and select Disable.

The element and the dependent child elements, which are disabled automatically, are shaded and preceded by

two forward slashes (//) to remind you that they are disabled.

Note: To change the color or symbol that represents disabled elements, click Windows > Preferences

> Test > Test Editor, and then click the Colors and Fonts tab.

Result

Although a disabled test element does not run, you can still work with it. For example, you can insert a test

into a disabled user group for later use.

3. To enable a disabled element, right-click it, and select Enable. Select Enable All to enable all disabled

elements.

Exemple

Disabling an element affects other elements in the following ways:

Disabled element Result

User group (percentage) The percentages in the remaining user groups are recal­

culated. When you enable the user group again, remem­

ber to return all of the affected user groups to their origi­

nal percentage.

User group (absolute) The number of users in the remaining groups might not

match the total number of users specified in the sched­

ule. If so, new virtual users are redistributed among the

remaining user groups so that the numbers will match.

When you enable the user group again, remember to re­

turn all of the affected user groups to their original totals.

573

HCL OneTest Performance

574

Disabled element Result

Request or step that contains a data correlation refer­

ence

Substitution in the remaining actions that depend on this

request does not work.

Request or step that contains a data correlation substi­

tuter

Substitution does not occur because the entire action

is omitted. The substituter that uses the disabled data

source is also disabled. To re-enable the substituter, se­

lect an enabled data source for substitution.

HTTP request that contains a server connection No effect. The connection is automatically created in the

next request.

Portion of custom code Custom code with disabled arguments is flagged. If the

disabling causes an unexpected number of arguments

passed to custom code elements, you receive an error at

runtime. To fix this, modify the custom code to check the

number of arguments.

IF data_source construct An IF construct is marked as invalid if it contains a dis­

abled data source.

Test element and child are disabled If you disable a child element and then disable its parent

(for example, a request and then a page), the disabled

child element will have two prefixes: one created manu­

ally and one inherited. In the following example, the first

request has inherited the disabled state. The second re­

quest has been manually disabled and has also inherited

the disabled state:

//disabled page
 //request
 ////disabled request

Do one of the following to re-enable the second request:

• Re-enable the request, and then re-enable the

page.

• Right-click the page and select Enable All.

A data source or a range of text that will be replaced The Data table displays this text in gray.

Running test elements in random order
You can record multiple user scenarios in a test and then run each scenario in a random order. To do this, you put

each scenario under a random selector and then select the proportion of time that the scenario should be run.

About this task

Chapter 7. Test Author Guide

For example, you can record a test that includes logging on to a system, browsing through items in the system, buying

various items, and then totaling the order. In this case, you could run the logging in and the totaling scenarios once,

but put the browsing and buying scenarios under a random selector.

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. Click the test element that will be controlled by the random selector, and then click Insert > Random Selector.

Use Shift+Click to select multiple elements.

3. You are asked whether you want to move the selected elements into a new random selector. Click Yes.

Click No to insert an empty random selector into the test.

Note: To set whether or not elements are moved automatically, or whether you are prompted, click

Window > Preferences > Test > Test Editor, and click the General tab.

4. Set the weight of the random selector. The weight determines the statistical probability that a specific element

will be selected.

a. If you have added a number of test elements, the Create weighted blocks window is displayed. You

can select adjacent elements and group them. Each element—whether in a group or by itself—must be

weighted.

b. If you have added only one test element, the weighted block is displayed in the Test Element Details

area with a default of 1.

Exemple

When a selector contains many different weights, you can mathematically determine the likelihood that a block will be

executed. To do this, add the weights together and divide the weight for each block by that total.

For example, assume a selector contains six blocks set to the following weight:

• two blocks set to a weight of 1

• one block set to a weight of 2

• two blocks set to a weight of 5

• one block set to a weight of 9

The total of the weights is: 1 + 1 + 2 + 5 + 5 + 9 = 23. Therefore, the statistical likelihood of selection is:

Weight of block Likelihood of block being selected

1 (two blocks) 1/23. = 0.0435, or about 4.35% (for each block)

2 2/23 = 0.0870, or about 8.70%

5 (two blocks) 5/23 = 0.2174, or about 21.74% (for each block)

9 9/23 = 0.3913, or about 39.13%

575

HCL OneTest Performance

576

Note that a higher weight increases the likelihood, but does not guarantee, that a block will be executed. Some

variation might occur. For example, if you run a test 23 times, you cannot predict that the first and second blocks will

execute exactly once, the third block exactly twice, the fourth and fifth blocks exactly five times, and the sixth block

exactly nine times. However, the more times that the blocks are executed, the more accurate this prediction is.

Renaming test assets
As your test assets increase and become more complex, you might want to rename them. Use the Eclipse Rename

function or save the assets under a different name.

Use either of the following steps to rename a test asset:

1. When you use the Eclipse Rename function, the new name is visible in the Test Navigator, but the underlying

file system name is not changed. To use the Eclipse Rename function:

a. In the Test Navigator, right-click the test asset, and then select Rename

b. Type the new name, and then click Enter

Be sure to click Enter, or the file will not be renamed.

2. When you rename a test asset by saving it under another name, the underlying file system name is changed,

but you must perform manual cleanup. To save a test asset under another name:

a. In the Test Navigator, browse to the test and double-click it. The test asset opens.

b. Click File > Save As, and save the asset under a different name.

c. Delete the original asset.

Exemple

The following table summarizes how renaming an asset affects the other assets in your workspace.

Renamed asset Effect on other assets

Project Do not rename a project. Renaming a project might result

in lost or corrupted project assets.

Schedule Renaming a schedule has no affect on other assets, but

note that results cannot be renamed.

Test When you use Rename, schedules that contain the old

test name will still run correctly. To avoid confusion,

manually update the schedule to use the new test name.

After you use Save As, manually update each schedule

that uses the renamed test.

Custom code If you rename the custom code class (.java file), then

the reference to the class in the custom code action of

the test will not work. Typically rename the custom code

Chapter 7. Test Author Guide

Renamed asset Effect on other assets

class in the Resource perspective or the Java™ perspec­

tive.

If you change the name of the custom code class in the

test editor that implements the custom code action, the

modification does not change the corresponding .java

file; instead the modification causes the custom code

action to refer to a different (and possibly new) custom

code class.

Dataset When you use Rename and open a test that contains the

dataset, you are prompted to save the changes (in this

case, the renamed dataset that the test now uses).

After you use Save As, manually update each test that

uses the dataset.

Location When you use Rename, locations (agent computers) are

automatically updated in the schedules that use them.

When you use Save As, manually update each schedule

that uses the test.

Results You cannot rename results.

Weighted block Renaming a weighted block has no affect on other as­

sets. To rename a weighted block, click the block in the

test, and type the new name in the Name field.

Deleting test assets
As your test assets grow and become more complicated, you might want to delete the assets that you no longer use.

In the Test Navigator, right-click the test asset, and then select Delete.

Result

The following table summarizes how deleting an asset affects the other assets in your workspace.

Note: If you are deleting a test asset, you can choose to delete it from other test assets that refer it and you

can choose to delete other test assets that are referenced only by the test asset that you are deleting.

For example, if you delete a dataset, the Remove references to test asset name in other test assets option

lets you delete the dataset from all the test assets that uses it.

If you delete a test, the Delete files that are referenced only by test asset name option lets you delete all the

test assets such as recsession and dataset that are referenced only by the test that you are deleting. If the

577

HCL OneTest Performance

578

dataset is used by another test too, it will not be deleted. The Preview button lets you see the assets that are

referenced by the test.

Deleted asset Effect on other assets

Project You are prompted whether to delete the project contents.

If you click Yes, the contents are physically deleted. If you

click No, you will not see the contents in the Test Navi­

gator, but the project remains in your workspace, which

is, by default, C:\Documents and Settings\user­

name\HCL__SDP_FULL_SHORTNAME__n.n/work­

space).

Schedule Deleting a schedule has no effect on other assets.

Test If you delete the test in the Test Navigator, the test is

physically deleted.

If you open a schedule and delete a test, the test is delet­

ed from the schedule, but the test remains available as a

test asset.

Custom code If you delete the custom code class (.java file), then the

reference to the class in the custom code action of the

test will not work. Typically you delete the custom code

class from the Resource perspective or the Java™ per­

spective.

If you delete the name of the custom code class that im­

plements the custom code action, the deletion does not

change the corresponding .java file.

Dataset If you delete a dataset in the Test Navigator, the dataset

is physically deleted. When you open a test that uses the

dataset, you are prompted to take one of these actions:

• Locate the dataset

• Remove the dataset reference from the test

• Leave the invalid reference in

You must correct or delete the reference to run the test

successfully.

Chapter 7. Test Author Guide

Deleted asset Effect on other assets

If you open a test and delete the dataset from the Com­

mon Options tab, only the reference to the dataset is

deleted.

Location You are not asked to confirm the deletion, nor are you

warned if a user group uses the location. The user group

is marked with a red X when you open the schedule that

contains it.

Results You are asked to confirm the deletion, and the results are

physically deleted.

Debugging custom code for tests and compound tests
If you have custom code added to a test or a compound test, you can debug the custom code for any errors by

clicking the Debug button.

Before you begin

This procedure can only be done when custom code is part of a test or compound test. If there are multiple custom

code classes added to a test or compound test, the debug action debugs all the custom code classes.

You can use the debug option only in full Eclipse mode of the product. You cannot debug in the streamline mode.

1. Open a test or a compound test from the Test Navigator view.

2. Click the Debug button.

Result

The Debug view opens. If there are any breakpoints in the custom code, the test run pauses at the breakpoint.

Press F8 to resume the test run.

Providing tests with variable data (datasets)
You can produce more realistic tests by changing them to use datasets. During execution, a test that uses a dataset

replaces a value in the recorded test with variable test data that is stored in the dataset. This substitution allows each

virtual user to generate a different request to the server.

Dataset overview
Datasets provide tests with variable data during a run. When you record a test, you perform a sequence of steps that

you expect a typical user to perform. After the recording, a test is generated that captures these interactions. When

you run this test, it uses the same data that you used during recording. To vary the data in the test, you use a dataset,

that contains variable data. At run time, this variable data is substituted for the data in the recorded test.

If you need to create a dataset with many records, you can initialize the dataset quickly by importing data from a

comma-separated-value (CSV) file. Also, you can export test data from your dataset into a CSV file to enable you

579

HCL OneTest Performance

580

to maintain large volumes of test data as a spreadsheet for reuse. Earlier to 9.5, the dataset (formerly known as

datapool) was in .datapool format and starting from the 9.5 release, the dataset is in the csv format.

You can copy the CSV file and paste into your project to import the data from a CSV file and create a dataset.

Similarly, to export the dataset values as a CSV file, you must copy the dataset from your project and paste it into your

local machine.

Note: Alternatively, you can use the Import option available in the CSV editor to import the data from a CSV

file. For more information, see Editing datasets on page 594.

Perform the following steps should you plan to create a test that searches the HCL® website for three items: HCL

OneTest™ Performance, HCL OneTest™ UI, and IBM® Rational® Manual Tester:

1. Record a test that searches for one item. For more information, see Recording an HTTP test on page 336.

2. Create a dataset and associate it with the test. For more information, see Creating a dataset associated with a

test on page 580.

3. Associate a request in the test with a column in the dataset. For more information, see Associating a test

value with a dataset column on page 591.

4. Add a loop in the test to fetch the values from different rows of a dataset. A test without a loop fetches the

value only from the first row of the dataset. For more information, see Adding a loop to a test on page 561.

Creating a dataset associated with a test
You can create a dataset that contains variable data for tests to use when they run. This is the preferred way to

create a dataset because the dataset is automatically associated with a test. You can create anything from an empty

dataset that contains one column, which you can edit later, to a fully functioning dataset.

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. In the Test Contents area, click the name of the test.

3. In the Common Options tab, click Add Dataset.

The options listed in the following table, enable you to create anything from a simple dataset that you can edit

later to a complete dataset.

To create Do this in the Test Editor - Add Dataset window

A one-column dataset with a default access mode. In Existing datasets in workspace, select New

Dataset<testname>.csv, and click Finish. You can op­

tionally name the dataset column in this session, and

you can add other columns and data later.

A one-column dataset and choose the access mode. In Existing datasets in workspace, select New

Dataset<testname>.csv, and click Next. You can op­

tionally name the dataset column in this session and

Chapter 7. Test Author Guide

To create Do this in the Test Editor - Add Dataset window

you are prompted for the access mode. You can add

other columns and data later.

An association between the test and an existing

dataset.

Select the dataset. The dataset is associated with the

test, and you can optionally set the access mode in

this session.

A new, fully functioning dataset. Select a project and click Use wizard to create new

dataset.

4. Select Open mode for the dataset. This mode determines the view that virtual users have of the dataset.

Different tests can open the same dataset differently, and you can change the open mode later by opening the

test and double-clicking the dataset title.

Option Description

Shared (per test execution) (default)
When you choose the Shared (per test execution) op­

tion, the virtual users running in the test share the

dataset values in sequential order.

For example, if your dataset has 10 rows, the dataset

values are taken from row 1, row 2, row 3, and so on

when you select this option.

Private
Each virtual user draws dataset values from a private

view of the dataset, with dataset rows apportioned to

each user in sequential order.

This option ensures that each virtual user gets the

same data from the dataset in the same order. Be­

cause each user starts with the first row of the

dataset and accesses the rows in order, different vir­

tual users will use the same row. The next row of the

dataset is used only if you add the test that is using

the dataset to a loop in the schedule with multiple it­

erations.

Shared (for all test executions)
When you choose the Shared (for all test executions)

option, the virtual users running in multiple tests

share the dataset values from the current row.

581

HCL OneTest Performance

582

Option Description

For example, if your dataset has 10 rows and when

you set the current row as row 5, the dataset values

are taken from row 5 instead of row 1 when you se­

lect this option. If you had set the current row as row

1 and used the dataset values until row 5, the dataset

values are retrieved from row 6 when you run the test

next time.

5. If you are setting how the test accesses the dataset during this session, select one of the following options:

◦ Sequential: Rows in the dataset are accessed in the order in which they are physically stored in the

dataset file, beginning with the first row and ending with the last.

◦ Random: Rows in the dataset are accessed in any order, and any given row can be accessed multiple

times or not at all. Each row has an equal chance of being selected each time.

◦ Shuffled: Before each dataset access, the order of the rows is changed that results in a different

sequence. The rows are accessed randomly but all rows must be selected once before a row is

selected again.

6. Select one of the following options.

Option Description

Wrap when the last row is reached
By default, when a test reaches the end of a dataset

or dataset segment, it reuses the data from the

beginning. To force a test to stop at the end of a

dataset or segment, clear the Wrap when the last row

is reached check box. Forcing a stop might be use­

ful if, for example, a dataset contains 15 records, you

run a test with 20 virtual users, and you do not want

the last five users to reuse information. Although the

test is marked Fail because of the forced stop, the

performance data in the test is still valid. However,

if reusing dataset data does not matter to your appli­

cation, the default of wrapping is more convenient.

With wrapping, you need not ensure that your dataset

is large enough when you change the workload by

adding more users or increasing the iteration count in

a loop.

Note:

Chapter 7. Test Author Guide

Option Description

◦ With Random access order, Wrap

when the last row is reached option is

unavailable because you never reach

the end of the row.

◦ With Shuffled access order, if you

select Wrap when the last row is

reached option, you resume select­

ing from the beginning of the row with

the same access order after each row

has been selected once. No more se­

lections are required if you clear the

Wrap when the last row is reached

option.

Fetch only once per user
By default, one row is retrieved from the dataset

for executing each test, and the data in the dataset

row is available to the test only for the duration of

the test. Select Fetch only once per user to specify

that every access of the dataset from any test being

run by a particular virtual user will always return the

same row.

Example

To illustrate how these options affect the rows that are returned, assume that a test contains a loop which

accesses a dataset. The loop has 2 iterations. The following table shows the row that is accessed in each

iteration:

Dataset option Iteration 1 Iteration 2

Sequential and Private row 1 row 2

Shared and Shuffled row x row y

Fetch only once per user row x row x

7. If you are creating a fully functioning dataset, you can optionally import the data from a CSV file during this

session by copying the CSV file and pasting into your project. For more information on importing dataset, see

Editing datasets on page 594.

What to do next

583

HCL OneTest Performance

584

After you have created a dataset and added data to it, the next step is to associate a value in the test with a column in

the dataset, as discussed in Associating a test value with a dataset column on page 591.

Creating a dataset in a workspace
You can create datasets in a workspace containing variable data that tests use when they run. You can use this

method to create a dataset if you have not yet created the test that will use it.

1. Click File > New > Dataset.

2. In the New Dataset window, click the project that contains the dataset. The project is displayed in the Enter,

create, or select the parent folder field.

3. In the Name field, type the name of the dataset, and then click Next.

4. In the window for describing the dataset, add a description.

5. In the Dimensions field, specify the number of rows and columns for the dataset that you want to create.

6. Click Finish.

Results

The new dataset opens in a browser. For instructions on how to add data to or edit the dataset, see Editing a dataset

on page 594.

What to do next

After you have created a dataset and added data to it, you must associate a value in the test with a column in the

dataset.

Converting an existing datapool to a dataset
Starting from 9.5 the dataset formerly known as datapool is in the CSV format. You can convert any existing datapool

to a dataset.

About this task

When you open the workspace earlier to 9.5 in HCL OneTest™ Performance 9.5, the existing datapools in the

workspace are stored in the Datapools (Legacy-Unsupported) folder as shown in the following figure.

Chapter 7. Test Author Guide

To convert the existing datapool to a dataset:

1. In the Test Navigator, browse and select the existing datapool.

2. Right-click and select Convert to Dataset…. Verify that the name of the dataset is the name of the existing

datapool and format is .csv.

3. Click Finish. The converted datapool opens in a CSV editor.

What to do next

After you have created a dataset and added data to it, you must associate a value in the test with a column in the

dataset.

Creating datasets with multiple substitutions
Earlier to 9.2, you could substitute one dataset value at a time. Starting from 9.2, after the test is generated, you

can view all the dataset candidates, add multiple candidates as dataset values, substitute values, and create a new

dataset out of it. You can also substitute multiple dataset candidates for an existing dataset.

About this task

When you substitute multiple dataset candidates to create a new dataset, the same number of columns are created

in the dataset. The names of the candidates become the names of columns and values in the dataset. When you

substitute multiple dataset candidates in an existing dataset, the column names in the dataset are retained. If

the number of substitutions chosen was greater than the number of columns in the dataset, the extra number of

substitutions are added as columns in the dataset. For instance, if a dataset has three columns and you substitute

five dataset candidates, two new columns are created by using the names of the dataset candidates.

To create a dataset from multiple dataset candidates:

585

HCL OneTest Performance

586

1. In the Test Editor, select the name of the test and from the Test Details section, select Common Options and

click Show Dataset Candidates.

Alternative: After the test generation when you open the test, you are prompted that “Some test data may need

to be correlated or substituted”. If you click Yes, you can see the list of dataset candidates.

2. Select the dataset candidates that you want to add as values to the dataset and click Substitute multiple

candidates.

The Add Dataset dialog shows the list of datasets that are in the project but not associated with the test.

3. To associate an existing dataset with the test and assign the selected dataset candidates as values and

substitutions, select a dataset and click Next. To associate a new dataset with the test, click the Use wizard to

create new Dataset and click Next.

4. Select Open mode for the dataset. This mode determines the view that virtual users have of the dataset.

Different tests can open the same dataset differently, and you can change the open mode later by opening the

test and double-clicking the dataset title.

Option Description

Shared (per test execution) (default)
When you choose the Shared (per test execution) op­

tion, the virtual users running in the test share the

dataset values in sequential order.

For example, if your dataset has 10 rows, the dataset

values are taken from row 1, row 2, row 3, and so on

when you select this option.

Private
Each virtual user draws dataset values from a private

view of the dataset, with dataset rows apportioned to

each user in sequential order.

This option ensures that each virtual user gets the

same data from the dataset in the same order. Be­

cause each user starts with the first row of the

dataset and accesses the rows in order, different vir­

tual users will use the same row. The next row of the

dataset is used only if you add the test that is using

the dataset to a loop in the schedule with multiple it­

erations.

Shared (for all test executions)
When you choose the Shared (for all test executions)

option, the virtual users running in multiple tests

share the dataset values from the current row.

Chapter 7. Test Author Guide

Option Description

For example, if your dataset has 10 rows and when

you set the current row as row 5, the dataset values

are taken from row 5 instead of row 1 when you se­

lect this option. If you had set the current row as row

1 and used the dataset values until row 5, the dataset

values are retrieved from row 6 when you run the test

next time.

5. If you are setting how the test accesses the dataset during this session, select one of the following options:

◦ Sequential: Rows in the dataset are accessed in the order in which they are physically stored in the

dataset file, beginning with the first row and ending with the last.

◦ Random: Rows in the dataset are accessed in any order, and any given row can be accessed multiple

times or not at all. Each row has an equal chance of being selected each time.

◦ Shuffled: Before each dataset access, the order of the rows is changed that results in a different

sequence. The rows are accessed randomly but all rows must be selected once before a row is

selected again.

6. Select one of the following options.

Option Description

Wrap when the last row is reached
By default, when a test reaches the end of a dataset

or dataset segment, it reuses the data from the

beginning. To force a test to stop at the end of a

dataset or segment, clear the Wrap when the last row

is reached check box. Forcing a stop might be use­

ful if, for example, a dataset contains 15 records, you

run a test with 20 virtual users, and you do not want

the last five users to reuse information. Although the

test is marked Fail because of the forced stop, the

performance data in the test is still valid. However,

if reusing dataset data does not matter to your appli­

cation, the default of wrapping is more convenient.

With wrapping, you need not ensure that your dataset

is large enough when you change the workload by

adding more users or increasing the iteration count in

a loop.

Note:

587

HCL OneTest Performance

588

Option Description

◦ With Random access order, Wrap

when the last row is reached option is

unavailable because you never reach

the end of the row.

◦ With Shuffled access order, if you

select Wrap when the last row is

reached option, you resume select­

ing from the beginning of the row with

the same access order after each row

has been selected once. No more se­

lections are required if you clear the

Wrap when the last row is reached

option.

Fetch only once per user
By default, one row is retrieved from the dataset

for executing each test, and the data in the dataset

row is available to the test only for the duration of

the test. Select Fetch only once per user to specify

that every access of the dataset from any test being

run by a particular virtual user will always return the

same row.

Example

To illustrate how these options affect the rows that are returned, assume that a test contains a loop which

accesses a dataset. The loop has 2 iterations. The following table shows the row that is accessed in each

iteration:

Dataset option Iteration 1 Iteration 2

Sequential and Private row 1 row 2

Shared and Shuffled row x row y

Fetch only once per user row x row x

7. Click Finish.

How dataset options affect values that a virtual user retrieves
The Open, Access, and Wrap modes that you select for a dataset affect the values that a virtual user retrieves.

The following table lists the most common types of datasets and the options that you select to create them.

Chapter 7. Test Author Guide

Dataset purpose

Open

mode se­

lection

Access

mode

selec­

tion

Wrap mode

selection

The virtual user retrieves the value from the current row of the dataset in a ran­

dom order for every attempted transaction. Note that before accessing each row

of the dataset the order of the rows is rearranged.

Shared

(for all

test exe­

cutions)

Shuf­

fled

Fetch on­

ly once per

user

The virtual user retrieves the value from the current row of the dataset in sequen­

tial order for every attempted transaction.

Shared

(for all

test exe­

cutions)

Se­

quen­

tial

Fetch on­

ly once per

user

The virtual user retrieves the value from the beginning of the row of a dataset in a

random order for every attempted transaction.

Shared

(per test

execu­

tion)

Ran­

dom

Wrap when

the last row

is reached

The virtual user retrieves the value from the current row of a dataset in sequential

order for every attempted transaction. When a test reaches the end of a dataset, it

reuses the data from the current row selection of the dataset.

Shared

(for all

test exe­

cutions)

Se­

quen­

tial

Wrap when

the last row

is reached

Enabling a test to use a dataset
Before a test can use variable data from a dataset, you must update the test to include a reference to that dataset.

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. Right-click the test name, and click Add > Dataset.

Result

The Select Dataset File window is displayed listing the datasets available to the test. If a test is already using

a dataset, it does not appear in the list.

3. In the Existing Dataset in workspace list, click the name of the dataset that your test will use and click Next.

4. Select the Open mode for the dataset. This mode determines the view that virtual users have of the dataset.

This option is useful when you do a parallel test run.

Option Description

Shared (per test execution) (default)
When you choose the Shared (per test execution) op­

tion, the virtual users running in the test share the

dataset values in sequential order.

589

HCL OneTest Performance

590

Option Description

For example, if your dataset has 10 rows, the dataset

values are taken from row 1, row 2, row 3, and so on

when you select this option.

Private
Each virtual user draws dataset values from a private

view of the dataset, with dataset rows apportioned to

each user in sequential order.

This option ensures that each virtual user gets the

same data from the dataset in the same order. Be­

cause each user starts with the first row of the

dataset and accesses the rows in order, different vir­

tual users will use the same row. The next row of the

dataset is used only if you add the test that is using

the dataset to a loop in the schedule with multiple it­

erations.

Shared (for all test executions)
When you choose the Shared (for all test executions)

option, the virtual users running in multiple tests

share the dataset values from the current row.

For example, if your dataset has 10 rows and when

you set the current row as row 5, the dataset values

are taken from row 5 instead of row 1 when you se­

lect this option. If you had set the current row as row

1 and used the dataset values until row 5, the dataset

values are retrieved from row 6 when you run the test

next time.

5. Select the Access mode for the dataset:

◦ Sequential: Rows in the dataset are accessed in the order in which they are physically stored in the

dataset file, beginning with the first row and ending with the last.

◦ Random: Rows in the dataset are accessed in any order, and any given row can be accessed multiple

times or not at all. Each row has an equal chance of being selected each time.

◦ Shuffled: Before each dataset access, the order of the rows is changed that results in a different

sequence. The rows are accessed randomly but all rows must be selected once before a row is

selected again.

6. Select whether the test will reuse data when it reaches the end of the dataset.

Chapter 7. Test Author Guide

By default, when a test reaches the end of a dataset or dataset segment, it reuses the data from the

beginning. To force a test to stop at the end of a dataset or segment, clear the Wrap when the last row is

reached check box. Forcing a stop might be useful if, for example, a dataset contains 15 records, you run

a test with 20 virtual users, and you do not want the last five users to reuse information. Although the test

is marked Fail because of the forced stop, the performance data in the test is still valid. However, if reusing

dataset data does not matter to your application, the default of wrapping is more convenient. With wrapping,

you need not ensure that your dataset is large enough when you change the workload by adding more users or

increasing the iteration count in a loop.

7. Select whether the test will make the data in the dataset record permanent for each virtual user.

By default, one row is retrieved from the dataset for executing each test, and the data in the dataset row is

available to the test only for the duration of the test. Select Fetch only once per user to specify that every

access of the dataset from any test being run by a particular virtual user will always return the same row.

To illustrate how these options affect the rows that are returned, assume that a test contains a loop which

accesses a dataset. The loop has 2 iterations. The following table shows the row that is accessed in each

iteration:

Dataset option Iteration 1 Iteration 2

Sequential and Private row 1 row 2

Shared and Shuffled row x row y

Fetch only once per user row x row x

8. Click Finish.

Result

A reference to the dataset is added to the test, and the Test Details area is updated with the dataset

information.

9. Save the test.

What to do next

Now that you have created a reference between the test and the dataset, the next step is to associate a value in the

test with a column in the dataset.

Associating a test value with a dataset column
After you have created a dataset and have enabled your test to use the dataset, you can associate a specific value in

the test with a specific dataset column.

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. Locate and click a request that contains a value to replace with variable data.

591

HCL OneTest Performance

592

Clicking a test page displays a table that lists dataset candidates and correlated data on that page. (If

correlated data is not displayed, right-click the table and verify that Show References is selected.) References

are color coded in blue and dataset candidates are color coded in black.

If the contents of the Value column corresponds exactly with column data in your dataset, click the row, and

then click Substitute. The Select Data Source window is displayed. Skip to step 6. You can ignore step 8

because the URL encoding is preselected.

Otherwise, double-click the row to navigate to the page request that contains the value to replace from a

dataset, and continue to the next step.

The value to replace from a dataset might not be listed in any page table. In this case, manually locate the

request string that includes the value.

3. If the value to replace from a dataset is part of a string that has been designated a dataset candidate, you

must remove the light green highlight: right-click and select Remove Substitution.

For example, if you searched for doe, john in your test, the dataset candidate in your test is displayed as

doe%2C+john. Suppose that you do not want to associate this candidate with a single dataset column that

contains data in the format doe, john. Instead, you want to associate doe and john with separate dataset

columns. In this case, you must first remove the substitution.

4. Highlight the value: With the left button pressed, drag your mouse over the value.

5. Right-click the highlighted value, and select Substitute > Select Data Source.

Result

The Select Data Source window is displayed.

Note: To use a dataset that is not listed, click Dataset: the Select dataset column window is displayed.

6. Click the name of the dataset variable, or column, to associate with the test value.

7. Click Select.

Result

To indicate that the association has been set, the highlighting for the selected test value turns dark green, and

the dataset table for this page is updated as shown in the example.

Chapter 7. Test Author Guide

8. Optional: Encode variable data when it is substituted from a dataset.

If a test value contains special characters such as spaces or commas, click the row and select URL Encode.

With this option, special characters are encoded when variable data is substituted from a dataset. For

example, data that is space-separated in a dataset column might need to be encoded. When the URL encoding

is enabled, John Doe is substituted as John%20Doe. If the URL encoding is not selected, the variable data that

is substituted is literal. Do not enable URL encoding for datasets that contain data that is already encoded.

9. Optional: If you substitute an element of a page with a dataset column, to view the substitutions in the

Page Elements report, in the Test Elements Details area of the request click the Use the substituted URL in

performance reports check box.

10. Save the test.

Related information

Adding data source controller on page 566

Viewing dataset candidates when you open a test
Dataset candidates are displayed automatically when you open a test for the first time. From the dataset candidates

window you can view the dataset candidates in the test, bookmark locations of interest, and add or remove dataset

references.

1. Record a test.

Result

When the test opens for the first time in the Test Navigator, the Show Dataset Candidates window is

displayed. The Show Dataset Candidates window is displayed only if there are dataset candidates and if

Always display this dialog when a test is first opened is selected. To prevent the Show Dataset Candidates

from being displayed when a test opens, clear the Always display this dialog when a test is first opened

check box in the Show Dataset Candidates window.

2. Do one of the following:

593

HCL OneTest Performance

594

Option Description

To view details about the

dataset candidates in a test

Navigate through the Dataset Candidates field to see

them previewed in the Preview pane. Click the Next

and Previous icons to move the selection down or up

in the list of dataset candidates. Click the Show as

Tree icon to toggle between tree format and list for­

mat. Click the Sort icon to sort the list of dataset can­

didates. Click the Bookmark icon to bookmark a loca­

tion for later review.

To select a data source for a dataset candidate Select the dataset candidate in the Dataset Candi­

dates field, and then click Substitute. The Select Data

Source window opens.

To find more values in the test that have the

same value as the selected dataset candidate

Click Find More and Substitute. These values can be

reviewed and substituted interactively as needed.

To remove a substitution Select a substitution site, and then click Remove

Substitution.

3. Click Close to close the Show Dataset Candidates window and proceed to the test in the test editor.

To display the Show Dataset Candidates window again while in the test editor, click the root node of the test.

Then click the Common Options tab under Test Element Details, and then click Show Dataset Candidates.

Editing datasets
You can add, modify, remove, import, or export data from a dataset by using the CSV Editor. The working principle of

the CSV Editor is similar to that of a spreadsheet.

Before you begin

You must have created a dataset. See Creating a dataset in a workspace on page 584.

About this task

In HCL OneTest™ Performance 9.5.0 or later, you can use the CSV Editor to view and edit data in the dataset. You can

also view the datasets in other editors by right-clicking the dataset and selecting the Open With option.

You can perform basic tasks in the CSV Editor by right-clicking any row, column, or cell of the dataset to organize your

data in a better way. For example, updating the data in a cell, inserting or deleting rows and columns, or renaming

column names.

When you edit the dataset in a CSV Editor, you can use the following keyboard shortcuts to control the cursor

selection in the CSV Editor:

Chapter 7. Test Author Guide

• Tab - To move the cursor control to the next available option.

• Shift-Tab – To move the cursor control to the previous option.

• Shift+F10 – To open the context menu from the dataset cell.

Note: You cannot resize the width of rows in the CSV Editor. When you have a large amount of data in a cell,

you can right-click the cell and select Copy (or Ctrl+C), and then paste it into a text-editing program to view the

content. Alternatively, you can hover the mouse over the cell to view the content.

When you have a CSV file that has data separated from a character, then you can import that CSV file into the dataset.

You can select any of the following separator characters from the Configure Dataset window, and the selection can

be the separator character that you used in the CSV file:

• Comma

• Semicolon

• Space

• Tab

• Other

Consider that you have the data in the CSV file in the following format:

When you import the CSV file in the dataset, and then select the separator value as Semicolon, the data in the dataset

is displayed as follows:

If you want the data in its original format, that is, a semicolon (;) character to separate the data, then you can choose

any other separator value from the Configure Dataset window.

595

HCL OneTest Performance

596

Note: The default separator value is Comma.

1. Double-click the dataset that you want to edit in the Test Navigator.

Result

The dataset opens in the CSV Editor in a browser.

2. Perform the following actions to use the options available in the CSV Editor:

Options Actions

Find and Re­

place

To find:

a. Click the Find and Replace icon .

b. Enter the content that you want to search in the Find field.

c. Select any or all the following options to find the search content more effectively:

▪ Select the Case sensitive check box to search the content that is the exact let­

ter case of the content entered in the Find field.

▪ Select the Match entire cell contents check box to search for cells that con­

tain only the characters that you have entered in the Find field.

▪ Select the Search using regular expression check box to search the pattern

that matches strings.

For example, to search a cell that contains any number between 0 to 9, do the

following:

i. Enter \d in the Find field.

ii. Select the Search using regular expression check box.

iii. Click Find.

d. Click Find. If the text is found, the cell containing that text is selected.

e. Click Find again to find further instances of the search text.

To find and replace:

a. Click the Find and Replace icon .

b. Enter the content that you want to search in the Find field.

c. Enter the content that you want to replace in the Replace field.

d. Select any or all the following options to find and replace the content more effectively:

▪ Select the Case sensitive check box to find the content that is the exact letter

case of the content entered in the Find field.

▪ Select the Match entire cell contents check box to find and replace for cells

that contain only the characters that you have entered in the Find and Replace

fields.

▪ Select the Search using regular expression check box to find and replace the

pattern that matches strings.

Chapter 7. Test Author Guide

Options Actions

e. Click Replace to replace the individual instances.

f. Click Replace All to replace every instance of the content throughout the dataset.

Undo a. Click the Undo icon .

b. Select the recent changes from the list that you want to undo, and then click the list.

The Undo option undoes anything you do in the dataset. The CSV Editor saves the unlimited

undo-able action. You can perform the undo action even after you save your changes made to

the dataset.

Redo a. Click the Redo icon .

b. Select the recent changes from the list that you want to redo, and then click the list.

The CSV Editor saves the unlimited redo action.

Import a. Click the Import icon .

b. Click Choose File and select the CSV file that you want to import in the Import File di­

alog.

Note: If the CSV file contains test data with Unicode characters in it, you must

save the CSV file in UTF-8 format. You can then choose the CSV file and import

the test data from the CSV file into the dataset.

c. Optional. Click Overwrite to add the rows and columns from the selected CSV file

from the beginning of the dataset.

d. Optional. Click Append to add rows and columns from the selected CSV file to the end

of the dataset.

e. Optional. Select the First row contains headers check box if your CSV file contains the

header.

Export Click the Export icon to download the dataset as a CSV file.

Set as cur­

rent row

Right-click any cell in a row and select Set as current row.

When rows are deleted:

If you delete any row between row 1 to current row, the current row data is taken from the

next row.

For example, when you set the current row as 6, and then you delete any row between row 1

to row 6, the current row remains at row 6, but the content of row 7 is moved to row 6.

When rows are inserted:

597

HCL OneTest Performance

598

Options Actions

If you insert any new row between row 1 to the current row, the current row data is taken from

the previous row.

For example, when you set the current row as 6, and then you insert any row between row 1 to

row 6, the current row remains at row 6, but the content of row 5 is moved to row 6.

Dataset con­

figuration

settings

In the Configure Dataset window, you can set the separator value, change the row and col­

umn settings, and configure the string values in the dataset.

a. Click the Menu icon , and then select the Configure option.

b. Select any of the separator values that you used in the CSV file.

The available options are Comma, Semicolon, Space, Tab, and Other. In the CSV file,

if you have any other separator characters other than the available options, then you

can select the Other option, and then can specify a value.

For example, if the data in the CSV file is separated by a character #, then select the

Other option and enter # in the field.

c. Configure the following options to change the row and column settings:

▪ Column header - Use an up-down control button to increment or decrement

the value of the column header.

▪ Data start point - Use an up-down control button to increment or decrement

the value of the data starting pointer.

▪ Current row - Use an up-down control button to increment or decrement the

value of the current row.

d. Configure the following options to change the string values in the dataset:

▪ Treat as null - Enter a string value that is to be treated as null when running

the test.

▪ Treat as empty - Enter a string value that is to be treated as empty when run­

ning the test.

Chapter 7. Test Author Guide

Options Actions

For example, when you run the test and the data 123 in the dataset to be treat­

ed as empty, then you can specify 123 in the Treat as empty field.

▪ Treat empty text as null - Select this field when you want the dataset that con­

tains any blank cells, and the value of those blank cells to be interpreted as

null.

e. Click Update to apply the changes.

Discard
Click the Menu icon , and then select Discard to discard the changes made to the dataset.

3. Click the Save icon to save the changes made to the dataset.

Results

You have edited the dataset.

Encrypted datasets overview
You can encrypt one or more columns in a dataset. If you want to encrypt confidential information such as a set of

passwords or account numbers that are used during a test, you can use an encrypted dataset.

Dataset columns are encrypted using the RC4 private-key algorithm. You can use only one password to encrypt

columns in any given dataset. Encrypted datasets are not supported on agent computers that are running the z/OS®

or AIX® operating systems.

Important: If you forget the password to a dataset, there is no way to recover the password.

When you run a test that uses a dataset that contains encrypted variables, you are prompted for the dataset

password. If the test uses multiple encrypted datasets, you must enter the password for every encrypted dataset that

the test uses.

When you run a test that uses a dataset with an encrypted column, the value of the column is decrypted at a run time.

The column value is sent as a cleartext string in the requests to the server. The actual values of the encrypted dataset

variables are not displayed in the test log. The test log displays asterisks for the encrypted dataset variables.

To see the actual values of variables that are sent to the server at run time, you must use custom code. You can send

the dataset column value to custom code that writes the value to a file other than the test log. If the custom code

writes to the test log using tes.getTestLogManager().reportMessage(), then asterisks are displayed instead of the

decrypted variables.

599

HCL OneTest Performance

600

Encrypting a dataset column
To secure test data, you must encrypt datasets. You can encrypt data in the columns of a dataset by using an

encryption key. When you run a test that utilizes a dataset with encrypted variables, you must enter the encryption key

for the encrypted column that the test uses.

Before you begin

You must have created a dataset. See Creating a dataset in a workspace on page 584.

1. Double-click the dataset in the Test Navigator.

Result

The dataset is displayed in a browser.

2. Right-click any cell in a column that you want to encrypt and select Encrypt column data.

Result

The Encrypt Column window is displayed.

3. Enter an encryption key in the Encryption Key field to encrypt the data in the column.

Remember: When you have already encrypted other columns in the dataset, you must enter the same

encryption key that you used previously. You can use only one encryption key to encrypt columns in a

dataset.

Important: The encryption keys you use to encrypt data in a dataset are not stored on the server nor

can be retrieved from the server. Therefore, you must remember to store the encryption keys in a

secure location. You must use the same encryption keys to view the encrypted values, to decrypt data,

or enable the use of the encrypted dataset during test runs.

4. Click Encrypt Column.

Result

Asterisks are displayed instead of actual data for the encrypted column.

Results

The dataset column is encrypted.

Decrypting a dataset column
To view the content of an encrypted dataset, you can decrypt the dataset. Removing encryption from a dataset

revokes the protection offered to the test data.

Before you begin

You must have created a dataset with at least one encrypted column. See Creating a dataset in a workspace on

page 584 and Encrypting a dataset column on page 600.

Chapter 7. Test Author Guide

1. Double-click the dataset in the Test Navigator.

Result

The dataset is displayed in a browser.

2. Right-click encrypted cells that display the contents with asterisks, and then select Decrypt column data.

Result

The Decrypt Column window is displayed.

3. Enter the encryption key that you used to encrypt the data in the column in the Encryption Key field.

4. Click Decrypt Column.

Result

Asterisks are replaced with the actual data in the decrypted column.

Results

The encryption is now removed from the selected column in the dataset. When you run a test that uses a dataset that

contains decrypted data, the variable data is substituted for the data in the recorded test without prompting for the

encryption key.

Using a digital certificate store with a dataset
You can associate the certificates in one or more certificate stores with a dataset to use multiple digital certificates

during testing.

1. Open a test for editing. On the Common Options page, click Add Dataset.

2. Create a dataset with two columns that contains a list of the certificates in the certificate store and a list of

passphrases for the certificates. To learn more about adding datasets, see Creating a dataset in a workspace

on page 584. You can use the supplied KeyTool program to generate a list of names of certificates in a

certificate store. To learn more about KeyTool, see Creating a digital certificate store on page 434.

3. Select Fetch only once per user.

4. Save the dataset.

5. On the Security page, under Digital Certificates, click Add.

6. Select a certificate from the certificate store that you created previously.

7. Type the passphrase for the selected certificate.

8. When prompted to dataset the digital certificate, click Yes.

9. In the Select dataset column wizard, choose the dataset that you added previously, and substitute the

appropriate columns for the certificate name and passphrase.

10. Save the test, and then add the test to a schedule.

Results

When you run this schedule, the certificates from the certificate store are submitted to the server.

Navigating between a dataset and a test
After you have created a dataset or imported a comma-separate values (CSV) file into a dataset, you can navigate

between the dataset and associated tests in the test editor. You can enlarge the test and the dataset, list the datasets

601

HCL OneTest Performance

602

that a test uses, navigate from a row in a dataset to the corresponding element in the test, see the data for a page or

request, and add or remove dataset references.

1. In the Test Navigator, browse to the test and double-click it. The test opens.

2. Do one of the following actions:

Option Description

Maximize the test window Double-click the test tab (for example,

). Do not click the x, or you will

close the test. To return to the default perspective,

click Window > Reset Perspective.

View the datasets that a test uses In the Test Contents area, click the first line of the

test, which is the test name.

Navigate from a row in a dataset

to its corresponding element

a. In the Test Contents area, click the test name,

which displays the dataset.

b. Expand the dataset to display the rows.

c. Double-click the row.

View the data for a page or request In the Test Contents area, click the page or request.

To add a reference to a dataset In the Test Element Details area, drag your cursor

over the candidate, right-click, and select Substitute >

Select Data Source. The Select Data Source window

opens. If you have not already added the dataset to

the test, click Dataset, and then add the new dataset.

Remove a reference to a dataset In the Test Element Details area, drag your cursor

over the reference, right-click, and select Remove

Substitution.

3. Save the test, if you have made any changes.

Test variables
A test variable is a user-defined, name-value pair that stores and refers to information throughout a test and between

tests.

A variable is declared in the test variables section of the test. You can use it throughout the test as a reference for any

field that can be substituted. Substituting data from a test variable is achieved using the Test Variables page of the

Test Data Source view. You can do the following actions to a test variable:

• Provide a default value to the variable during declaration.

Chapter 7. Test Author Guide

• Change the value of the variable using Set Variable statement. You can use the Add and Insert menus of the

Test Editor to create Set Variable statements.

• Set hard-coded value or value retried from a data source, such as dataset or reference that appears before the

Set statement to the variable.

If a variable is initialized at various places such as test, compound test, schedule, or user group, the product uses the

following order to initialize the value of the variable when running the test. The variable set in the variable table of the

compound test editor takes the highest precedence followed by others:

1. Compound test setting in the variable table UI

2. Compound test specified in a var file

3. User group setting in the variable table UI

4. User group specified in a var file

5. Schedule specified setting in the variable table UI

6. Schedule specified in a var file

7. Command line

Note: You must select All tests for this user from the Visible in drop-down list to take the precedence of

variable initialization.

Sharing variables among tests

In order to share variables between tests, all the tests must contain the variables with the same name. The variables

must also have Visible in set to All tests for this user. When these conditions are met and multiple tests have been

placed in a schedule, then variable in the dataset of one test can be used in the other test.

A common reason to share data between tests is to perform data correlation. With data correlation, a variable is set

to a response that comes from a request in one test and is used in requests performed in a different test. Assume

that you are testing an employee database. The Create Employee test creates an employee record and the Modify

Employee test modifies an employee record. When a new record is created, it is assigned a record ID. Variables can

be used to pass the record ID from a response in the Create Employee test to the Modify Employee test. A user-

defined variable is not shared among different virtual users. The variable is shared only among the different tests of

the same virtual user. If you set Visible in to This test only, then dataset from a test is not available to another even if

both tests contain variables with the same name.

If you want to share variables between the different types of test scripts in your product, consider the following

points:

• Declare the test variables with the same name across all the test scripts for the variables to communicate

with each other. Set Visible in to All tests for this user.

• Include the required test scripts into a compound test.

603

HCL OneTest Performance

604

Using test steps, you can share the default values of the variables to another test script. You can also assign new

values to the variables and use the latest values in another test script.

If you want to share variables between the test scripts of different testing products such as HCL OneTest™ UI, HCL

OneTest™ Performance, or HCL OneTest™ API, you must consider the following points:

• If you are using Installation Manager, you must shell-share or install the products in the same package group.

• If you are using InstallAnywhere, you must use the installer that installs both HCL OneTest™ UI and HCL

OneTest™ Performance together.

Note: By using InstallAnywhere, you cannot shell-share your product with HCL OneTest™ API.

• Declare the test variables with the same name across the HCL OneTest™ UI and HCL OneTest™ Performance

test scripts. Set Visible in to All tests for this user.

• Include the required test scripts into a compound test.

• If you are using HCL OneTest™ API test scripts, you must map your tags with the test variables of HCL

OneTest™ UI or HCL OneTest™ Performance.

Using variables to access datasets

You can define variables so that they share data from a dataset throughout tests. This is achieved by having the value

field of a Set Variable statement substituted from a dataset. By doing so, the first test which appears in the schedule

can set the variable from a dataset and share it with the other test in a schedule.

Assume that you have two tests that log in to an application using a user ID from a dataset. The first test can set the

value of a variable from the dataset, and both tests can use the variable, instead of directly using the dataset. In this

case both use the same record from the dataset. This is similar to the fetch-only-once-per-user behavior of a dataset.

However, fetching once means that during playback, a virtual user gets only one record from the dataset. The one-

record limit holds even if the tests are in a loop, and are run several times by the virtual user. By using the user-defined

variables, the virtual user retrieves a new record each time through the loop, and both tests can use the same record.

Note: Assignment (set) operators can not only have a variable value substituted from a dataset, but also in

the declaration of a variable. You can substitute the assignment operator and variable value from any data

source, and thus that value can be shared between tests as well.

Array variables

You create an array variable to add multiple values to a variable. If you create a secondary HTTP request, add

complete paths of the requests in the array variable that can be used a custom code during playback.

Chapter 7. Test Author Guide

Declaring and assigning test variables
When you declare a variable, you can create a container for it, initialize it to a string or a dataset value, and set its

scope. Then, within the test, you can reassign another value to the variable.

About this task

If the data that you want to assign to a variable is only available after a specific test step, instead of initializing the

variable, you need to add a variable assignment further down in the test, so that when the assignment occurs, the

data that you need to use is available. Otherwise, when you try to initialize the variable (or do the assignment), the

value that you want to use will not be available and will not show up as an option to select.

If a variable is initialized at various places such as test, compound test, schedule, or user group, the product uses the

following order to initialize the value of the variable when running the test. The variable set in the variable table of the

compound test editor takes the highest precedence followed by others:

1. Compound test setting in the variable table UI

2. Compound test specified in a var file

3. User group setting in the variable table UI

4. User group specified in a var file

5. Schedule specified setting in the variable table UI

6. Schedule specified in a var file

7. Command line

Note: You must select All tests for this user from the Visible in drop-down list to take the precedence of

variable initialization.

To create, initialize, and assign a value to a test variable:

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. To create a container for the test variables that you create in a test:

a. Open the test, and in theTest Contents area, click Test Variables.

b. Select Add > Test Variable Container.

Result

A container named Test Variables is created for the user-defined variables.

c. Select the container to rename it.

Result

The Test Element Details area opens for you to type a new name in the Name field.

3. To declare or define a test variable:

605

HCL OneTest Performance

606

a. Open the test, and in the Test Contents section, click the user-defined container to contain the

variable.

b. To create a variable, select Add > Variable Declaration. To create an array variable, select Add > Array

Variable Declaration.

c. Type the name of the variable, and click OK.

Result

The variable is added as the last element in the container and the Test Element Details area opens.

d. In the Test Element Details area, set the scope and initial value for the variable.

Visible in: Select This test only to restrict data to the current test only. Even if another test has a

variable with the same name, that variable will not change. Select All tests for this user to share the

value of this variable when the test runs in a schedule. For the variable to be shared, both tests must

have a variable with the same name and must have this option enabled.

Check Value: Select When first used to check whether or not a variable is initialized only after the test

execution reaches the first request that uses a variable. Select At test start to check whether or not

a variable is initialized when starting the execution of the test. If the variable is not initialized, then an

error message is displayed, depending on the behavior set.

If not initialized, set to: Select Text to initialize the variable to a specific value whenever the test runs

in the schedule. Select Dataset value and, in the Select Data Source window, select the dataset that

will initialize the variable.

Run-time error if variable not initialized: Select the action for the run when it encounters an

uninitialized test variable. If you select Issue test log warning or Issue test log error, verify that the

Test log page in the schedule sets errors, failures, and warnings to All, which is the default setting.

If you select Exit the test, the schedule continues to run although the virtual users that have the

uninitialized variable stop. If you select Do nothing, the test continues to run.

4. To assign or initial a value to a test variable:

a. Open the test, and in the Test Contents area, select a test element.

b. Select Insert > Variable Assignment, which inserts the assignment before the selected element.

Result

The Test Editor window opens and lists the variables available to the test.

c. Select the variable that you are assigning a value to and, in the Set to box in the Test Element Details

area, set the value for the variable.

You can set the value to a text string, to any data source that exists in the test before the assignment

statement, or to Not initialized.

Chapter 7. Test Author Guide

Result

A Set statement is added to the test, with the value you chose.

Initializing variables from the command line
To initialize test variables from an XML file, you can run the test from the command-line interface using the varfile

option.

Before you begin

• You must read and familiar with command line parameters. See Command-line parameters on page 803.

• You must have completed the following tasks:

◦ Declared the variables using HCL OneTest™ Performance.

◦ Created an XML file that contains the variables with values. The XML file would have a structure

similar to the following image:

About this task

If a variable is initialized at various places such as test, compound test, schedule, or user group, the product uses the

following order to initialize the value of the variable when running the test. The variable set in the variable table of the

compound test editor takes the highest precedence followed by others:

1. Compound test setting in the variable table UI

2. Compound test specified in a var file

3. User group setting in the variable table UI

4. User group specified in a var file

5. Schedule specified setting in the variable table UI

6. Schedule specified in a var file

7. Command line

Note: You must select All tests for this user from the Visible in drop-down list to take the precedence of

variable initialization.

1. Open the command prompt.

2. Run the following command to change the directory to the cmdline directory:

cd <cmdline_directory_path>

607

HCL OneTest Performance

608

For example,

cd C:\Program Files\HCL\hclonetest\cmdline

Based on the operating system that you used to install HCL OneTest™ Performance, you can locate the

cmdline directory as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\hclonetest\cmdline

Linux™ /opt/HCL/hclonetest/cmdline

Mac /Application/HCL/hclonetest/cmdline

3. Run the following command to run the test:

cmdline -workspace workspace_full_path -project proj_rel_path -suite suite_name or suite_rel_path

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "/myproj/proj123" -suite
 "test1.testsuite"

OR

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "/myproj/proj123" -suite
 "Tests/test1.testsuite"

Note: You can add an additional parameter to the preceding command according to your testing

requirements and then run the test.

Result

The test run starts and the status is displayed on CLI.

Related information

Command-line parameters on page 803

Initializing variables from Engineering Test Management
If you want to run an HCL OneTest™ Performance test from IBM® Rational® Quality Manager, you can pass the

execution variables defined in Engineering Test Management to the HCL OneTest™ Performance test.

Before you begin

Chapter 7. Test Author Guide

• Configure the Engineering Test Management adapter in HCL OneTest™ Performance. For more information,

see the Configuration on page 216 topic.

• Variable names must be the same in Engineering Test Management and HCL OneTest™ Performance.

• The Visible in value for the variable in the HCL OneTest™ Performance test must be set to All tests for this

user.

About this task

When you pass an execution variable to a HCL OneTest™ Performance test, the value initialized in the test is replaced

by the value in the execution variable. If you modify the value that is initialized in the test, after the test is executed,

the modified value is passed back to the execution variable in Engineering Test Management.

To initialize an execution variable value to a test, run the test from Engineering Test Management. For information

about execution variables, see Using execution variables in manual test.

Correlating response and request data
For a test to run correctly, a request that is sent to a server might need to use a value that was returned by a previous

request. By ensuring that this data is correlated accurately, you can produce better performance tests.

Data correlation overview
A request can include data that was returned in the response to a previous request. Associating data in this manner is

called data correlation.

Interactions with an application are typically related to each other. For example, consider the following interactions

with a web-based application, in which each request depends on information returned from a previous response:

1. A payroll clerk types the web address for an application, which sends a login prompt. When the clerk logs in,

the web server returns a page that indicates that login has succeeded and a unique session ID to the web

browser that the clerk is using.

2. The clerk clicks a link on the returned page, which requests that the web server open the page for searching

the employee database. The web browser includes the session ID when sending the request. Based on the

session ID, the web server knows that the request comes from someone who is already logged on, and so

opens the search form for the employee database. The clerk then searches for a specific employee. The web

server returns a photograph of that employee and the employee's unique ID.

3. The clerk clicks a link that requests the web server to return the payroll record for the employee. With this

request, the web browser sends two IDs:

◦ The session ID, so that the web server knows that the request comes from some who is logged on

◦ The employee ID, so that the web server can locate and return the correct information

In this example, request 2 depends on request 1, and request 3 depends on requests 1 and 2.

If you record these interactions in a test, before running the test with multiple users, you would vary the test data. For

example, you would replace the user name and password values, the employee name search values, or both, with

609

http://pic.dhe.ibm.com/infocenter/clmhelp/v4r0m1/topic/com.ibm.rational.test.qm.doc/topics/t_using_exec_var.html

HCL OneTest Performance

610

values that datasets contain. When you run the test, each virtual user returns a different employee payroll record,

based on the contents of the datasets.

In a generated test, where data in a request depends on data that is contained in the response to a previous request,

the request data is substituted from the response data on which it depends. The term for this internal linking

of response and request data is data correlation. When you run a test with multiple users and varied data, data

correlation is required to ensure that the test runs correctly.

A reference is a value in a test (typically in a response) that can be used by a subsequent value in the test (typically

in a request). When the test generator detects that a request value must be substituted from a previous value, it

designates the earlier value as a reference and correlates the subsequent request value with the reference. This

process is called automated data correlation. You can also manually correlate any two values in a test or unlink

existing correlations.

Note: You can change or disable automated data correlation. To do so, click Window > Preferences, expand

Test, and then click Test Generation.

By default, the empty strings are not correlated because it might increase the time taken to generate a test. However,

sometimes empty strings such as spouse name or middle initial become important to correlate. To correlate the

empty strings, click Window > Preferences > Test > Test Generation > HTTP Test Generation > Data Correlation and

select the Create substitutions for empty strings check box.

Generally, the HTML response content after the recording appears as <input type="username" name="User" id="aaa"

value="John"/>. Some applications dynamically update the name attribute. Therefore, when you play back the test,

the HTML response content appears as <input type="username" name="idt020" id="aaa" value="John"/>. Because the

name attribute changes dynamically, data correlation does not occur and the playback fails. For data correlation to

correlate the response content based on the ID attribute, ensure that you have selected ON in the Priortize correlation

based on ID option at Window > Preferences > Test > Test Generation > HTTP Test Generation > Data correlation.

To help you work with correlated data, the test editor uses color coding and provides navigational aids:

Chapter 7. Test Author Guide

• When you click a page, you see a Test Data table for that page. By default, related dataset candidates are

shown in green text on a light green background, values that are already associated with a dataset are shown

in white text on a green background, and references are shown in blue text.

• If correlated data is not displayed, right-click the table and verify that Show References is selected. To

navigate directly to a page request containing correlated data, double-click a table row. To associate

correlated data from this table with a dataset, click the row, click Substitute, and then click Select Data Source

to open the Select Data Source window. You can also use the Test Data Sources view to make substitutions.

In the test editor, right-click the Test Data table, and then select Link with Test Data Sources View. When

you click a row in the Test Data table, the Test Data Sources view displays information about the selected

substitution site.

• When you expand a page, green text indicates page requests that contain dataset data or candidates. Blue

text indicates page requests that contain references.

• When you click a highlighted request, dataset candidates are highlighted in light green, data that is associated

with a dataset is highlighted in dark green, and correlated data is highlighted in red. If you right-click a value

for correlated data, as shown in the example, you can then click Go To to see its reference:

611

HCL OneTest Performance

612

• References are highlighted in dark blue.

Viewing data correlation
You can switch between viewing all test elements in the test editor and viewing only elements related to data

correlation in the test editor. Viewing only data correlation elements makes it easier to add and remove substitutions.

1. In the Test Navigator, browse to the test, and double-click it. The test opens.

2. In the Test Contents area, click Options.

3. Click Show > Data Correlation.

Result

The test editor window displays only elements that are related to data correlation. Alternately, click View under

Test Contents to switch between Display all Test Contents and Show Substitutions.

4. Select a single test element in the Test Contents area to see the current data source and to remove or change

the substitution in the Test Element Details area. Select multiple elements in the Test Contents area to see

the data in tabular form in the Test Element Details area. Different controls are available depending on the

type and number of elements that you select in the Test Contents area.

5. Optional: In the Test Elements Details area, click Substitute > Select Data Source to open the Select Data

Source window, where you can specify the data source for the selected substitution site.

What to do next

To view all test elements, click Options > Show > Data Correlation again.

Note: If you select a test element while viewing all test contents, and then switch to viewing only data

correlation elements, then the corresponding substituters and dataset candidates are selected. For example,

Chapter 7. Test Author Guide

if you select an HTTP page in the test editor, and then switch to viewing only data correlation elements, then

all substituters and dataset candidates for all requests from the HTTP page are selected.

Data correlation rules overview
You can use the data correlation rules editor to customize how data is correlated. You can control how references and

substitutions are generated in tests, and store these rules so that you do not have to manually correlate data in every

test that you record against a particular application.

You create data correlation rule sets in the rules editor. Data correlation rule sets are also known as rules files. Each

rule set can contain multiple rule passes, and each rule pass can contain multiple rules. When you re-correlate test

data with data correlation rules, each rule set is applied in the order that you specify. Within each rule set, each rule

pass is applied in order. Within each rule pass, each rule is applied in order.

You can use data correlation rules to do these tasks:

• Create a reference, substitution, variable, or dataset column

• Link a substitution to a reference

• Rename a reference or substitution

• Encode a substitution

• Unlink a substitution from a reference

• Remove a specific reference, substitution, or variable

• Remove all references or substitutions

Typically, you create a substitution and then link a reference to the substitution. References are located in the data

that the server under test returns, while substitutions are in the data that is sent to the server. To create a substitution

and then link a reference to the substitution in the rules editor, see Example: Linking references to substitutions with

rules on page 618.

Rule sets are hierarchical trees. You can insert child rules, which accept values generated by parent rules as input. To

find a particular reference by name, first add a Find a reference rule, and then add a child Reference name rule. In the

rules editor, you can also combine rules by using And and Or and Not rules.

Creating data correlation rule sets
To use rules-based data correlation, you must create a data correlation rule set. Data correlation rule sets are also

known as rules files.

1. Click File > New > Data Correlation Rule Set.

Result

The New Data Correlation Rule Set wizard opens.

2. Select a parent folder, and then in File name provide a name.

3. Click Finish.

Result

The data correlation rules editor opens.

613

HCL OneTest Performance

614

Results

An empty rule set is created. Data correlation rule sets are XML files with the .dcrules file extension. Typically, you

use the rules editor to edit data correlation rule sets. You can also use any XML editor to edit a data correlation rule

set file.

Creating a reference using data correlation rules
You can create a data correlation rule that creates a reference from a regular expression when the rule is applied to

test data.

1. Open a data correlation rule set in the rules editor.

A new rule set contains one empty rule pass.

2. Click Insert, and then select Create a reference.

Result

An empty Create a reference rule is inserted in the rule pass.

3. Under Details, supply information for all fields that are marked with asterisks and shaded in red. For

Reference field, click the down arrow to select the field in which to create the reference. Use the push buttons

at the top of the window to select a protocol, and then select a field.

Example

For example, to create a reference in the content field of an HTTP response, click the down arrow, and then

click HTTP > Content. To create references in multiple fields, click the Add field push button to add another

Reference field.

4. In Regular expression, type an expression to use to locate the reference. If only a part of the regular

expression is required for a reference, enclose that part in parentheses.

a. Open the test, and locate the response to create the reference in.

b. Copy the text from the response to the clipboard.

c. In the rules editor, click the Toggle regular expression assistant push button to open the regular

expression assistant.

d. Paste the text from the clipboard to the Test regular expression page of the regular expression

assistant window.

If the Test regular expression page is empty, the contents of the clipboard is automatically pasted in.

e. Click the Captured group tab in the regular expression assistant.

Result

The overall group is displayed, and the captured groups are displayed. If no groups are displayed, edit

the regular expression accordingly.

Example

To create more than one reference using the same regular expression, enclose each part in parentheses. For

example, two references can be created from this regular expression: name=(\S+)\svalue=(.+?).

5. In Reference names, provide names for the references.

Chapter 7. Test Author Guide

The names that you specify are available to child rules. To use the references as arguments in child rules,

enclose the reference name in percent signs.

Example

For example, if you specify a reference name of name, you can use %name% as an argument in a child rule.

6. If an attribute contains multiple matches for the regular expression, in Occurrence, type or select the

occurrence to use to create the reference.

7. Under Create reference only if used, select true to create a reference only if a substitution site uses the

reference. Select false to create the reference regardless of whether a corresponding substitution site is

found.

8. Under Overlapping site action, select the action to take when a new reference overlaps with existing

references.

Option Description

Always remove existing If the new reference overlaps with other references,

the other references are removed.

Keep existing If the new reference overlaps with other references,

the other references are not removed.

Keep existing only if used If the new reference overlaps with other references,

the other references are removed only if the refer­

ences are unused.

9. Under Create reference even if overlapping, select true to create a reference even if the new reference

overlaps with existing references.

10. In Log level, select the level of error data to be written to the error log. With logs, you can see which rules

worked and which did not. When you are debugging data correlation rules, use the Action log level. If the

Action log level does not provide enough data for troubleshooting, use the Detail log level. The Detail log level

products a significantly higher number of log entries. Typically, when you are sure that the data correlation

rules that you have written work correctly, use the None or Summary log levels to reduce memory and disk-

space consumption and unrequired entries in the error log.

Option Description

None Nothing is logged.

Warning A message is logged when there are potential prob­

lems that are detected when the rule is applied.

Summary One message is logged for the rule, no matter how

many times the rule is applied.

Important A message is logged every time the rule is applied

in a manner that is not typical. This is the default log

level.

615

HCL OneTest Performance

616

Option Description

Action A message is logged every time the rule is applied.

Detail A detailed message is logged every time the rule is

applied.

11. In Label, type a label for the rule. If you do not type a label name, the rule is given a default name. The default

name is the base name with the regular expression appended.

12. In Description, describe the rule. Descriptions can be useful if you share rule set files with other testers.

Creating a substitution with data correlation rules
You can create a data correlation rule that creates a substitution from a regular expression that is applied to test data.

1. Open a data correlation rule set in the rules editor.

A new rule set contains one empty rule pass.

2. Click Insert, and then select Create a substitution.

Result

An empty Create a substitution rule is inserted in the rule pass.

3. Under Details, supply information for all fields that are marked with asterisks and shaded in red. For Field,

click the down arrow to select the field for which to create a substitution. Use the push buttons at the top of

the window to select a protocol, and then select a field. To create a substitution in the data field of an HTTP

request, click the down arrow, and then select HTTP > Data.

4. In Regular expression, type a regular expression to use to locate the substitution. If only a part of the regular

expression is required for a substitution, enclose that part in parentheses.

a. Open the test, and locate the request to create the substitution in.

b. Copy the text from the request to the clipboard.

c. In the rules editor, click the Toggle regular expression assistant push button to open the regular

expression assistant.

d. Paste the text from the clipboard to the Test regular expression page of the regular expression

assistant window.

If the Test regular expression page is empty, the contents of the clipboard is automatically pasted in.

e. Click the Captured group tab in the regular expression assistant.

Result

The overall group is displayed, and the captured groups are displayed. If no groups are displayed, edit

the regular expression accordingly.

To create more than one substitution site using the same regular expression, enclose each part in

parentheses. For example, two substitution sites can be created from this regular expression: (.+?)=(.*?).

Example

Chapter 7. Test Author Guide

To use values that were created in a parent Create a reference rule as arguments in the regular expression,

enclose the reference names in percent signs. For example, if a parent rule created a name reference and a

value reference, you could use them in this regular expression: \:\{%name%,%value%\}. When the rule is run,

%name% and %value% are substituted with the values extracted by the parent rule, and then the resulting regular

expression is evaluated. Two substitutions are created, each linked to the corresponding reference.

5. In Substitution names, type names for the substitutions.

6. Under Decode the field, select true to decode the specified attribute before searching for a matching

reference. Select false to search for a matching reference without decoding the attribute. The type of

encoding depends on the selected protocol and attribute. For example, HTTP data can be URL-encoded.

7. Under Create substitution only if used, select true to create a substitution only when a matching data source

is found. Select false to create the substitution regardless of whether a matching data source is found.

8. Under Conflict action, select the action to take when a new substitution overlaps with existing substitutions.

Option Description

Always replace existing If the new substitution overlaps with other substitu­

tions, the other substitutions are removed.

Replace existing if dataset candidate If the new substitution overlaps with other substitu­

tions, and all the other substitutions are dataset can­

didates, other substitutions are removed. If at least

one current substitution site that overlaps with the

new substitution site is associated with a reference,

then no current substitution is changed, and the new

substitution is not created.

Replace existing if enclosed in the new site If the new substitution overlaps with other substitu­

tions that are all completely enclosed in the new sub­

stitution, other substitutions are removed. If at least

one current substitution overlaps with the new substi­

tution without being completely enclosed by the new

substitution, then no current substitution is changed,

and the new substitution is not created.

Replace existing if dataset candidate or enclosed If the new substitution overlaps with other substitu­

tions, and each of the other substitutions is either a

dataset candidate or is completely enclosed in the

new substitutions, other substitutions are removed.

If at least one current substitution overlaps with the

new substitution without being completely enclosed

by the new substitution, or if at least one current sub­

stitution site that overlaps with the new substitution

site is actually associated with a reference, then no

617

HCL OneTest Performance

618

Option Description

current substitution is changed, and the new substitu­

tion is not created.

Keep existing If the new substitution overlaps with other substitu­

tions, the other substitutions are not removed. The

new substitution is not created.

9. In Log level, select the level of error data to be written to the error log. With logs, you can see which rules

worked and which did not. When you are debugging data correlation rules, use the Action log level. If the

Action log level does not provide enough data for troubleshooting, use the Detail log level. The Detail log level

produces a significantly higher number of log entries. Typically, when you are sure that the data correlation

rules that you have written work correctly, use the None or Summary log levels to reduce memory and disk-

space consumption and unrequired entries in the error log.

Option Description

None Nothing is logged.

Warning A message is logged when potential problems are

detected when the rule is applied.

Summary One message is logged for the rule, no matter how

many times the rule is applied.

Important A message is logged every time that the rule is ap­

plied in a manner that is not typical. This is the de­

fault log level.

Action A message is logged every time the rule is applied.

Detail A detailed message is logged every time the rule is

applied.

10. In Label, type a label for the rule. If you do not type a label name, the rule is given a default name. The default

name is the base name with the regular expression appended.

11. In Description, describe the rule. Descriptions can be useful if you share rule set files with other testers.

Example: Linking references to substitutions with rules
You can create data correlation rules to link references to substitutions.

About this task

If you know which field in a request or in POST data must be correlated, write a Create a substitution rule for that

field, and then insert a Create a reference rule as a child of the Create a substitution rule.

Chapter 7. Test Author Guide

1. Open a data correlation rule set in the rules editor.

A new rule set contains one empty rule pass.

2. Create a Create a substitution rule. See Creating a substitution with data correlation rules on page 616 to

learn more about creating a Create a substitution rule.

3. Right-click the Create a substitution rule, and then click Insert Item > Find data source for substitution.

4. Right-click the Find data source for substitution rule, and then click Insert Item > Create a reference. If the

reference exists, select Find a reference instead of Create a reference.

A Create a reference or Find a reference rule is inserted as a child of the Find data source for

substitution rule. To use the value of the substitution extracted by the parent rule, type %subname% for the

Regular expression, where subname is the name of the substitution that is created by the parent rule. See

Creating a reference using data correlation rules on page 614 to learn more about creating a Create a

reference rule.

Results

When you recorrelate test data using this rule set, the references and substitutions that you defined are created and

linked.

Exemple

Assume that a URI in your test is http://host:port/RPThelp/index.jsp?topic=datacorrelation.html. Assume

that some of the response data from a previous request includes ...<id=2 docHelpName=recordtest> <id=23

docHelpName=datacorrelation> <id=24 docHelpName=rules>.... Write a rule that creates a substitution site in the URI

for datacorrelation and sets the substitution name to helpname. Then, add rules that create a reference as a child

of the substitution rule. The regular expression for the reference rule is docHelpName=%helpname%>. Thus, the regular

expression in the reference rule evaluates to docHelpName=datacorrelation>. This regular expression ensures that the

correct reference is linked to the substitution site.

Example: Linking substitutions to references with rules
You can create data correlation rules to link substitutions to references.

About this task

If you are familiar with the application under test and know the exact location of the reference in the response data,

write a Create a reference rule that uses a regular expression to locate the reference data, and then insert a Create a

substitution rule as a child of the Create a reference rule.

1. Open a data correlation rule set in the rules editor.

A new rule set contains one empty rule pass.

2. Create a Create a reference rule. See Creating a reference using data correlation rules on page 614 to learn

more about creating a Create a reference rule.

3. Right-click the Create a reference rule, and then click Insert Item > Link with substitutions.

4. Right-click the Link with substitutions rule, and then click Insert Item > Create a substitution. To use the

value of the reference that is extracted by the parent rule, type %refname% for the Regular expression, where

619

HCL OneTest Performance

620

refname is the name of the reference that is created by the parent rule. See Creating a substitution with data

correlation rules on page 616 to learn more about creating a Create substitution rule.

A Create a substitution rule is inserted as a child of the Link with substitutions rule.

Results

When you recorrelate test data with this rule set, the references and substitutions that you defined are created and

linked.

Exemple

Assume that a response in your test data contains an ID that is present in URIs and in POST data throughout the test.

For example, the response includes ...<NeededID=ID123 docHelpName=rules>.... Assume that a URI in the test is http://

host:port/RPTHelpID123/index.jsp?topic=datacorrelation.html and the POST data includes ...nameID123=ID123....

Because you know the exact location of the ID in the response, you can write a rule that creates a reference for the

ID. Specify the Reference name as ID. Then, add rules for two substitutions as children of the reference rule. Add one

substitution with a URI attribute and one with a data attribute. Specify %id% in Regular expression for both substitution

rules. Thus, the regular expression in the substitution rule becomes the ID123 value when the rules run. This regular

expression creates substitution sites in every location where the ID123 value is found in URIs and in POST data. In this

example, three substitution sites would be created: RPThelpID123, nameID123, and nameID123=ID123.

Example: Linking substitutions to built-in data sources with rules
You can create data correlation rules to link substitutions to built-in data sources. Built-in data sources include the

dynamically calculated variables such as Current Date, Random Number, and Timestamp.

1. Open a data correlation rule set in the rules editor.

A new rule set contains one empty rule pass.

2. Create a Create a built in data source rule.

3. Right-click the Create a built in data source rule, and then click Insert Item > Link with substitutions.

4. Right-click the Link with substitutions rule, and then click Insert Item > Create a substitution. See Creating

a substitution with data correlation rules on page 616 to learn more about creating a Create substitution

rule.

A Create a substitution rule is inserted as a child of the Link with substitutions rule.

Results

When you recorrelate test data with this rule set, the built-in data sources and substitutions that you defined are

created and linked.

Recorrelating data with rules
After you have created a data correlation rule set, you can recorrelate data in tests.

Before you begin

Record a test, and create a data correlation rule set.

Chapter 7. Test Author Guide

1. Open a test for editing. To recorrelate data in tests that are not open in the editor, select multiple tests in the

Test Navigator window.

2. To recorrelate a test that is open in the test editor, click Edit > Re-correlate test and transform data. To

recorrelate multiple tests, right-click the selected tests in the Test Navigator window, and then select Apply

data correlation rules.

Result

The Data Correlation and Transformation window opens.

3. Select Do rule-based data correlation.

4. Optional: To remove data correlation from the test data, select Clear existing data correlation. Select Do

automatic data correlation to recorrelate the test data by using the automatic data correlation.

You can control automatic data correlation in the preferences. Click Window > Preferences > Test > Test

Generation. Click HTTP Test Generation, and then click the Data Correlation tab for additional controls over

automatic HTTP data correlation.

5. Click Add.

Result

The Rules File Selection window opens.

6. Expand the list of resources to locate the data correlation rules file to add.

7. Select the data correlation rules file to add, and then click OK.

Data correlation rules files have the .dcrules extension by default.

Result

The rules file is added to the list under Rules Files.

8. Optional: Click Add to add more rules files. Use the Up and Down push buttons to move rules files in the list.

The data correlation rules are applied in the order in which the files are listed.

9. Click Finish.

Result

The test data is recorrelated.

Results

If you recorrelate test data in multiple tests that are not open in the test editor, the original tests are backed up. The

backup copies are displayed in the list in the Test Navigator window. To restore the original version of the test, right-

click the backup copy in the Test Navigator window, and then select Restore test.

Recording tests with data correlation rules
After you have created a data correlation rule set, you can record a test that uses those rules.

Before you begin

Create a data correlation rule set.

1. In the Performance Test perspective, click the New Test From Recording toolbar button or click File > New >

Test From Recording.

2. In the New Test From Recording wizard, click Create a test from a new recording, select the type of test to

create, and click Next.

621

HCL OneTest Performance

622

3. On the Select Location page, select the project and folder to create the test in, type a name for the test, select

Customize automatic data correlation, and click Next.

4. Continue recording a test.

Result

After you have recorded the test, the Data Correlation window opens.

5. Select Do rule-based data correlation.

6. Optional: Select Do automatic data correlation to correlate the test data using the automatic data correlation.

You can control automatic data correlation in the preferences. Click Window > Preferences > Test > Test

Generation. Click HTTP Test Generation, and then click the Data Correlation tab for additional controls over

automatic HTTP data correlation. For example, when recording an HTTP test with data correlation rules, you

might select Automatically correlate host and port data, Automatically correlate URL pathname if redirected

by response, and Automatically correlate Referers, and then clear Enable all other data correlation.

7. Click Add.

Result

The Rules File Selection window opens.

8. Expand the list of resources to locate the data correlation rules file to add.

9. Select the data correlation rules file to add, and then click OK.

Data correlation rules files have the .dcrules extension by default.

Result

The rules file is added to the list under Rules Files.

10. Optional: Click Add to add more rules files. Use the Up and Down push buttons to move rules files in the list.

The data correlation rules are applied in the order in which the files are listed.

11. Click Finish.

Result

The recorded test data is correlated.

Generate data correlation rules in the test editor
Instead of writing rules in the rules editor, you can generate rules automatically based on data correlation

adjustments that you make while editing tests.

To see what data correlation looks like in rule form, generate rules while you edit tests, and then examine the rules

in the rules editor. To generate a rule set file that you can use to correlate data on multiple tests that run against the

same application, save all manual correlations in a rule set file.

Generating rules while you edit
You can generate rules automatically as you make changes to data correlation in the test editor. With this feature, you

can see what a typical data correlation action looks like in rule form.

Before you begin

Record a test.

Chapter 7. Test Author Guide

1. Rules accumulation is enabled by default. To enable rules accumulation, right-click in the Test Contents

window, and then select Data Correlation > Allow rules accumulation.

2. Adjust data correlation as you typically would in the test editor. For example, create or delete references,

substitution sites, datasets, or variables.

To learn more about adjusting data correlation, see Guidelines for adjusting data correlation on page 641.

3. Right-click in the Test Contents window, and then select Data Correlation > Show accumulated rules.

Result

The Save Data Correlation Rule Set wizard opens. The data correlation rules that are generated while you

manually edited the test are displayed.

4. Clear the check boxes of any rules that you do not want to save, and then click Next.

5. Type a file name, and then click Save.

What to do next

Examine the data correlation rules in the rules editor. To learn more about the types of data correlation rules available,

see Data correlation rules on page 1378.

Saving manual data correlation in a rule set file
You can generate data correlation rules based on the data correlation changes made to a performance test. This

feature analyzes the data correlation adjustments that you have made to a test and saves those adjustments as a

data correlation rule set file. You can use the rule set file to automatically correlate the data for other tests that run

against the same application.

Before you begin

Create a performance test. Adjust the data correlation so that the test runs correctly. To learn more about adjusting

data correlation, see Guidelines for adjusting data correlation on page 641.

1. Open a performance test for editing.

2. Adjust data correlation as you typically would in the test editor. For example, create or delete references,

substitution sites, datasets, or variables.

3. Right-click in the Test Contents window, and then select Data Correlation > Save All Manual Correlation in

Ruleset file.

Result

The test is analyzed to determine the set of data correlation rules that represents the adjustments that you

have made to data correlation. The Save Data Correlation Rule Set wizard opens. The data correlation rules

are displayed.

4. Clear the check boxes of any rules that you do not want to save, and then click Next.

Typically, when saving manual data correlation, you save all the generated rules, because the generated rules

represent the data correlation required for the test to run correctly.

5. Type a file name, and then click Save.

What to do next

623

HCL OneTest Performance

624

You can use the generated rules file to perform data correlation on other tests that run against the same application.

To learn more about applying data correlation rules to existing tests, see Recorrelating data with rules on page 620.

Viewing data correlation rule usage
To see a record of all the elements that changed when data correlation rules are applied, open the data correlation

rules log. You can use the data correlation rules log to determine which rules worked and which did not.

About this task

The Data Correlation Rules Log view opens automatically when you apply data correlation rules to a test.

1. In the Data Correlation Rules Log view, consider the following options:

Choose from:

◦ You can apply data correlation rules when you record a test, or you can recorrelate existing test data.

To learn more about recorrelating test data, see Recorrelating data with rules on page 620.

◦ You can specify the logging level in the data correlation rules file, or on the Data Correlation and

Transformation wizard page.

◦ You can use the Action log level to debug data correlation rules. If the Action log level does not

provide enough data for troubleshooting, use the Detail log level.

◦ You can view the data correlation actions in the chronological order. Click the Chronological log view

icon to view test elements that are created or removed by the data correlation rules.

◦ When you are sure that the data correlation rules that you wrote work correctly, use the None or

Summary log levels to reduce memory, disk-space consumption, and unnecessary entries in the error

log.

2. Expand the first element of the log, and navigate to the detail that you want to see. Use the icons in the upper-

right corner of the view to navigate through the log. For example, to navigate to the corresponding element in

the test editor, select a log entry, and then click Go to test element.

Test data sources overview
Use the Test Data Sources window to add or change data correlation for any supported test element.

The test generator attempts to perform automated data correlation. You can also manually correlate request values

with other test data. The Test Data Sources window displays the following types of test data that you can substitute

from:

• References

• Datasets

• Custom code

• Test variables

• Built-in datasources

You can right-click references, custom code, and built-in data sources to display a menu that contains commonly

used commands. In addition, you can use the toolbar and menu at the top of the Test Data Sources window to

Chapter 7. Test Author Guide

complete common operations, such as creating a dataset or switching from tree view to list view. The Substitute

From push button is enabled when you select a substitution site in the test editor and a data source from one of

the five categories in the Test Data Sources window. Click Substitute From to correlate the data source and the

substitution site.

References

The data sources that have been created in the test and the potential matches that are available for

a selected substitution site. For example, text that is found in a response and used in a subsequent

request is automatically created as a reference. Clear the Matching References Only check box to see

all the references that occur before the substitution site in the test. Select Include Potential Matches

to see a list of locations that might match the substitution site. Replace the type filter text string

with keywords to filter the list of references. Select a reference in the References table to display the

reference in the pane at the bottom of the window. Use the controls to the left of the preview pane to

switch between inline view and tree view.

Datasets

The datasets that have been added to the test. To add a new dataset, click the Add new Dataset icon

().

625

HCL OneTest Performance

626

Custom Code

The custom code that is available as data sources for this substitution site, if you have written Test

Execution Services (TES) custom code.

Test Variables

The test variables and their types that are available as data sources for this substitution site. Replace

the type filter text string with keywords to filter the list of test variables.

Built-in Datasources

The dynamically calculated data sources, such as Current Date, Random Number, Sequential

Numberand Timestamp, that are available as data sources for this substitution site. To create a built-

in data source, right-click inside the Built-in Datasources page, and select New, or click the New push

button at the top of the window.

To assign a unique value for every substitution, when creating the built-in data sources, select the Get

New Value Each Time Used check box.

Detaching the Test Data Sources window

The Test Data Sources window is detachable. To detach the Test Data Sources window, right-click the Test Data

Sources tab, and then select Detached. When detached, the Test Data Sources window is always displayed in front of

the other windows that make up the workbench.

Correlating a request value with test data
If a test runs without error but does not generate the results that you expect, you might need to correlate a value in a

request with other test data.

About this task

You can correlate a request value with the following types of test data:

• References

• Datasets

• Custom code

• Test variables

• Built-in datasources

For example, if you recorded a test and searched on a date, you might want to substitute the built-in data source

Current Date so that the test will search on the playback date, not on the recorded date. For information on the

different types of test data, see Test data sources overview on page 624.

1. In the Test Navigator, browse to the test, and double-click it. The test opens in the test editor.

2. Locate the value that the other test data will replace.

3. Highlight the value: Press and hold the left mouse button and drag your mouse over the value.

Chapter 7. Test Author Guide

4. In the Test Data Sources window, click the appropriate tab: References, Datasets, Custom Code, Test

Variables, or Built-in Datasources. To see all references, clear the Matching Only check box.

5. In the Test Data Sources window, select the test data to use. For references and custom code, you can

double-click the entry in the Test Data Sources window to find the data source in the test editor.

6. Click Substitute From.

Result

The value is shown in purple text to indicate that it has been correlated and the correlation is added to the

Test Data table, which contains the substitution sites for the page.

Substituting request content with file contents
You can substitute the content portion of a protocol request with the contents of a file. This feature is only supported

in certain sections of a test, depending on the protocol. For example, HTTP tests support file content substitution only

in the POST data section of a request. SOA tests support file content substitution for MIME and DIME attachments,

XML node values and fragments, and text content. File content substitution works in the same manner as other

substitutions. All standard test data sources such as test variables, datasets, and references can be used. The data

from the source is treated as a full path to a file. The file is opened, its contents are read, and then those contents are

used in the substitution.

Before you begin

You must copy the files that contain the substitution content to the agent computers. You must record a test with

locations for substitution from a file. For example, record an HTTP test that contains multipart MIME data in a POST

request.

1. Create a data source that contains the full path to the file from which you want to substitute content.

Specify an absolute path to the file. Use path separator characters appropriate to the operating system of the

agent computer running the test. Optionally, specify a character set to use in reading the file. The existence of

the file is not validated. If the file cannot be opened when the test runs, a message is written to the test log.

If you use path separator characters that are not appropriate for the operating system of the agent computer,

the substitution cannot be completed. For example, if you use a path of D:\DataFiles\file1 on an agent

computer running Linux™, the substitution cannot be completed, because Linux™ uses forward slashes as

path separator characters.

2. In the test editor, navigate to the request where you want to substitute content, and then select the request

data that you want to substitute.

3. Right-click, and then select Substitute > Select Data Source.

4. Select the data source that contains the path to the file from which you want to substitute.

5. Right-click the substitution site, and then select File Contents Substituter.

Results

When the test runs, the content in the protocol request is substituted with the specified file contents.

HTTP POST data is displayed in the test editor in chunks. You can create a file contents substitution in the POST

data of an HTTP POST request by selecting the data chunk that you want to correlate, and then clicking Substitute.

The test data source that you select is automatically treated as a file contents substituter. The entire data chunk

627

HCL OneTest Performance

628

is replaced with the contents of the file when the test runs, even if only a portion of the text in a text data chunk is

selected by the substituter.

Built-in Datasources
You can use built-in data sources instead of creating custom data sources to substitute the recorded values. The

Built-in Datasources in the Test Details section displays the data sources that have been used and unused. You can

also modify their properties from a location.

The built-in data sources are Current Date, Random Number, Sequential Number, and Timestamp. The values of these

data sources are dynamically calculated and submitted to the test.

Creating a Random Number datasource
You can create a random number datasource in HCL OneTest™ Performance to assign unique random numbers to

all the virtual users in a test. This datasource can generate unique integers or floating-point numbers for the virtual

users in the schedule. You can choose to distribute the numbers of the virtual users or clients in a uniform, normal, or

negative exponential way.

Before you begin

You must have created a test.

1. Open the test from the Test Navigator pane, and then select the name of the test in Test Contents.

2. Select Built-in Datasources from the Category drop-down list in Test Details.

3. Select Random Number, and then click Add Built-in datasource.

Result

The Built-in-Datasource Selection Wizard is displayed.

4. Enter a name for the datasource in the Name field.

5. Select one of the following options to apply the distribution method for the random numbers from the

Distribution section:

Choose from:

◦ Uniform: Click this option to generate the random numbers with a uniform distribution. You can

specify the minimum and maximum values for the generated numbers.

The default minimum and maximum values are 0 and 100.

◦ Normal: Click this option to generate the random numbers with a normal or Gaussian distribution. You

can specify the average and the standard deviation for the generated numbers.

The default average and standard deviation values are 1.0.

◦ Negative Exponential: Click this option to generate the random numbers with an exponential

distribution. You can specify the average for the generated numbers.

The default average value is 1.0.

Chapter 7. Test Author Guide

6. Select one of the following options to apply the format for the random numbers from the Formatting Options

section:

Choose from:

◦ Common: Select this option to format the random number in decimal, hexadecimal, octal, or scientific

notations.

The Common option has the following fields to apply the format for the random numbers:

Fields Description

Floating point
You can select this checkbox to generate the random number with a decimal

point.

Precision
You can enter a number in this field to show the smallest change in the random

number.

For example, if you entered 3 as the value in the Precision field, then the gener­

ated random number is in the following format:

42.000

Note: The Precision field is enabled only when you select the Floating

point checkbox.

Format as
You can choose an option from the Format as drop-down list to apply the select­

ed format for the random number.

When you select the Floating point checkbox, then the Format as field lists the

following options:

▪ Decimal

▪ Scientific Notation

▪ Scientific Notation Uppercase

When you clear the Floating point field, then the Format as field lists the follow­

ing options:

▪ Decimal

▪ Hexadecimal

▪ Hexadecimal Uppercase

▪ Octal

629

HCL OneTest Performance

630

Fields Description

Enable width con­

trol
You can select this checkbox to control the width of the generated random num­

ber.

Fixed width
You can enter a number in this field to have a specified number of digits in the

random number.

Note: The Fixed width field is enabled only when you select the Enable

width control checkbox.

Zero-padded
You can select this checkbox to fill the unused digits in the random number with

zero.

For example, if you selected the value as Hexadecimal for the Format as field,

entered 4 as a value in the Fixed width field, and selected the Zero-padded

checkbox, then the generated random number is displayed in the following for­

mat:

004c

Left-justified
You can select this checkbox to align the random number from the left side.

Note: The Zero-padded field is disabled when you select the Left-justi­

fied field.

For example, if you selected the value as Hexadecimal for the Format as field,

entered 4 as a value in the Fixed width field, and selected the Left-justified

checkbox, then the generated random number is displayed in the following for­

mat:

4c

◦ Custom: Select this option to specify the custom format for the random number.

The Custom option has the following field:

Format mask: You can enter a standard Java formatting syntax in this field to apply the format for the

random number.

Chapter 7. Test Author Guide

Note: You can preview the changes in the Formatted output field based on your selection of the fields.

7. Select the Get new value each time used checkbox to substitute the built-in datasource every time with a new

random number for the requests.

8. Click Finish.

Results

You have created the random number datasource for the test.

What to do next

You can assign random numbers to virtual users in the schedule by using an environmental variable. See Assigning

random numbers to virtual users on page 631.

Assigning random numbers to virtual users
When a recorded value in the test contains variable data, and you want to substitute that value with a random number

during the schedule run, you can assign random numbers by using a Random Number built-in datasource.

Before you begin

You must have performed the following tasks:

• Created a test and added a random number datasource to it. See Creating a Random Number datasource on

page 628.

• Created a schedule and added a User Group to it. See Adding a user group to VU Schedule on page 705.

• Added a location for the User Group.

About this task

The default configuration uses the same seed for the generation of random number to provide predictable results

from one schedule run to another. You can introduce variability from one schedule run to another by setting a new seed

for each schedule run by using the rptSeed System Property.

You can use the System Property called rptSeed to initialize the random number seed for each virtual user. The default

value of rptSeed is 1. You can override the default value by adding the System Property rptSeed to the General Property

called RPT_VMARGS in HCL OneTest™ Performance.

You can provide unique values for rptSeed for each schedule run only when you need variability in the random number

generation. Otherwise, you can use the default value.

1. Expand the Location directory from the Test Navigator pane.

2. Double-click the location from the list.

3. Click the General Properties tab.

631

HCL OneTest Performance

632

4. Click Add.

5. Enter RPT_VMARGS in the Property Name field.

6. Assign a value to rptSeed that you want to use in your schedule run in the Property Value field.

For example, RPT_VMARGS=-DrptSeed=123

The value 123 results in different random numbers for a given virtual user in the schedule as compared to

results when using the default value of 1. If you want different random numbers to be generated for your

subsequent schedule runs, you must change the value of rptSeed before you start the next schedule run.

7. Click OK.

Results

You have assigned the desired value to the random number generator seeds.

What to do next

You can run the schedule and verify in the test log that you are getting the random number variability as desired.

Creating a Sequential Number datasource
You can create a sequential number datasource in HCL OneTest™ Performance to assign unique sequential numbers

to all the virtual users in a test. This datasource can generate unique integers or floating point numbers for the users.

Before you begin

You can use the sequential built-in datasource option wherever data correlation substitutions are permitted, such as

Transactions or Delays.

About this task

You define an initial value that should be assigned to the first virtual user and a step value that is a number by which

the current value increments after each retrieval by a virtual user. If initial value is 1 and step value is 5, the workbench

generates numbers in the sequence of 1, 5, 10, 15, and so on and each number is mapped to a virtual user. If a test is

run on multiple agent machines, the workbench assigns a sequential value to all the users in all the agent machines.

You can also assign a full sequence of numbers of one virtual user. The sequence number increments in the request

for each time the request in the multi-request generator is executed.

1. In the Test Contents area of the test, click an element in the test where data correlation substitution is

permitted, such as a transaction name or delays.

2. In the Test Element Details area, right-click the name of the element and click Substitue > Built-in

Datasources.

3. In Built-in Datasource Selection Wizard, click Sequential Number and click Next.

4. Assign a name for the datasource.

5. In Initial Value, type a number to be assigned to the first virtual user.

6. In Step Value, type a number.

7. In Formatting Options, you can format the number in the manner you want to use.

Chapter 7. Test Author Guide

8. Optional: To assign a full sequence of numbers to one virtual user, select the Execute for individual user

check box.

9. Optional: To substitute the built-in datasource every time with a new value for the requests, select the Get

new value each time used check box.

10. Click Finish.

11. Save and run the test.

Results

After you add the test to a schedule and run the schedule, the test log displays each element name where the

datasource is applied with the unique sequential number assigned to the virtual user.

Reference or Field Reference overview
A Reference, which is in response data, points to a specific value that you want to use in a subsequent test location,

generally a request. Whereas a Field Reference points to an entire block of test data.

You can substitute a request value with a Reference. This method of substitution is called data correlation. You can

also use the Reference as an input to an IF-THEN condition in a test or as an input to custom Java™ code that your

test calls.

The entire HTTP response can be designated as a Field Reference. You can then use the Field Reference as an input

to custom Java™ code that your test calls.

For Reference, the value is highlighted in light blue to indicate that it is an unused Reference. When you use the

Reference, then the highlighted value changes to dark blue. A name is given to the Reference as soon as you create it.

You can right-click the Reference value and select Properties to view the name of the Reference.

For Field Reference, the entire field is highlighted in yellow to indicate that it is a Field Reference. A name is not

given to the Field Reference. You can right-click the Field Reference value and select Properties to name the Field

Reference.

To learn more about creating and selecting a Reference or a Field Reference for the response, refer to the following

topics.

Creating a Reference or a Field Reference
You can create a Reference or a Field Reference to designate a test value or to designate a set of test data. You can

then use that data at different places in the test.

Before you begin

You must have recorded a test.

1. Identify a test from Test Navigator and double-click it.

2. Locate the value or set of data to designate the test value as a Reference or Field Reference.

633

HCL OneTest Performance

634

Different protocols support different references. For HTTP tests, you can create Reference and Field

Reference for the following fields:

◦ The response header value in the Value column of a Response Headers table

◦ The response content in the Content field

For HTTP responses, you can create a Field Reference for the following fields:

◦ The Status field

◦ The Reason field

If an HTTP response is JSON, you can create a Reference of that JSON value and use the JSON expression.

3. Perform one of the following steps based on your requirement:

a. Highlight a value, if you are creating a Reference for the response content.

b. Select a row in the Response Headers table, and then click Modify. You must then highlight a value if

you are creating a Reference for the response header.

c. Do not highlight a value if you want to create a Field Reference.

4. Right-click, and then click Create Reference or Create Field Reference.

Result

The Reference dialog is displayed.

5. Click Apply and Close to apply the default values for the properties of the Reference or Field Reference.

Results

You have created the Reference or Field Reference.

What to do next

You can select the Reference value for the response. See Selecting a Reference in a response on page 634.

Selecting a Reference in a response
When a response contains multiple matches for the regular expression that defines a Reference, you can select the

match to be used subsequently as the data source. You can specify a particular occurrence, or you can specify a

random occurrence.

About this task

An application under test might return responses that contain multiple matches for a regular expression that defines

a Reference. For example, a response might contain multiple links to rows of data, where each row represents a

different user. You can control the occurrence of the regular expression that is used as the data source in subsequent

data correlation.

When you edit the Regular Expression that is associated with a Reference, you can click Verify to validate the regular

expression. The new regular expression still connects to the highlighted string in the preview window and also the

Specific occurrence number is updated automatically, overwriting any changes.

Chapter 7. Test Author Guide

1. Browse to the test from Test Navigator and double-click it.

2. Locate the response that contains the Reference that you want to specify.

3. Right-click the Reference value in the Content field under the Test Element Details area, and then select

Properties.

Result

The Reference dialog is displayed.

4. Perform the following actions to edit the properties of the Reference value.

Options Actions

Enabled
Clear the checkbox to disable the Reference that you created within the test.

Name
Enter a name of your choice to edit the default name of the Reference.

Click Check to verify that the name that you entered is unique throughout the test.

Always log details
Select the checkbox to always log the details about the Reference.

Note: When you selected the Always log details checkbox, the details are

logged irrespective of the log level set for a schedule. You must use this op­

tion only for debugging purposes.

Regular Expression
Enter the regular expression or JSON expression to edit the default expression that

was used to locate the Reference. You must click Verify to ensure that your edit is

valid.

If an HTTP response is JSON, then the Regular Expression field displays the JSON ex­

pression instead of the regular expression.

Based on the JSON Path expression that you entered in the Regular Expression field,

you can extract the Reference value. You can also use Jayway JsonPath Evaluator to

examine your JSON path expressions.

Consider you have a JSON data as follows:

{
"employees":[
{
"details":{
"id":"1234",
"firstName":"pt",
"lastName:":"test1",
"email":"pttest1@test.org"
}
},
{

635

HCL OneTest Performance

636

Options Actions

"details":{
"id":"1234",
"firstName":"pt1",
"lastName:":"test2",
"email":"pt1@test.org"
}
},
{
"details":{
"id":"1234",
"firstName":"pt",
"lastName:":"test3",
"email":"pt1@test.org"
}
},
{
"details":{
"id":"1234",
"firstName":"pt1",
"lastName:":"test4",
"email":"pt1@test.org"
}
},
{
"details":{
"id":"1234",
"firstName":"pt1",
"lastName:":"test4",
"email":"pt1@test.org"
}
}
]
}

Then you can enter the JSON expression in the Regular Expression field to extract the

last name of the employee whose email id is pttest1@test.org as follows:

regex: $.employees[?(@.details.email=='pttest1@test.org')].de­

tails.lastName:

You can click the Toggle regular expression assistant icon to display the re­

sponse content matched by the regular expression and the groups captured by the

regular expression.

Occurrence
Use the Occurrence option to run the regular or JSON expression specified number of

times. The first occurrence of a match for the Regular Expression is used as the de­

fault data source. The default selection for Occurrence is a Specific occurrence num­

ber.

The Occurrence option has the following choices:

Chapter 7. Test Author Guide

Options Actions

◦ Specific occurrence number: Select this option to use a value specified and to

run the regular or JSON expression “x” number of times. For example, enter 4

to specify the fourth match of the regular expression in the response.

◦ Random occurrence: Select this option if you know how many times you want

to run the regular or JSON expression, and then use one of the random values.

You can use the From and To fields to match it for a range of random values.

◦ Last occurrence: Select this option to use the last value that you can extract

by running the specified regular or JSON expression.

◦ All occurrences: Select this option to match the regular or JSON expression

with all the occurrences of the selected Reference. You can use the From and

To fields to match it for a range of consecutive occurrences.

The occurrence that you specified is used as the data source for data correlation

when you run the test.

5. Click Apply and Close to apply the changes made to the properties of the Reference value.

Results

You have selected the Reference value in the response.

What to do next

You can run the test and analyze test results.

Viewing references
You can use the Test References window to view, modify, or verify references in a test.

1. In the Test Navigator, browse to the test, and double-click the test name. The test opens.

2. Optional: To view references in only part of a test, select test elements in Test Contents before continuing.

3. In the Test Contents area, click Options.

4. Select Display References.

Result

The Test References window opens. All references in the test or the selected test elements are displayed in

tabular format.

5. Do one of these tasks:

Option Description

To view details about the references in a test Navigate through the References table to preview the

references in the Preview area. Click the Next and

Previous icons to move the selection down or up in

637

HCL OneTest Performance

638

Option Description

the list of references. Click the Show as Tree icon to

toggle between tree format and list format. Click the

Show Usage icon to view the substitution sites that

are associated with each reference. Click the Book­

mark icon to bookmark a location for later review.

To verify regular expressions that

are associated with references

Select the check box next to each reference to verify,

and then click Verify Checked. The verification proce­

dure completes this procedure:

a. Checks that the regular expression finds the

correct content. Regular expressions can stop

working if you modify a test.

b. Checks that there are no references with du­

plicate names. Troubleshooting data corre­

lation problems is easier if references have

unique names.

c. Checks that there are no overlapping correla­

tions.

To find more locations in the test that have

the same value as the selected reference

Select a reference, and then click Find and Substi­

tute. These locations can be reviewed and substitut­

ed interactively as needed.

To modify a reference Select a reference, and then click Properties.

To use the regular expression assistant to edit

the regular expression used to locate a reference

a. Select a reference, and then click Properties.

b. Click the Toggle regular expression assistant

push button on the Properties window. The

regular expression assistant opens. The re­

sponse data that is matched by the current

reference is automatically copied into the

Test regular expression window.

c. Click the Captured group tab in the regular ex­

pression assistant. The regular expression as­

sistant displays the response content that is

matched by the regular expression and the

groups that are captured by the regular ex­

pression. If no groups are displayed, edit the

regular expression accordingly.

To remove a reference Select a reference, and then click the Clear Reference

icon. The reference is removed from the test when

you close the Test References window.

Chapter 7. Test Author Guide

6. Click Close to close the Test References window and return to the test in the test editor.

When you close or save a test, you are prompted if any changes that you made to the test might affect the

integrity of references in the test.

Correlating multiple fields in a test
Some tests are structured in such a way that you must correlate data for multiple fields.For example, assume that

you plan to dataset an item that a virtual user is buying. For the test flow to be correct, you must also dataset all

occurrences of that item in the test. You can find and correlate all instances of that item in one procedure. Typically,

you use Find More and Substitute in the Show Dataset Candidates window to correlate data for multiple fields. See

Viewing dataset candidates when you open a test on page 593. Alternatively, you can use the Test Search page to

correlate data for multiple fields.

To find all instances of a field in a test and correlate some or all of the instances with a data source, such as a

dataset:

1. In the Test Navigator, browse to the test, and double-click the test. The test opens.

2. Locate the item or the substitution site to change or create a reference for. If the item is plain text, select the

item. If the item is an existing reference, click the highlighted area.

3. Right-click, and then click Find > More Substitution Sites.

4. Click OK.

5. On the Test Search page, select Case sensitive to perform a case-sensitive search or Regular expression to

perform a search using regular expressions. In regular expression mode, press Ctrl+spacebar key in Search

for text for content assistance. Content assistance lists the regular expression patterns and the content that

they match.

6. Click More Options, and then select the appropriate options:

Restrict to elements highlighted in Test Contents

Search only in elements that are selected in the Test Contents area.

Highlight found elements in Test Contents

Highlight found elements in the Test Contents area.

Recursive

Searches the child test elements in addition to the element. For example, if you search an HTTP

page, select this option to search the requests and responses within the page.

Match encoded and decoded values (protocol-specific)

When selected, searches for matches of the unencoded and URL-encoded versions of the

specified text. For example, when searching in HTTP data, abc%123 and abc%25123 match.

Include matches with overlapping data correlation

Include sites that are contained in, or overlap with, an existing substitution site. If you decide to

substitute, the conflicting substitutions are automatically removed.

639

HCL OneTest Performance

640

Include matching substituters

Click to return elements that originally matched the search string but have since been

substituted. Clear to skip existing substitution sites when results are returned.

7. Click Close.

8. Click Search. The search results are displayed in the Search view.

9. In the Search view, select the matches to substitute, and then right-click the selection.

10. Optional: To select all matches, right-click the test name.

11. Click Substitute in DataSource View.

Result

This action sends the selected matches to the Test Data Sources window.

12. In the Test Data Sources window, click the tab that corresponds to the type of data source to use:

Option Description

References The data sources that have already been created in

the test and the possible matches that are available

as data sources for the selected substitution site. For

example, text that is found in a response and used in

a subsequent request is automatically created as a

reference. Clear the Matching References Only check

box to see all the references that occur before the

substitution site in the test.

Datasets The datasets that have been added to the test. To

add a new dataset, click the Add new Dataset icon

().

Custom Code If you have written test execution services (TES) cus­

tom code, the custom code that is available as data

sources for this substitution site.

Test Variables The test variables and their types that are available

as data sources for this substitution site.

Built-in Datasources The dynamically calculated data sources (Current

Date, Random Number, Sequential Number, and

Timestamp) that are available for this substitution

site. To create a new built-in data source, right-click

inside the Built-in Datasources page, and select New.

13. Select the data source, and click Substitute From.

Result

The Substitute Multiple Items window is displayed, showing information about the data source and

substitutions sites that you selected.

Chapter 7. Test Author Guide

14. For each site with a selected check box, click Substitute Checked to substitute the data source or clear the

check box to skip the site.

Click Always Prompt to examine every substitution site one at a time. Click Prompt on overlapping data

correlations to examine a site only if the site you are substituting into is contained in, or overlaps with, an

another substitution site. If you decide to substitute, the conflicting substitutions are automatically removed.

Results

The selected instances of the field are correlated with the data from the data source.

Guidelines for adjusting data correlation
When you run a test, you might notice that the server is not under the expected load or that your database is not being

updated as expected. Incomplete or incorrect data correlation can cause these problems.

To identify data correlation problems:

1. Use the Potential Correlation Errors view to find missing or incorrect data correlations. See Finding data

correlation errors on page 643 for more information.

2. Run a test individually or in a schedule with the Log Level for errors, failures, and warnings set to All.

3. After the run, open the test log as explained in Viewing the test logs on page 1001.

The data correlation algorithms that are used during test generation are based on well known best practices.

However, because these practices continually evolve, various types of errors can occur during automated data

correlation:

• Insufficient correlation: Test values that must be correlated are not. Some possible causes follow:

◦ Two parameters that must be correlated have different names.

◦ A value must be correlated with a previous value that does not occur in the expected location.

◦ A parameter or value must be correlated with a previous parameter or value that does not occur in the

test because it is a computed value.

• Superfluous correlation: Unrelated test values are correlated.

• Incorrect correlation: Test values that must be correlated are correlated incorrectly.

Insufficient correlation: Parameters have different names or occur in unexpected locations

When two parameters that must be correlated have different names, automated data correlation does not recognize

that the two parameters are related. For example, consider this request: http://www.example.com?id=12345. Suppose

that this request must be correlated with the server response that contains customer_ID=12345, not ID=12345. In this

case, the ID parameter must be correlated with customer_ID.

Data correlation typically links a response value that was returned from the server with a subsequent request value.

The automated correlation algorithms search in the URL and the POST data for potential matches; however, other

schemes for returning parameters are possible. For example, consider this request: http://www.example.com?

id=12345. Suppose that this request must be correlated with the server response that contains the name and entity

641

HCL OneTest Performance

642

pair href name="customer_ID" entity="12345", not ID=12345. In this case, the ID parameter must be correlated with

name="customer_ID" and value 12345 must be correlated with entity="12345".

Here are some additional causes of insufficient correlation:

• Siebel uses the star array format. Standard correlation algorithms can neither retrieve from this format nor

substitute into this format.

• SOAP designates correlation parameters in external XML files. The correlation algorithms cannot correlate

parameters in the external file with parameters in the test.

To manually correlate data in these cases:

1. In the test editor, use search or browse to locate the two parameters for correlation.

2. Navigate to the parameter that occurs later in the test, and select the parameter. This is the substitution site.

3. In the Test Data Sources window, click the References tab.

4. Select the data source to use as a reference, and then click Substitute From.

Insufficient correlation: One parameter is unnamed

Sometimes a parameter or value must be correlated with a previous parameter or value that is not named in the test,

because it is computed, for example, by a JavaScript™ program. In this case, in order to correctly correlate the data,

you must understand how and where the parameter or value is computed, and then use a custom code block. See

Extending test execution with custom code on page 847 for more information about custom code.

For example, consider the web address http://www.example.com?login_stamp=12345_Apr_11_07, where the value

for login_timestamp is the concatenation of the login ID and the current date. In this case, you must generate a custom

code that concatenates the login ID and the date.

For another example, suppose that the server returned the login ID and date as separate entities: href

"customer_id=12345" Date="Apr_11_07". In this case, you can put these parameters in separate references and, in

subsequent requests that use customer ID and date, substitute them separately.

Superfluous correlation

Automated data correlation is based on pattern matching: A parameter or parameter value is correlated with a

subsequent parameter or parameter value with an exact or similar name. But sometimes parameters with exact or

similar names are in fact unrelated. In the best case, unneeded correlation is either harmless or adds a slight load

that is inappropriate. In the worst case, the application does not expect a correlation and fails during playback.

To remove a superfluous data correlation:

1. In the test editor, search or browse to locate the substitution site that must not be correlated. By default,

purple letters indicate correlated data.

2. Right-click the substitution site.

3. Click Remove Substitution.

Chapter 7. Test Author Guide

Incorrect correlation

A parameter that requires data correlation might occur many times throughout a test. For example, a session ID

parameter that is used initially when a user logs in might also be used in every subsequent request. If multiple

instances of a parameter in a test are not same, the correlation algorithms might use the wrong instance.

With the HTTP Test Generation preferences, you can optimize automatic data correlation for accuracy or for

efficiency.

• Accuracy: Each occurrence of a parameter is correlated with the nearest previous occurrence. This is the

default setting.

• Efficiency: Each occurrence of a parameter is correlated with a single previous occurrence.

Note: If you do not manually apply a correlation in the Referer field in an HTTP request header, then the

Referer field is automatically correlated as needed. If you manually apply a correlation in the Referer field in an

HTTP request header, then no automatic correlation is performed.

Incorrect correlations are more likely to happen when Optimize automatic data correlation for execution is set to

Efficiency. To fix an incorrect correlation:

1. In the test editor, search or browse to locate the value that is incorrectly correlated.

2. Right-click the substitution site.

3. Click Remove Substitution.

4. Right-click the substitution site again.

5. Click Substitute, and select the correct parameter.

Generally, the HTML response content after the recording would look like <input type="username" name="User"

id="aaa" value="John"/>. Some applications dynamically update the name attribute. So, when you play back the test

the HTML response content would look like <input type="username" name="idt020" id="aaa" value="John"/>. Because

the name attribute is changing dynamically, data correlation would not occur and the playback would fail.

Such correlations are the result of the tool using the name attribute as the basis for correlating other attributes in the

response code instead of the ID. To correlate the responses based on ID, select ON in Window > Preferences > Test >

Test Generation > HTTP Test Generation > Data correlation types > Prioritize correlation based on ID.

Finding data correlation errors
You can use the Potential Correlation Errors view to find missing or incorrect data correlations.

Before you begin

Run a test or a single-user schedule. The Potential Correlation Errors view does not support multiple-user schedules.

If verification points fail while you are running a test, you are prompted to open the Potential Correlation Errors view

when the test run is complete.

To find data correlation errors:

643

HCL OneTest Performance

644

1. In the Test Navigator, select the result of the test run where you want to find correlation errors.

2. Right-click the result, and then select Find Data Correlation Errors. You can choose Missing Correlation,

Incorrect Correlation, or All.

3. The Potential Correlation Errors view opens.

After the test log is processed, the view is populated. Depending on the size of the test log, it can take

significant time to populate the view. The potential missing or incorrect data correlations are displayed,

in descending order of the likelihood that the correlation is incorrect. Selecting an item in the Potential

Correlation Errors view automatically selects the corresponding element in the test editor, so that you can fix

the potential error.

4. Use the Compare with Test Log toolbar button in the upper-right corner of the view to compare the request or

response in the test with the same object in the test log.

5. For missing correlations, use the Suggest Fix toolbar button in the upper-right corner of the view to search for

other instances of the value in all responses in the test. If a matching value occurs in an earlier response in

the test, create a reference in that response.

Disabling data correlation
You can disable a data correlation source or a substitution site. When you disable a data source, none of the

substitution sites that use the source will be correlated when you run tests. When you disable a substitution site, only

that specific substitution site is disabled. Other substitution sites that use the same reference will be correlated when

you run tests. You can also disable data correlation entirely for subsequent tests that you record.

To disable a data correlation source or substitution site:

1. In the Test Navigator, browse to the test and double-click it. The test displays in the test editor.

2. In the Test Contents area, click a request.

3. In the Test Element Details area, locate the data correlation source or substitution site.

4. Right-click the data value and select Disable from the menu.

To re-enable a disabled data source or substitution site, right-click the data value and select Enable from the

menu.

Results

The data correlation source or substitution site is disabled.

Note: To disable data correlation for the entire workspace, click Window > Preferences > Test Generation,

and clear Enable automatic data correlation. Subsequent tests that you record or regenerate will not include

data correlation.

Recorrelating test data
If you disabled automatic data correlation before recording a test, you can regenerate the test with automatic data

correlation enabled.

Chapter 7. Test Author Guide

1. Click Window > Preferences > Test > Test Generation.

Result

The Test Generation preferences window opens.

2. Click the Data Correlation tab.

3. Select the types of data correlation to enable, and then click OK.

4. In the Test Navigator, browse to the test and double-click it. The test displays in the test editor.

5. Click Edit > Re-correlate test data.

Results

The test is regenerated with the types of automatic data correlation that you selected.

Data transformation
You can transform HTTP application specific data such as JSON data, binary data and encoded data to a more

readable format to use data correlation.

Viewing binary data
You can view binary data in tests. Use the binary editor to inspect test data, to determine if the binary data is of

interest or should be transformed so that it can be correlated. You can also edit binary data in tests. To edit binary

data you need to have in-depth knowledge of the data format in question. Typically, you do not edit binary data in

tests.

Before you begin

Record a test that contains binary data.

1. In the Test Navigator, browse to the test, and double-click it.

Result

The test opens.

2. Select a test element that contains binary data.

3. In the Test Element Details area, press the Ctrl key and click in the Content field. Alternately, type Ctrl+Shift

+Space.

Result

The Test Editor - Content window opens.

4. Select the bytes to inspect, and then right-click to manipulate the selected data.

Option Description

Select Use this page to programmatically select binary data

by string or by specifying the number of characters to

select.

Click Null terminated string from caret to make a se­

lection that starts at the current cursor position and

ends at the next null character. If you select Select

645

HCL OneTest Performance

646

Option Description

NULL character also, the null character is included in

the selection.

Click characters from caret, and type a number to se­

lect that number of characters starting from the cur­

rent cursor position.

Click Selection contains number of characters to se­

lect to select the number of characters specified by

the current selection in the binary editor. For exam­

ple, if you have 08 selected in the binary editor, this

will select the next eight characters after the 08 byte.

This control is not available if no data is selected in

the binary editor.

Click Sign to choose signed or unsigned data.

Click Endianness to choose between big endian or

little endian representation.

Edit Integer value Use this page to edit data that you have selected in

the binary editor. This page is available only when the

binary editor is not in read-only mode.

Select Update contents from editor selection to up­

date the Value field when you change the selection in

the Test Editor window. Clear this check box to pre­

vent the Value field from being updated when you

change the selection in the Test Editor window.

Type the new data in the Value field. Select the ap­

propriate base, such as decimal or hexadecimal,

from the list.

Click negate to negate the value of the selected data.

Click Size to choose the size, in bytes, of the selected

data.

Click Sign to choose signed or unsigned data.

Click Endianness to choose between big endian or

little endian representation.

Chapter 7. Test Author Guide

Option Description

The Preview area shows how the bytes will change in

the binary editor after you click Apply or OK.

Show Integer value Use this page to show the integer value of selected

binary data in different formats. This page is avail­

able only when the binary editor is in read-only mode.

Select the appropriate base, such as decimal or

hexadecimal, from the list. The input field is not avail­

able.

Click Size to choose the size, in bytes, of the selected

data.

Click Sign to choose signed or unsigned data.

Click Endianness to choose between big endian or

little endian representation.

Binary Padding Use this page to insert and overwrite binary data.

Type the data to insert in the Pad with field. Select

the appropriate format, such as bytes or ASCII, from

the list.

Click Pad selection only to replace the bytes that you

have selected in the binary editor. This control is not

available if you have not selected any bytes in the bi­

nary editor.

Click Number of occurrences, and then type the num­

ber of times to repeat the binary padding.

Go to Offset Use this page to move the cursor to a different posi­

tion in the binary data.

Type the offset in the Enter offset field.

Select Make selection with previous and new offset

so that the bytes between the current cursor position

and new cursor position are selected when you click

OK.

Click Absolute or Relative to choose an absolute off­

set or relative offset. An absolute offset starts with

647

HCL OneTest Performance

648

Option Description

the first byte of data. A relative offset is measured

from the current cursor position.

Click Forward or Backward to choose the direction

for relative offsets. This control is not available for

absolute offsets.

Find/Replace Use this page to search for binary data and to replace

binary data, if necessary. This page is available only

when the binary editor is not in read-only mode.

Type the data to search for in the Find field. Select

the appropriate format, such as bytes or ASCII, from

the list.

Type the replacement data in the Replace field.

Select the appropriate format, such as bytes or

ASCII, from the list.

Click Forward or Backward to choose the direction to

search from the cursor position.

Click All or Selection to choose between searching

all of the binary data or searching only the data se­

lected in the binary editor.

Find Use this page to search for binary data. This page is

available only when the binary editor is in read-only

mode.

Type the data to search for in the Find field. Select

the appropriate format, such as bytes or ASCII, from

the list.

Click Forward or Backward to choose the direction to

search from the cursor position.

Click All or Selection to choose between searching

all of the binary data or searching only the data se­

lected in the binary editor.

Encodings Select from the list the encoding to use for displaying

binary data.

Chapter 7. Test Author Guide

Option Description

Read-only Click Read-only to toggle between read-only and

writable states. If the binary data contains a da­

ta-correlation reference, it is read-only and cannot be

changed to writable.

Paste
This page is displayed only if you attempt to paste

data from the clipboard into the editor and the da­

ta on the clipboard includes characters that are not

valid in the current encoding scheme. For example,

this page is displayed if you attempt to paste accent­

ed characters when the encoding is set to ASCII.

Click Paste only the valid character to paste only

the characters that are valid in the current encoding

scheme. All characters that are invalid in the current

encoding scheme will be discarded.

Click Replace invalid character by 00 byte to paste

the string from the clipboard, replacing all characters

that are invalid in the current encoding scheme with a

null character.

Transforming binary data in tests
You can transform binary data in tests to view the data in a more readable format and to assist with data correlation.

Binary data in a test might contain values that must be correlated for the test to play back properly.

Before you begin

Record a test that contains binary data.

To transform all the binary data in a test:

1. Open a test for editing.

2. Click Edit > Re-correlate test and transform data.

3. In the Data Correlation and Transformation window, select the Apply data transformation check box.

4. From the list, select a transformation to perform:

◦ To convert the binary data to the equivalent ASCII representation, select the Convert To Ascii Text

check box. Characters that are not part of the readable ASCII character set are shown as escaped

hexadecimal values.

◦ To convert the binary serialized representation of a Java™ object into XML format, select the Convert

Java Serialized Object to XML check box. You can also use this transformation to examine and

perform data correlation on tests against applications that use serialized Java™ objects.

649

HCL OneTest Performance

650

◦ To transform Adobe Flex objects into XML format, select the Convert AMF to XML check box.

◦ To transform the Windows Communication Foundation binary code into XML, select the Convert

Microsoft WCF-Binary to XML check box.

Result

All binary data in the test is transformed by using the transformation that you specified.

5. To apply built-in data correlation rules, select the Apply corresponding data correlation rules if transformation

succeeds check box, and then click Finish.

Note: To remove data transformation from the test, clear the check boxes in the list of available

transformers and generate the test.

Transforming binary data in specific requests
You can transform binary data in requests to view the data in a more readable format.

Before you begin

Record a test that contains binary data.

1. Open a test for editing.

2. In the Test Contents area, select the request that contains binary data to transform.

3. Scroll to the bottom of the Test Element Details area, and then click the Advanced tab.

4. In the Data Transformation area, click Change.

The current data transformation is displayed in the Applied Transform field in the Data Transformation area.

Result

The Select Transformation Adapter window opens.

5. Select the data transformation to perform. To remove data transformation from the request, select [none].

If the application under test uses serialized Java™ objects, do not transform individual requests. Instead,

configure the product to automatically apply the Convert Java Serialized Object to XML transformation to all

binary data.

Result

The binary data in the request is transformed using the specified transformation adapter.

Transforming binary data automatically
You can configure the product to automatically transform binary data in tests into more readable formats.

Automatically transforming all binary data in a test can increase the time it takes to generate a test. The alternative to

automatically transforming all binary data in a test is to transform data in a specific request.

1. Click Window > Preferences.

Result

The Preferences window opens.

2. Click Test > Test Generation.

3. Click Enable data transformation.

Chapter 7. Test Author Guide

4. From the list of available transformers, select the transformations to apply to the binary data.

Result

If you choose the Convert To Ascii Text transformation on a test that contains readable data in a format other

than ASCII, that data becomes unreadable. For example, text in languages that use a double-byte character

set becomes unreadable.

5. Select Apply corresponding data correlation rules if transformation succeeds to apply built-in rules for Flex

applications if the Convert AMF to XML transformation is successful.

6. Click OK.

Viewing JSON data
You can view the JSON data in a JSON format from the test editor, and you can use this data for data correlation.

Before you begin

You must have completed the following tasks:

• Recorded an HTTP test that contains JSON data.

• Selected the JSON value as ON from the product preferences (Windows > Preferences > Test > Test

Generation > HTTP Test Generation > Data Correlation Types).

About this task

When HTTP tests contain JSON data in a POST request or response, you can view the JSON data in the HCL

OneTest™ Performance test editor. You can inspect the JSON data to determine if the data can be transformed to a

more readable JSON format so that you can use this data for easier data correlation.

1. Open the HTTP test from the Test Navigator.

2. Expand the test in the Test Contents area.

3. Select a POST request or a response element that contains JSON data.

Results

You have viewed the JSON data in the Content section.

What to do next

You can inspect the JSON data for easier data correlation. You can also create a reference in the JSON data to use

the JSON notation instead of regular expressions to locate the JSON value at run time. See Creating a Reference or a

Field Reference on page 633.

Viewing or transforming GWT encoded data
When you record an application that is developed on Google Web Toolkit(GWT), the recorded data is encoded. To

view the encoded data, open the test editor. You can also transform the encoded data into XML format, which you can

use for data correlation.

651

HCL OneTest Performance

652

Before you begin

• Record an application that is based on GWT. For supported GWT versions, see System Requirements on

page 18.

• You must have access to the classes that contain the exchanged objects.

• You must add the JAR file that contains the classes that are serialized and exchanged between client and

server to your project. To add the JAR file, in the Test Navigator view, right-click the project, click Properties,

and, on the Library tab add the JAR file.

1. To view the encoded data, in the Test Navigator, browse to the test, and double-click it.

2. Select a test element or request that contains the encoded data.

Result

The Content field in the Test Element Details area contains the encoded data.

3. To transform the encoded data, click Edit > Re-correlate test and transform data.

4. Confirm that the Apply data transformation check box is selected and select Convert GWT RPC to XML.

5. Optional: To use data correlation after the transformation is successful, select the Apply corresponding data

correlation rules check box.

6. Click Finish.

Result

The encoded data transforms into XML format.

Transforming GraniteDS or BlazeDS data
To test an application that is developed on Granite Data Services (GraniteDS) or Adobe BlazeDS framework, you must

deserialize or transform the objects that are encoded in the AMF format to the XML format.

Before you begin

• HCL OneTest™ Performance supports GraniteDS 2.3.2.

• For GraniteDS transformation, you must add the lt-granite.jar and granite.jar to the class path,

along with any other JAR files that are required for the deserialization process.

• For BlazeDS, you must add the JAR files that are required for the deserialization process to the class path. To

add lt-granite.jar or any other JAR files to the class path perform the steps as follows:

1. Right-click the project in the Test Navigator view, and then click Properties.

2. Click the Libraries tab, and then click Add External JARs.

3. Browse to PathToTheProduct\HCLIMShared\plugins

\com.ibm.rational.test.lt.datatransform.adapters_VersionNumber to select lt-

granite.jar or to any other folder to select other JAR files.

• You must set the JAR files and ensure that you have the following order by clicking the Order and Export tab:

1. JRE.

2. Plug-in Dependencies.

3. lt-granite.jar.

4. Any Application JAR files.

Chapter 7. Test Author Guide

5. BlazeDS JAR files if you use BlazeDS. For instance, flex-messagin-common.jar and flex-

messaging-core.jar.

6. granite.jar.

To transform the GraniteDS or BlazeDS data:

1. Record the test.

2. On the toolbar, click the Re-correlate test and transform data icon.

3. Click the Convert Granite Data Service (AMF) to XML check box and click Finish.

Result

The AMF data is transformed to XML.

What to do next

You can now correlate the data.

Transforming SAP Web DynPro XML to ASCII
To test applications that are built using the SAP Web DynPro framework and correlate data, you must transform data

to the ASCII format.

About this task

By default, when you generate a test that contains Web DynPro XML, HCL OneTest™ Performance transforms data

to the ASCII format. If the data is not transformed automatically, you must manually select the transform option and

rerun the test.

To manually select the transform option:

1. In HCL OneTest™ Performance, click Window > Preferences > Test > Test Generation.

2. Select the Convert SAP Web DynPro XML Encoding to Ascii check box.

3. Click OK.

Creating custom data transformations
You can create your own data transformations to transform binary data in tests. Data transformations can convert

binary data to a more readable format and can assist with data correlation.

Before you begin

To create a data transformation, you must be familiar with developing Java™ methods in Eclipse.

To create a data transformation:

1. Click File > Switch Workspace > Other, and then type a workspace name to create a new workspace.

Result

The product restarts in the new workspace.

2. Extract the MyTransformProject.zip archive file.

653

HCL OneTest Performance

654

The MyTransformProject.zip archive file contains the MyNewDataTransformFeature and

MyTransformProject projects . By default, this file is installed in the C:\Program Files\HCL

\HCLIMShared\plugins\com.ibm.rational.test.lt.sampleversion_date\installdirectory.

3. Import the MyNewDataTransformFeature and MyTransformProject projects into the new workspace.

See Importing existing projects for more information about importing projects.

4. Click Window > Open Perspective > Resource to open the Resource perspective.

5. Open the MyTransformer.java file for editing.

6. Implement the transformData and unTransformData methods to create your data transformations.

7. Optional: If you need other .jar files to implement your transformations, add the .jar files to a user library.

a. Right-click the MyTransformProject project in the Resources view, and then click Build Path >

Configure Build Path.

b. Click the Libraries tab.

c. Click Add Library.

Result

The Add Library window opens.

d. Select User Library, and then click Next.

e. Click User Libraries.

f. Click New, and then type a library name.

g. Click Add JARs, and the select the .jar files to add.

Result

The code in the .jar files is now available to the MyTransformProject project.

8. Start another copy of the workbench to debug your transformations.

To learn more about debugging, see Local Debugging in the Eclipse documentation.

a. Click Run > Debug Configurations.

b. Select Eclipse Application.

c. Click the New launch configuration icon.

d. Edit the new configuration, and then click Debug.

9. In the copy of the workbench started for debugging, record a test, and then open the test for editing.

10. Click Edit > Data Transformation.

Result

The Select Transformation Adapter window opens. The MyTransformer transformation is listed along with

the default transformations supplied with the product.

11. Select the MyTransformer transformation, and then click OK.

Data correlation is removed when you apply a transformation. To correlate the test data again, click Edit > Re-

correlate test data.

12. Right-click MyNewDataTransformFeature, and then click Export.

13. Select Plug-in Development > Deployable features, and then click Next.

http://help.eclipse.org/helios/topic/org.eclipse.platform.doc.user/tasks/tasks-importproject.htm
http://help.eclipse.org/helios/topic/org.eclipse.jdt.doc.user/concepts/clocdbug.htm

Chapter 7. Test Author Guide

Result

The Deployable features window opens.

14. Select MyNewDataTransformFeature.

15. On the Destination page, type or click Browse to specify a directory, and then click Finish.

Result

The installable feature is exported to the specified directory. The exported files can be compressed into

archives to make it easier to copy them to other computers.

Using custom data transformations
After you have created a custom data transformation, you can apply it to binary data in tests. To use a custom data

transformation, you must create and install the corresponding feature.

Before you begin

Create a custom data transformation.

To use a custom data transformation:

1. To install the feature on computer different from the computer where you created the transformation, click

Help > Install New Software.

2. On the Available Software window, click Add.

Result

The Add Repository window opens.

3. Click Local.

4. Navigate to the installable feature, and then click OK.

5. On the Available Software window, clear the Group items by category check box.

Result

MyNewDataTransformFeature is displayed in the list of available software.

6. Select MyNewDataTransformFeature, and then click Finish.

Results

Your custom data transformation is available when you click Edit > Data Transformation.

Compound tests
You can create compound tests to help you organize smaller tests into scenarios that can then be run end-to-end. You

can combine tests from different extensions to achieve end-to-end flow.

If you need to combine various tests into a single workflow or end-to-end scenario, you can organize the tests into

a compound test. Each test may perform a part of the scenario. Each test may also run in a different domain, for

example, different web browsers. A typical example of a compound test is an online buying workflow. You may have

built smaller tests for each part of an online purchase transaction, such as "log on", "log out", "view item", "add to cart",

and "check out". You can combine these tests into a single flow in a compound test. When the compound test is run,

its individual tests are run in sequence.

655

HCL OneTest Performance

656

The types of tests you can combine into a compound test depend on the testing capabilities you have purchased. You

can also shell-share HCL OneTest™ Studio family products to add multiple tests into a compound test.

To build the scenario you require in a compound test, you can also add the following annotations:

• Comments

• Synchronization points

• Loops

• Delays

• Transaction folders

• IF-THEN-ELSE

• Tests that are mandatory, using the Finally blocks

• Tests to be run in random order, using the Random Selector

Creating a compound test
You can create compound tests to help you organize smaller tests into scenarios that can then be run end-to-end. You

can combine tests from different extensions to achieve end-to-end flow.

1. Create a test workbench project.

2. In the Web UI Test perspective, in the Test Navigator, right-click the test workbench project and click New, and

then click Compound Test.

3. In the New Compound Test dialog, specify the name of the compound test and the location where it must be

stored. By default, the test is stored in the workspace of the test workbench project you selected. You can

select a different project location if desired.

Result

The file extension testsuite is added to the file name, and the new compound test is added to the

Compound Tests folder of the test workbench project, visible in the Logical View. The new test is also visible

in the Resource View, under the test workbench project. The contents and test element details are displayed in

the compound test editor in the right panel.

4. In the compound test editor, add the components of the compound test.

The types of tests you can combine into a compound test depend on the testing requirements and on the

components that you have licensed. For example, if you have the appropriate licenses, you can add Web UI

tests, performance tests, mobile web tests, and functional tests into a compound test.

5. To build the scenario you require in a compound test, you can also add the following annotations by clicking

Add and selecting the appropriate option:

◦ Comments

◦ Synchronization points

◦ Loops

◦ Delays

◦ Transaction folders

Chapter 7. Test Author Guide

◦ Tests that are mandatory, using the Finally blocks

◦ Tests to be run in random order, using the Random Selector

6. Save your changes.

Viewing compound tests
You can view a compound test in the Compound Test Editor.

About this task

When you open a workspace, the tests and projects that reside in the workspace are listed in the Test Navigator.

You can view compound tests in the Logical and Resource Views in the Test Navigator. From any of these views, you

can open the test in the Compound Test Editor.

• In the Logical View of the Test Navigator, compound tests are listed in the Compound Tests folder under the

project into which they were imported. Double-click the compound test under the Compound Tests folder to

open it in the Compound Test Editor.

Result

In the Resource View, all tests under a project are shown in the project folder. Double click the compound test

under the project folder to open it in the Compound Test Editor.

• In the Java perspective, compound tests under a project are shown under the root project folder. Double click

the compound test under the project folder to open it in the Compound Test Editor.

• The Compound Test Editor contains two panels - the Compound Test Elements panel, where the elements

of the workflow are listed. Click one of the elements, and its details are displayed int the far right portion of

the right panel, which is the Compound Test Element Details panel. Double-click any of the test or the test

elements to view its details. The name of the test, test path, source type and execution mode are displayed.

Adding tests into a compound test
After creating a compound test, you can add the smaller test pieces that contribute to the larger workflow you are

constructing with the compound test. When you run a compound test, each of the tests added to it are invoked in the

sequence defined.

You can add many tests of the same type, or different types, to a compound test, depending on the testing

requirements.

To add tests to a compound test, complete these steps:

1. In the Test Navigator, double-click the compound test to which you want to add a test. The contents of the

compound test are shown in the Compound Test Contents panel in the Compound Test editor.

2. Do one of the following:

◦ Click Add to add a test as the first element in the compound test.

◦ To insert a test before a specific element in the compound test, select the element and click Insert.

The Select Tests dialog is opened, and the tests found in the Eclipse Client workspace are displayed.

657

HCL OneTest Performance

658

3. Select the test you want to add to the Compound test, and click OK. The test is added to the compound test,

and is displayed as part of the elements of the compound test in the Compound Test Contents panel. When

you click the test you added, its details are displayed in the Compound Test Element Details panel in the

Compound Test editor.

4. Save your changes.

In addition to the tests that you can add to a compound test, you can also add the following elements to construct the

workflow you need:

• Comments to document the test

• Delays in the test

• Synchronization points

• Loops

• Transaction folders

• Parts of the test that are mandatory

• Tests to be run in random order

Modifying a compound test
You can modify a compound test in the Compound Test Editor.

About this task

A compound test is a testing workflow comprising smaller tests and other test elements in a certain sequence. You

might want to order the tests and test elements to suit your workflow requirement, or add further tests and elements.

1. In the Test Navigator, double-click the compound test that you want to modify. Its elements are shown in the

Compound Test Contents right panel in the Eclipse Client.

2. To add a test or test element at the beginning of the compound test elements list, select the compound test

in the Compound Test Contents panel, click Add, and then click Test. To insert a test or test element into the

test, select the test element before which the insertion must be made, and click Insert.

3. Add or insert the test or test element you need, and click OK. The modified compound test displays its

updated elements in the Compound Test Contents right panel.

4. Save your changes.

Running compound tests
When you run a compound test, its test elements are run in the order defined in the compound test.

About this task

When you run a compound test, you are prompted to open the Test Execution perspective, in which details of the test

run are displayed. When the test run is complete, the Test Log displays the run results.

Chapter 7. Test Author Guide

Prior to 9.2, text execution would terminate on a fatal exception in any of the tests in a compound test. Starting from

9.2, there is a new preference to allow text execution for a compound test to continue after a fatal exception in one of

the tests. To set the preference, see Window > Preferences > Test > Test Execution > Error handling > UI Fatal Error.

1. In the Test Navigator, select the compound test to run.

2. Click the Run As icon on the toolbar. The test runs. To run a launch configuration option, click the arrow beside

the Run As icon and select Run Configuration. Select a configuration option and run the test.

Result

The Confirm Perspective Switch dialog is opened, prompting you to switch to the Test Execution perspective.

Click Yes.

3. Select an option to run the test.

Result

The Test Execution perspective is opened and the test runs. On completion, the test log is displayed.

Results

You can work with the test log by exporting it into a flat file.

Generating compound test result reports
When a compound test run is completed, a Test Log is shown in the Test Execution perspective. You can work with

the information in the test log and also generate test result reports.

Exporting the Test Log
When a compound test run is completed, a Test Log is displayed in the Test Execution perspective.

About this task

The Test Log displays the following details:

• The General Information tab displays the name of the compound test and its description. The location of the

test log file is also shown.

• The Common Properties tab shows the verdict of the test results.

• The Verdict Summary and Verdict List tabs provide a pie chart of verdicts for different components of the test,

and a list of the first 20 verdicts. You can view details about the verdicts by clicking the links in the Verdict List

tab.

You can export the contents of the test log to a full-text file.

1. To export the contents of the test log to a full-text file, right-click the test run result under the Results folder of

the compound test, and click Export Test Log.

2. In the Export Test Log dialog, specify where the test log should be exported to, in the Location field.

3. Select the format in which the log must be exported, from the list in the Export Format field. You can select

either Flat Text - Default Encoding or Flat Text - Unicode Encoding.

4. Click Finish.

659

HCL OneTest Performance

660

Result

The test log is exported as a full-text file, with the test results run name, to the location you specified.

Generating a functional test report
You can generate a functional test report from the test run results as a HTML file.

About this task

When you generate a functional test report as a HTML file, the following details are displayed in the report:

• A global summary, which lists the number of tests run, verification points, defects

• A test summary which displays the name of each test, the start and end times and the verdicts.

1. Test run results are displayed under the Results folder of a project. Right-click the test run result you want to

view and click Generate Functional Test Report.

Result

The Generate Functional Test Report dialog is opened.

2. Select the parent folder in which the report must be stored.

3. By default, the name of the compound test and the date and time stamp is displayed as the name of the

report in the Name field. You can change the name.

4. Click Next.

5. Select the report template to be used. If you select the Common Functional Test Report (XSL) format, the

report is generated as a HTML file. If you select the Common Test Functional Report format, you can select

either the HTML or PDF output format.

6. Click Finish.

Result

The report is generated and displayed. The report is listed under the Functional Reports folder under the

compound test in the Test Navigator.

Creating an executive summary
You can create an executive summary or test statistics report from the test run results. Executive summaries are

generated according to the type of test.

About this task

An executive summary displays the tests and methods that were run, and their success or failure information. This

information is shown in summary charts as well as in bar graphs.

1. Under the Results folder of the project, right-click the test run result you want to view and click Create

Executive Summary.

Result

The Generate Functional Test Report dialog is opened.

2. Select the type of test report you want to generate.

3. Click Finish.

Chapter 7. Test Author Guide

Result

The report is generated and displayed. The report is listed under the Functional Reports folder under the

compound test in the Test Navigator.

Adding a compound test to a Test Workbench project
You can create a compound test in a test workbench project. If you have an existing compound test, you can import

the test to a test workbench project.

Creating a compound test in a test workbench project
You can create a compound test in a test workbench project.

1. Create a test workbench project.

2. In the Web UI Test perspective, in the Test Navigator, right-click the test workbench project and click New, and

then click Compound Test.

3. In the New Compound Test dialog, specify the name of the compound test and the location where it must be

stored. By default, the test is stored in the workspace of the test workbench project you selected. You can

select a different project location if desired.

Result

The file extension testsuite is added to the file name, and the new compound test is added to the

Compound Tests folder of the test workbench project, visible in the Logical View. The new test is also visible

in the Resource View, under the test workbench project. The contents and test element details are displayed in

the compound test editor in the right panel.

4. In the compound test editor, add the components of the compound test.

The types of tests you can combine into a compound test depend on the testing requirements and on the

components that you have licensed. For example, if you have the appropriate licenses, you can add Web UI

tests, performance tests, mobile web tests, and functional tests into a compound test.

5. To build the scenario you require in a compound test, you can also add the following annotations by clicking

Add and selecting the appropriate option:

◦ Comments

◦ Synchronization points

◦ Loops

◦ Delays

◦ Transaction folders

◦ Tests that are mandatory, using the Finally blocks

◦ Tests to be run in random order, using the Random Selector

6. Save your changes.

Importing a compound test into a Test Workbench project
You can import a compound test into a test workbench project.

661

HCL OneTest Performance

662

1. In the Web UI Test perspective, in the Test Navigator, right-click the test workbench project into which you

want to import the compound test and click Import.

2. In the Import dialog, expand General in the source list, select Import test assets with dependencies and then

click Next.

3. Specify the directory in which the compound test resides. Click Browse.

Result

By default, the compound test is imported into the test workbench project folder.

4. The compound test assets in the folder you selected are displayed. Select the components you want to

import.

5. Click Finish.

Result

The imported compound test is displayed in the Compound Test Elements panel in the Compound Test editor.

Adding compound tests to schedule
To test the performance of multiple tests, you can add all the tests to a compound test and add the compound

test to a user group or a rate runner group. When you run a schedule, all the tests in the compound test are run in a

sequential order.

To add a compound test:

1. In the schedule editor, add a user group or a rate runner group.

2. Select the group and in Behavior, click Use compound test.

3. Select a compound test and click OK. If there are no compound tests in the project, click Create, specify a

name for the compound test, and click Finish. If there are test variables associated with a compound test

and also defined in the schedule, the variables with the compound test take precedence while running the

schedule.

4. Save the schedule.

Related information

Schedule overview on page

Simulating services with stubs
Service stubs enable you to simulate the behavior of an actual service for a wide variety testing or integration

purposes.

Service stub overview
Service stubs are simulations of an actual service, which can be used to functionally replace the service in a test

environment. A stub server replaces the actual application server.

../topics/cschedov.html
../topics/cschedov.html
../topics/cschedov.html
../topics/cschedov.html

Chapter 7. Test Author Guide

From the point of view of the client application, the service stub looks identical to the actual service that it simulates.

To use a service stub in replacement of the actual service, you must be able to replace the URL of the original service

in the client application with the URL of the stub server.

Important: For version 8.7 and later, you cannot use the schedule option of HCL OneTest™ Performance

to deploy stub servers remotely. If you have already deployed stub servers remotely, you must install HCL

OneTest™ Performance on those computers and then deploy the stub servers locally.

Use case examples

There are several cases where it can be useful to deploy a stub services instead of using the actual services for your

tests:

• If you are testing a local service that uses data from another remote service, you might need to inject specific

content to the service under test from the remote service. You can simulate the remote service with a service

stub to ensure that the local service responds properly to some specific input.

• Some commercial services charge users for each call. If you are testing such a service, you can develop

and debug your test against a stub service, which is based on the WSDL of the actual service, without being

charged by the commercial service.

• During integration of a large application involving multiple clients and services, some services might not yet

be operational, although their WSDL specifications are available. You can simulate the missing services with

service stubs, which will allow you to proceed with the integration work.

Service stub architecture

You create a service stub by providing an existing WSDL specification. The service stub is generated with the exact

same ports and bindings as the original service so that it can be addressed with exactly the same interface. Each

operation in the service returns a default response of the type defined by the WSDL.

You can edit the service stub in the stub editor to change the default response or to create conditional responses that

simulate the actual responses of the original service.

When you have finished editing the service stub, you can deploy it on a local stub server, which runs in the workbench.

The stub server simulates an actual application server and can host multiple service stubs. You control the stub

server from the stub monitor view.

Finally, to use the service stub instead of the original service, you change the URL used by the client application to

point to the local stub server instead of the original application server. This URL, as well as the WSDL of the service

stub, is provided in the stub monitor view.

Creating a service stub
You can use a WSDL (Web Service Description Language) specification file to generate a service stub that can

simulate the behavior of the original service and uses the exact same interface.

663

HCL OneTest Performance

664

Before you begin

Service stubs are stored in test projects. If your workspace does not contain a test project, the test creation wizard

creates one, enabling you to change its name. To store a service stub in a specific project, verify that the project

exists before you create the stub.

If you are using Secure Sockets Layer (SSL) authentication, ensure that you have any required key files in your

workspace.

The wizard can import WSDL files from the workspace, the file system, a remote repository, or from a URL. Ensure

that the WSDL files use the correct syntax for the test environment. Service stub generation might not work with some

Web Services Description Language (WSDL) files.

1. In the workbench, click File > New > Other > Test > Test Assets > Service Test or click the New Service Stub

 toolbar button.

2. Select the WSDL of the service that you want to simulate. If necessary, you can import the WSDL from the file

system, a URL, or a WSRR or UDDI repository.

3. Click Next.

4. Select a project location and a name for the new service stub. Click Finish.

Results

The wizard generates a working service stub that reproduces the interface of the original service as defined in the

WSDL specification. Each operation is reproduced with a default response. You can edit the service stub with the stub

editor to change the default response or to create conditional responses.

Editing a service stub
Service stubs are generated with a single default response for each operation in the WSDL specification. You can edit

the service stub to change the default responses or to add conditional responses that can simulate the actual service.

To edit the behavior of a service stub:

1. In the test navigator, double-click the stub to open the stub editor.

Each operation simulated by the stub is represented by an operation element, which contains Case elements

that describe a condition. Each case contains a response element. Case elements are similar to test

verification points and use the same presentation.

2. To change the default response of an operation:

a. Expand the operation and the Case : Default element, and then select the response element.

The Case : Default element describes the response of the service stub when no other case condition is

met.

b. Edit the Message content to specify the XML content returned by the service stub.

3. To add a conditional response case:

Chapter 7. Test Author Guide

a. Right-click the operation and select Add > Equals Case, Contains Case, or Query Case.

These conditional case types are similar to the Equals, Contain and Query verification points in service

tests.

▪ Use Equal Case to specify a response that is returned by the stub when the entire incoming

message content fully matches the specified message content.

▪ Use Contains Case to specify a response that is returned by the service stub when a portion of

the incoming message content matches the specified message content.

▪ Use Query Case to specify a response that is returned by the service stub when an XPath query

meets the specified criteria.

You can add as many case elements as necessary to simulate the behavior of the original service. Use

the Up and Down buttons to change the order in which the case conditions are evaluated. Only the first

matching condition is executed.

The default case cannot be removed and is always the last case element in the operation.

b. Select the response element and edit the Message content to specify the XML content returned by the

service stub. Use the Form, Tree, and Source views to change the XML content display mode.

4. Select File > Save or click the Save toolbar button.

What to do next

When you have finished editing the service stub, you can deploy the stub to a stub server.

Deploying service stubs
You deploy and run service stubs on a stub server, which is a small application server dedicated to running service

stubs. The client application, or test, addresses the stub server instead of the actual application of the original

service.

Before you begin

The local stub server runs in the workbench on the local computer. Service stubs can be accessed locally. The local

stub server is automatically stopped when you close the workbench.

To use a service stub instead of the original service, you must be able to change the endpoint of the client application

or service test to replace the URL of the original application with the URL of the stub server.

1. In the stub editor, click the Deploy button.

Alternatively, you can right-click the stub in the test navigator and select Deploy On > Local stub server

Result

This opens the Stub Monitor view.

2. In the Stub Monitor view, click Run.

If you make any changes to the service stub, the stub is redeployed to the stub server after saving.

3. To add more service stubs to the stub server, click Add and select a service stub from the workspace.

665

HCL OneTest Performance

666

4. Copy the URL of the service stub from the Stub Monitor view and paste it into the configuration of the client

application.

You can also directly access the WSDL specification of the service stub, which is a copy of the original WSDL

with replaced URL endpoints.

What to do next

You can validate that the service stub is responding correctly by using the generic service client to invoke a call.

Recording service stub activity in a log file
With service stub logging, you can monitor the interactions between an application and the stub server. When the

option is enabled, one log file is created for each deployed stub. The log files are presented as a formatted HTML

report.

Before you begin

You must have created one or several service stubs.

To log service stub activity:

1. Add the following virtual machine (VM) argument to the eclipse.ini file: -DSTUB_LOG_LEVEL=log_level.

Use one of the following values for the log_level variable:

◦ 0: Disable the log.

◦ 1: Log stub activity without details.

◦ 2: Log stub activity including content of sent and received messages.

◦ 3: Same as level 2 with HTTP headers of received messages.

◦ 4: Same as level 3 with attached files.

You can also add the following optional arguments:

◦ -DSTUB_LOG_KEEP_PREVIOUS=true: This option creates a separate log file each time the service stub is

redeployed. If the value is not true or if the option is not present, the log file is erased if the service

stub is redeployed or when the stub server is stopped.

◦ -DSTUB_LOG_SERIALIZE_XML=true: This option displays the XML content (with log levels 2, 3, and 4)

without formatting or indentation. If the value is not true or if the option is not present, the XML

content is formatted and indented in the log.

The eclipse.ini file is located in the same directory as the eclipse.exe launcher binary file that is used

to run the product.

Example

For example, to enable logging with basic content, add the following line to the end of the eclipse.ini file:

-DSTUB_LOG_LEVEL=2.

2. Restart the workbench, and in the Stub Monitor window, click the Run icon to restart the stub servers.

3. If the server was launched by a schedule in the performance testing application, then corresponding logs are

automatically created in the workspace. If not, complete the following steps to retrieve the log files from the

stub server:

Chapter 7. Test Author Guide

Important: The stub server must be running.

a. After running your tests, to view the service stub log files, open the Stub Monitor, and click the tab for

the stub server.

b. Click the Synchronize toolbar button for the selected server.

Result

An HTML log file is created and displayed for each deployed service stub.

Result

The stub log reports are located in a folder named stubLogs, which is in the same folder as the corresponding

service stub.

Setting log level for service stubs
While recording a service test, you can set the level of the log details that you want to collect for debugging purposes.

Before you begin

You must stop the stub server.

About this task

The log level that you set in this way takes precedence over the log level setting that you specify in the eclipse.ini on

page 666 file.

1. In the Stub Monitor view, in the Service Stubs section, click the Edit log options icon .

2. Select one of the log level options and click OK.

What to do next

Start the server again for the changes to take effect.

Sending service requests with the generic service client
The generic service client enables you to send requests to services for which you do not have a convenient client and

to view the responses returned by the service.

Creating transport protocol configurations
Read these topics to configure various transport protocols.

Creating an HTTP transport configuration
You can create an HTTP transport configuration that describes the transport settings for a service request. Transport

and security settings can be associated with any service request.

Before you begin

667

HCL OneTest Performance

668

If you are using Secure Sockets Layer (SSL) authentication, ensure that you have valid key files in your workspace.

If you are using SOAP security, ensure that you have configured the environment with the correct libraries and

configuration files.

1. Click the Generic service client toolbar button to open the generic service client and click the Transport

tab.

Result

This opens the Transport Configurations page.

2. On the Transport Configurations page, click Create an HTTP configuration () to create a new HTTP

transport configuration.

3. Type a Name for the new transport configuration.

4. Specify the following options for the HTTP transport:

HTTP/2

Note: Testing HTTP/2 service is in the Beta mode. For more information, see Preparing

to record a HTTP/2 service on page 404.

To test a service that uses the HTTP/2 protocol, select the Activate check box. This check box

is automatically selected when you record a service by using a browser. If you use the Generic

Service Client component to create a HTTP/2 test, you have to manually select the check box.

HTTP/2 client connection timeout

Specifies the time limit for the HTTP/2 client to connect to the HTTP/2 server.

Time out for the HTTP/2 session creations

Specifies the time limit to create the HTTP/2 session. This time starts after the connection is

established.

Enable HTTP/2 Push

The Push functionality of HTTP/2 automatically identifies and passes the related objects or

requests to the client when a request is sent to the server. Clear the check box to not use the

functionality.

Initial session window

Specifies the buffer size on the sessions.

Initial stream window

Specifies the window size for buffer on each stream after the connection is established.

HTTP/2 Client Input Buffer Size

Specifies the buffer size that is used to read the network traffic.

Chapter 7. Test Author Guide

Maximum Quantity of Messages that can be queued

Specifies the maximum number of messages that can be queued for the HTTP/2 client on a

thread.

Maximum Quantity of HTTP/2 thread pool

Specifies the maximum number of thread pools that will be used by the HTTP/2 client to

distribute the workload.

Minimum Quantity of HTTP/2 thread pool

Specifies the minimum number of thread pools that will be used by the HTTP/2 client to

distribute the workload.

HTTP/2 client bytebuffer pool size

Specifies the buffer size to receive the unciphered values.

Server Name Indication

Note: Not applicable for HTTP/2.

Clear this check box if you do not want to connect to the host computer by using the Server

Name Indication protocol. If the host computer is already configured with Server Name

Indication protocol, you should keep this check box selected.

Use HTTP Keep Alive

Select this option to keep the HTTP connection open after the request. This option is not

available if you are using IBM® Rational® AppScan®.

Use SSL

Select this option to use an SSL configuration. Click Configure SSL to create an SSL

configuration or select an existing configuration.

Platform Authentication

In this section, specify the type of authentication that is required to access the service. Select

None if no authentication is required.

Basic HTTP authentication

Select this option to specify the User Name and Password that are used for basic

authentication.

NTLM authentication

Note: Not applicable for HTTP/2.

Select this option to use the Microsoft™ NT LAN Manager (NTLM) authentication

protocol. NTLM uses challenge-response authentication. This view lists what

669

HCL OneTest Performance

670

is negotiated (supported by the client and requested of the server) and what is

authenticated (the client reply to the challenge from the server).

Kerberos authentication

Note: Not applicable for HTTP/2.

Select this option to use the Kerberos authentication protocol between the client

and server.

Connect through proxy server

Note: Not applicable for HTTP/2.

If the HTTP connection needs to go through a proxy server or a corporate firewall, specify the

Address and Port of the proxy server. If the proxy requires authentication, select either Basic

proxy authentication or NTLM proxy authentication.

Proxy authentication

In this section, specify the type of authentication that is required to access the

proxy. Select None if no authentication is required.

Basic proxy authentication

Select this option to specify the User Name and Password that are

used for basic authentication.

NTLM proxy authentication

Select this option to use the Microsoft™ NT LAN Manager

(NTLM) authentication protocol. NTLM uses challenge-response

authentication. This view lists what is negotiated (supported by the

client and requested of the server) and what is authenticated (the

client reply to the challenge from the server).

Custom class

Note: Not applicable for HTTP/2.

Select this option if the communication protocol requires complex, low-level processing with

a custom Java™ code to transform incoming or outgoing messages. Click Browse to select

a Java™ class that uses the corresponding API. This option is not available in IBM® Security

AppScan®.

See Creating SSL configurations on page 678 for more information about SSL authentication.

5. Click OK to create the new configuration.

What to do next

Chapter 7. Test Author Guide

Once created, you can use your new configuration with any service request that uses the HTTP transport protocol.

You can use the Configurations list in the generic service client to edit existing configurations or to create duplicate

configurations.

Configuring the workbench for NTLMv2 authentication
NTLMv2 authentication requires access to a third-party library. To record and execute a test that contains NTLMv2

authentication, you must download the library and place it at the right location.

Before you begin

Before you can test SOAP-based services that use security algorithms, you must obtain and install a third-party library

file.

About this task

By default, the HTTP test generation does not enable NTLMv2 authentication, even if it was part of the recording. To

automatically enable the correct NTLM version from the recording, set the Generated NTLM Version setting to Guess

from recorded data in the HTTP Test Generation preferences.

To configure the workbench to enable NTLMv2 authentication

1. Download the jcifs-1.3.19.zip file from https://www.jcifs.org/src/.

2. Unarchive the zip file and copy the JAR file to the installation directory: InstallationDirectory\plugins

\com.ibm.rational.test.lt.provider_<version>

3. To automatically enable the correct NTLM version from the recording, In the workbench, click Window >

Preferences > Test > HTTP Test Generation and set the Generated NTLM Version setting to Guess from

recorded data.

Results

When a test was recorded with NTLMv2, the Generated NTLM Version setting is selected in the test editor, under

NTLM Authentication.

Creating a JMS transport configuration
You can create an JMS transport configuration that describes the transport settings for a service request that uses

the Java™ Message Service (JMS) protocol, including JBoss and IBM® WebSphere® JMS. Transport and security

settings can be associated with any service request.

Before you begin

If you are using SOAP security, ensure that you have configured the environment with the correct libraries and

configuration files.

1. Click the Generic service client toolbar button to open the generic service client and click the Transport

tab.

Result

671

https://www.jcifs.org/src/

HCL OneTest Performance

672

This opens the Transport Configurations page.

2. On the Transport Configurations page, click one of the following buttons:

Choose from:

◦ Create a basic JMS configuration () to create a new generic JMS transport configuration.

◦ Create a JBoss JMS configuration () to create a JMS configuration preconfigured for JBoss.

◦ Create a WebSphere JMS configuration () to create a JMS configuration preconfigured for

WebSphere® JMS.

3. Type a Name for the new transport configuration and select whether the service is a queue or a topic

destination.

4. Type the address of the JMS end point.

5. Select Use temporary object to provide the address of the reception point to the service as a temporary

object. If you disable this setting, you must manually specify the reception point address.

6. If the service requires authentication, select Basic Authentication and type the user name and password to

access the service.

7. If the service requires a custom Java™ Naming and Directory Interface (JNDI) adapter, you can provide your

own Java™ class that extends the Apache Axis class. In this case, select Custom Adapter and specify the

name of the custom Java™ class. See Extending test execution with custom code on page for more

information about custom code.

8. Specify whether the message type is Text or Binary.

9. If necessary, click Add or Edit to specify the Context factory properties or Connector properties required to

access the service.

10. Click OK to create the new configuration.

What to do next

Once created, you can use your new configuration with any service request that uses the JMS transport protocol.

You can use the Configurations list in the generic service client to edit existing configurations or to create duplicate

configurations.

Creating a WebSphere® MQ protocol configuration
When you want to send requests to a service that uses WebSphere MQ transport protocol, you can create a protocol

configuration to describe the transport settings for a service request.

Before you begin

If you are using SOAP security, ensure that you have configured the environment with the correct libraries and

configuration files.

About this task

By default, messages are sent in bytes. Starting from 10.1.0, you can select message type as Text Message. After you

create the protocol configuration, you can change the message format by selecting the Text Message check box in

the Message Structure.

../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html
../topics/textndteswcc.html

Chapter 7. Test Author Guide

Transport and security settings can be associated with any service request. You can edit the existing configuration

or duplicate the default configuration. You must have configured the environment with the correct libraries and

configuration files when you use SOAP security.

1. Click the Generic service client toolbar button, and then click the Transport tab.

2. From the Protocol list, right-click MQ, and then click New MQ protocol configuration.

3. Enter a name for the new transport configuration in the Name field.

4. Enter a name for the queue manager that receives the call in the Queue Manager Name field.

5. Enter a name for the queue managed by the queue manager in the Send Queue Name field.

6. Select the Authentication check box and specify the user name and password to authenticate with the MQ

server.

Alternatively, add or update the login credentials in the Protocol Configuration tab of a service test.

7. Select the Use Local Queue Manager check box when the WebSphere MQ server is running on the local

computer.

8. Perform the following steps if the MQ server is installed on a remote computer:

a. Clear the Use Local Queue Manager check box.

b. Enter the remote WebSphere MQ server details in the following fields:

▪ The IP address or host name in the Address field.

▪ Listener port number in the Port field.

▪ Server connection mode channel name in the Client Channel field.

9. Select the Use Temporary Queue for Response check box if you want the server to create a temporary queue

for receiving messages.

10. Perform the following steps to specify the queue that receives the response messages from the queue

manager:

a. Clear the Use Temporary Queue for Response check box.

b. Enter a name for a queue in the Receive Queue Name field.

11. Optional: Specify the name of the target service in the Target service field when you are using the

Microsoft .NET framework with SOAP over MQ.

12. Optional: Select Use RFH2 header when you are using SOAP over MQ. Otherwise, specify the Message

Descriptor and Encoding options for the message header.

13. Optional: Click Configure SSL to select an existing SSL configuration or to create a new one when the service

requires SSL authentication.

14. Click OK to create the protocol configuration.

Results

You have created a configuration for the WebSphere MQ transport protocol.

What to do next

673

HCL OneTest Performance

674

• You can use the protocol configuration for the WebSphere MQ with any service request.

• You can change the message format by selecting the Text Message check box in the Message Structure.

Related information

Creating SSL configurations on page 678

Creating a WebSphere® Java MQ transport configuration
You can create a transport configuration that describes the transport settings for a service request that uses the

IBM® WebSphere® Java MQ protocol. Transport and security settings can be associated with any service request.

About this task

This topic has instructions to specify the MQ server settings. If you have a single MQ server, you can choose to use

the Default Java MQ protocol configuration option. If, for a new request, you must point to another MQ server, you

can use the instructions in this topic to create a new transport configuration.

1. Click Generic service client and click the Transport tab.

2. To create a new Java MQ transport configuration, in Configurations, select Java MQ.

3. In Create Java MQ protocol configuration, specify a name for the transport configuration.

4. Complete the following steps in the Settings tab:

a. Host: Specify the host name or IP address of the MQ server.

b. Port: Specify the port number that is used on the MQ server.

c. Channel: Name of the MQ communication channel that is used for sending and receiving messages

and specified on the server. This field is case-sensitive.

d. Queue Manager: Name of the MQ queue manager as specified on the server.

e. Optional: Use credential: To access the secure server, specify the login credentials that is needed by

the connection.

5. Optional: If necessary, complete the following steps in the SSL tab:

Learn more about the UI elements in the SSL tab:

◦ Select the Use MQ SSL check box when the connection to the Queue manager uses SSL.

◦ Peer Name: Distinguished Name (DN) of the queue manager to be used by SSL. The

Distinguished Name is available in the SSL certificate. In MQ, a DN pattern is specified by

using the sslPeerName variable of MQEnvironment. Connections succeed only if Peer Name

matches the pattern that is specified.

◦ Cipher Suites: Select one of the available cipher suites to use for encrypting the transport

communications.

◦ Fips Required: This option specifies whether the requested cipher suite must use FIPS-

certified cryptography in WebSphere MQ.

◦ KeyResetCount: The total number of non-encrypted bytes that can be sent and received within

an SSL conversation before the secret key is renegotiated. If left blank or set to zero (default),

Chapter 7. Test Author Guide

the secret key is never renegotiated. This value is ignored if no cipher suite is specified. Valid

values are integers 0 - 999,999,999.

◦ SSL Configuration: Select a SSL setting for the connection or click Configure SSL to create a

new SSL configuration. See Creating SSL configurations on page 678.

6. Optional: Use the Options tab to configure actions such as read, write, and browse on the selected MQ

Queues. Click to select the configuration options.

7. Optional: Use the Advanced tab to specify the number of queue manager connections for reading messages,

temporary destination settings, and to associate a reply with a request.

8. To test the connection, click Test Transport and then click OK.

Result

You have created a new transport configuration to point to a MQ server.

What to do next

You can now send the Java MQ requests to the configured server. See Sending WebSphere Java MQ endpoint

requests on page 687.

Creating Microsoft™ .NET transport configurations
You can manually create a Microsoft™ .NET transport configuration to describe the transport settings for service

requests that use the Windows™ Communication Foundation (WCF) protocol.

Before you begin

If you are using SOAP security, ensure that the environment is configured with the correct libraries and configuration

files.

Certificates and libraries required by the Microsoft™ client proxy must be installed on the computer, including

Microsoft™ .NET libraries.

You must link a modified version of the Microsoft™ client proxy configuration file of the WCF service (by

default client.exe.config) to the Microsoft™ .NET transport configuration. You must rename the file to

soaclient.exe.config and edit it as described in the following procedure.

Tip: You can create a Microsoft™ .NET transport configuration automatically by importing the

Microsoft™ .NET WSDL file. In this case, you must still manually edit the Microsoft™ .NET transport

configuration to point to the modified soaclient.exe.config file as described in the following procedure.

For more information, see Sending service requests with WSDL files on page 680

About this task

The product supports testing WCF services that use the following bindings:

• BasicHttpBinding

• WsHttpBinding

675

HCL OneTest Performance

676

• NetMsMqBinding for 1-way calls only

• WSFederationHttpBinding

• WS2007FederationHttpBinding

• NetTcpBinding

• Custom bindings that do not integrate custom extensions in the channel, serialization of the message,

transport, and security

Note: The following WCF services are not supported:

• Transaction and scopes

• Duplex mode requests, such as callbacks or 2-way services based on the Microsoft™ Message

Queuing (MS-MQ) transport

Only for IBM AppScan users: To use Generic Service Client with IBM Appscan to test a WCF application, add

the following code to the WCF configuration file:

<system.diagnostics> <trace autoflush="true" />
 <sources> <source name="System.Net"
 maxdatasize="1048576"><listeners><add
 name="System.Net"/></listeners></source> <source
 name="System.Net.Cache"><listeners><add
 name="System.Net"/></listeners></source> <source
 name="System.Net.Http"><listeners><add name="System.Net
 "/></listeners></source> <source
 name="System.Net.Sockets"><listeners><add
 name="System.Net"/></listeners></source> <source
 name="System.Net.WebSockets"><listeners><add
 name="System.Net"/></listeners></source> </sources>
 <sharedListeners> <add
 name="System.Net"
 type="IBM.ServiceModel.Soa.Extension.tools.TrafficTraceListener,
 Soa-Behavior-Library"
 initializeData="" />
 </sharedListeners> <switches> <add name="System.Net"
 value="All"/> <add name="System.Net.Cache"
 value="All"/> <add name="System.Net.Http"
 value="All"/> <add name="System.Net.Sockets"
 value="All"/> <add name="System.Net.WebSockets"
 value="All"/> </switches></system.diagnostics>

IBM Appscan expects only HTTP requests in WCF. The following HTTP bindings are supported:

• BasicHttpBinding

• Custombinding above standard httpTransport

• WsHttpBinding

• WsFederationHttpBinding

• WS2007FederationHttpBinding

Chapter 7. Test Author Guide

Also, the following patterns are supported:

• Action value (mandatory)

• Reply Action value (mandatory)

• Protection level

1. Create a modified soaclient.exe.config file by completing the following steps:

a. Create a copy of client.exe.config (or proxy_client_name.config) file from the

Microsoft™ .NET project and rename the copy to soaclient.exe.config.

b. Edit the soaclient.exe.config file to use the version of Microsoft™ .NET that the product

supports, as specified on the following line:

<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>

c. Edit the soaclient.exe.config file so that the endpoints in the configuration file point to the client

contract of the product, as specified on the following line:

contract="IBM.ServiceModel.Soa.Extension.Stub.IStubTest"

d. Import the modified soaclient.exe.config file into the workspace.

Result

After you create the soaclient.exe.config file, you can skip the following steps and import the WSDL file

to automatically create a Microsoft™ .NET transport configuration based on the information provided by the

WSDL. For more information, see Sending service requests with WSDL files on page 680.

2. Click the Generic service client toolbar button () to open the generic service client and click the Transport

tab.

3. On the Transport Configurations page, click Create a Microsoft .NET configuration.

4. Type a name for the new transport configuration and specify the following options:

Location of soaclient.exe.config

Specify the location of the soaclient.exe.config file. You must create this file manually by

copying and editing the client.exe.config file from the Microsoft™ .NET service.

User authentication

If the service requires authentication, select User Authentication and type the user name and

password to access the service.

Endpoint protection

By default, the transport configuration uses the endpoint protection level that is described in the

soaclient.exe.config file. Use this setting to specify a different Protection level:

◦ Signature: Select this option to digitally sign requests.

◦ Encryption and Signature: Select this option to digitally sign and encrypt requests.

677

HCL OneTest Performance

678

Advanced properties

Use this table to list the request and response actions by order of the methods in the WSDL file.

Click Add to specify the name and value of request and response actions that are required by the

service. This table is generated automatically when you import a Microsoft™ .NET WSDL file.

5. Click OK to create the transport configuration.

What to do next

After you create the configuration, you can use it with any service call that uses the Microsoft™ .NET transport

protocol. You can use the Configurations list in the generic service client to edit existing configurations or to create

duplicate configurations.

Creating SSL configurations
You can create a Secure Sockets Layer (SSL) configuration that describes the settings for a service request that uses

SSL certification mechanisms. SSL configurations can be associated with any service request that uses the HTTP or

IBM® WebSphere® MQ transport protocols.

Before you begin

If you are using SSL, ensure that you have valid certificate keystore files in your workspace.

If you are using SOAP security, ensure that you have configured the environment with the correct libraries and

configuration files. See Configuring the environment for SOAP security on page 397 for more information.

About this task

If you have to use different mutual SSL authentications for virtual testers in a test, you can create a dataset that

stores all of the trust aliases names. In the test editor, in the SSL Configuration tab, you add a SSL configuration and

associate it with the dataset. When a schedule is run, the SSL configuration is applied to each virtual tester.

1. Click the Generic service client toolbar push button to open the generic service client, and click the

Transport tab.

2. Either open an existing HTTP or WebSphere® MQ transport configuration, or create a new one, and then click

Configure SSL.

3. Click

Rename

to rename the default SSL configuration or New to create one.

4. Specify the following settings for the SSL configuration.

Server Authentication

This section describes how the client trusts the server.

Chapter 7. Test Author Guide

Always trust server

Select this option if no authentication is required or to ignore server certificates so

that all servers are trusted. If you are using single authentication and you want to

accept trusted servers only, then disable this option and specify a truststore that

contains the trusted server certificates.

Client truststore

When you are using single authentication, the client truststore contains the

certificates of all trusted servers. Click Browse to specify a KS, JKS, or JCEKS file

containing valid certificates of the trusted servers.

Password

If the client truststore file is encrypted, type the password required to access the

file.

Mutual Authentication

This section describes how the server trusts the client in addition to server authentication.

Use client-side certificate

If you are using double authentication, select this option to specify a keystore containing the

client certificate. This certificate allows the server to authenticate the client.

Client certificate keystore

Click Browse to specify a KS, JKS, or JCEKS file containing a valid certificate that

authenticates the client.

Password

If the client truststore file is encrypted, type the password required to access the

file.

Select trust alias for Mutual Authentication

Select an alias to be used for the SSL configuration. There could be multiple aliases in a keystore

for different security certificates. Choose an appropriate alias for a user. You can also use

dataset to store aliases that you can apply to virtual users at run time.

Note: You can copy the contents from an SSL configuration into another SSL configuration by using

Copy and Paste in the SSL editor.

5. Click OK to create the configuration, and close the SSL editor.

What to do next

When the SSL configuration is created, you can use the SSL configuration with any service request that uses SSL

certification. You can use the SSL editor to edit existing configurations.

679

HCL OneTest Performance

680

Sending service requests with WSDL files
You can send requests to services based on SOAP, Java Messaging Service (JMS), WebSphere® MQ, and

Microsoft™ .NET that use a Web Service Description Language (WSDL) file to specify the contents of the service

request.

Before you begin

Ensure that you have a valid WSDL file, which is accessible either on the file system, in the workspace, at a specific

URL, or in an IBM® WebSphere® Service Registry and Repository or a Universal Description Discovery and Integration

(UDDI) repository.

Ensure that the WSDL files use the correct syntax for the test environment. The generic service client might not work

with some WSDL files.

If the service uses Secure Sockets Layer (SSL) authentication, create an SSL configuration before sending the

request. For more information, see Creating SSL configurations on page 678.

If the service uses SOAP security for encryption, signature, or other security algorithms, you must first configure

the environment with the correct libraries and configuration files, and then create a WSDL security profile. For more

information, see Configuring the environment for SOAP security on page 397 and Creating security profiles for

WSDL files on page 526.

To import a WSDL file from a secured site that requires mutual authentication, you must have the Keystore file in the

workspace.

About this task

When you create a call from a WSDL file, the call is configured automatically with any SOAP, JMS, WebSphere® MQ, or

Microsoft™ .NET endpoints that are available in the WSDL file. Select the corresponding transport configuration on the

Transport page of the request.

Note: For the specific requirements related to Microsoft™ .NET support, see Creating Microsoft .NET

transport configurations on page 675.

To send a service request based on a WSDL file:

1. Click the Open the Generic Service Client toolbar button and select the Requests page.

2. Click Add and select the method to add a WSDL file or click the corresponding shortcut button on the main

page.

Choose from:

◦ Click Add WSDL from Workspace to add a WSDL file from the local workspace.

◦ Click Add WSDL from File System to add a WSDL file from the file system.

◦ Click Add WSDL from URL to download and import an online WSDL from the web.

Chapter 7. Test Author Guide

◦ Click Add WSDL from WSRR to add a WSDL from WebSphere® Service Registry and Repository. Enter

the URL of the WebSphere® Service Registry and Repository and click Connect. You can click Search

 to browse the contents of the repository.

◦ Click Add WSDL from UDDI to add a WSDL from a Universal Description Discovery and Integration

(UDDI) repository. Enter the URL of the UDDI and click Connect. You can click Filter and Search

to browse the contents of the repository.

Note: If you are importing the WSDL file from a secured site that requires certificate authentication,

click Import Properties and, for Keystore, select the keystore file that contains the certificate to be

provided to the server, and for the Keystore password, type the password.

3. Click OK.

Result

The WSDL file is added to the Request Library.

4. In the Request Library, expand the WSDL file, binding, and operation, and then select the call element.

Result

The generic service client shows three steps: Edit Data, Invoke and View Response. The details for the call are

displayed under the Edit Data step.

5. On the Message page, use the Form, Tree, or Source views to edit the contents of the request.

Each view shows a different format of the same data. To add or remove XML elements in the Form or Tree

view, click Schema > Validate and Assist to comply with an XML Schema Definition (XSD) specified in the

schema catalog.

6. On the Transport page, specify the transport configuration for the request.

The transport information from the WSDL file is imported automatically into the transport configuration.

For Microsoft™ .NET, select the corresponding transport configuration and specify the location of the

soaclient.exe.config file. You must create this file manually. For details, see Creating Microsoft .NET

transport configurations on page 675.

Note: If you are using IBM® Security AppScan®, only the HTTP and .Net transport protocols are

available.

7. On the Request Stack page, specify whether to override the security or processing algorithms that are applied

to the outgoing request for the WSDL file.

Click Show Response Stack to add a Response Stack page to edit the security or processing algorithms for

incoming responses.

Note: These settings apply only to the current request. If you want to edit the request or response

stack for all requests that use the current WSDL file, click Edit WSDL Security to open the WSDL

Security Editor.

8. When you are ready to send the service request, click Invoke.

681

HCL OneTest Performance

682

Result

The generic service client sends the request and displays the message return under the View Response step.

What to do next

Successful requests are recorded and added to the Request History list. If you are using HCL OneTest™ Performance ,

you can create a service test by clicking the Generate Test Suite button ().

Sending HTTP endpoint requests
You can send requests to services that use an HTTP endpoint.

Before you begin

If the service uses Secure Sockets Layer (SSL) authentication, create an SSL configuration before sending the

request. For more information, see Creating SSL configurations on page 678.

If the service uses SOAP security for encryption, signature, or other security algorithms, you must first configure the

environment with the correct libraries and configuration files, and then create a security profile for the WSDL file. For

more information, see Configuring the environment for SOAP security on page 397 and Creating security profiles for

WSDL files on page 526

To send a request to an HTTP service:

1. Click the Open the Generic Service Client toolbar button and select the Requests page.

2. Click the Add icon and click a type of request that you want to send or in Request Library, right-click

EndPoints and select a type of request that you want to send.

3. In the Configure Protocol window, select HTTP and specify the HTTP transport configuration.

If necessary, click New to create an HTTP transport configuration for the call.

To send the HTTP/2 requests, in the Create HTTP Protocol configuration window, click the Activate check

box. Before capturing the HTTP/2 traffic, configure the computer. See Preparing to record a test for the

HTTP/2 service on page 404 for instructions.

4. Type the URL of the call, the HTTP method and version, and specify any header or cookie properties.

Click the Rest mode check box to split the URL into resource and parameters.

5. Click Next.

6. On the Select Root Element page, if the service uses a specific XML Schema Definition (XSD), select one from

the list or click Browse to import the XSD file, and then, select the root element for the request.

If no XSD is available for the service, select No Schema.

7. Click Finish.

Result

The request is added to the Endpoints section of the Request Library.

8. In the Request Library, select the request element.

Result

Chapter 7. Test Author Guide

The generic service client shows three steps: Edit Request, Invoke, and View Response. The details for the

request are displayed under the Edit Request step.

9. Based on the request selected in Step 2, on the Message page, use the Form, Tree, or Source views to edit the

contents of the request.

Each view shows a different format of the same data. To add or remove XML elements in the Form or Tree

view, click Schema > Validate and Assist to comply with an XSD specified in the schema catalog.

10. On the Attachments page, specify any file attachments to send with the request.

To add an attachment, click Add and follow the wizard to attach a file with the request.

11. On the Transport page, if necessary, change the transport configuration to be used by the request.

To create and edit transport and security configurations, use the Transport tab.

12. If you selected SOAP XML request in step 2, on the Request Stack page, specify whether you want to override

the security or processing algorithms that are applied to the outgoing request for the WSDL file.

To add a Response Stack page to edit the security or processing algorithms for incoming responses, click

Show Response Stack.

Note: These settings apply only to the current request. To edit the request or response stack for all

requests that use the current WSDL file, click Edit WSDL Security to open the WSDL Security Editor.

13. When you are ready, click Invoke to send the service request.

Result

The generic service client sends the request and displays the message return under the View Response step.

What to do next

Successful requests are recorded and added to the Request History list. If you are using HCL OneTest™ Performance ,

you can create a service test by clicking the Generate Test Suite button ().

Sending a JMS endpoint request
You can send requests to services that use a Java™ Messaging Service (JMS) endpoint.

Before you begin

If the service uses Secure Sockets Layer (SSL) authentication, create an SSL configuration before sending the

request. For more information, see Creating SSL configurations on page 678.

To send a request to a JMS service:

1. Click the Open the Generic Service Client toolbar button () and select the Requests page.

2. Click Add () and click a type of request that you want to send or in Request Library, right-click EndPoints and

select a type of request that you want to send.

3. In the Configure Protocol window, select JMS and specify the JMS transport configuration.

If necessary, click New to create an JMS transport configuration for the call.

4. Click Add to specify any properties that are to be sent with the call.

5. Click Next.

683

HCL OneTest Performance

684

6. On the Select Root Element page, if the service uses a specific XML Schema Definition (XSD), select one from

the list or click Browse to import the XSD file, and then, select the root element for the call.

If no XSD is available for the service, select No Schema.

7. Click Finish.

Result

The request is added to the Endpoints section of the Request Library.

8. In the Request Library, select the request element.

Result

The generic service client shows three steps: Edit Request, Invoke, and View Response. The details for the

request are displayed under the Edit Request step.

9. Based on the request selected in Step 2, on the Message page, use the Form, Tree, or Source views to edit the

contents of the request.

Each view shows a different format of the same data. To add or remove XML elements in the Form or Tree

view, click Schema > Validate and Assist to comply with an XSD specified in the schema catalog.

10. On the Transport page, if necessary, change the transport configuration to be used by the request.

To create and edit transport and security configurations, use the Transport tab.

11. If you selected SOAP XML request in step 2, on the Request Stack page, specify whether you want to override

the security or processing algorithms that are applied to the outgoing request for the WSDL file.

To add a Response Stack page to edit the security or processing algorithms for incoming responses, click

Show Response Stack.

Note: These settings apply only to the current request. To edit the request or response stack for all

requests that use the current WSDL file, click Edit WSDL Security to open the WSDL Security Editor.

12. When you are ready, click Invoke to send the service request.

Result

The generic service client sends the request and displays the message return under the View Response step.

What to do next

Successful requests are recorded and added to the Request History list. If you are using HCL OneTest™ Performance ,

you can create a service test by clicking the Generate Test Suite button ().

Sending a WebSphere® MQ endpoint request
You can invoke calls to services that use a WebSphere® MQ endpoint.

Before you begin

If the service uses Secure Sockets Layer (SSL) authentication, create an SSL configuration before sending the

request. For more information, see Creating SSL configurations on page 678.

If the service uses SOAP security for encryption, signature, or other security algorithms, you must first configure the

environment with the correct libraries and configuration files, and then create a security profile for the WSDL file. For

Chapter 7. Test Author Guide

more information, see Configuring the environment for SOAP security on page 397 and Creating security profiles for

WSDL files on page 526.

To send a request to an WebSphere® MQ service:

1. Click the Open the Generic Service Client toolbar button () and select the Requests page.

2. Click Add () and click a type of request that you want to send or in Request Library, right-click EndPoints and

select a type of request that you want to send

3. In the Configure Protocol window, select WebSphere MQ and specify the WebSphere® MQ transport

configuration.

If necessary, click New to create an WebSphere® MQ transport configuration for the call. For more

information about creating a new WebSphere MQ transport configuration, see Creating a WebSphere MQ

transport configuration on page 672.

4. Specify the SOAP action.

If the service requires that you override the header specified in the WebSphere® MQ transport configuration,

select Override MQ protocol configuration values and specify the correct details.

5. Click Next.

6. On the Select Root Element page, if the service uses a specific XML Schema Definition (XSD), select one from

the list or click Browse to import the XSD file, and then, select the root element for the request.

If no XSD is available for the service, select No Schema.

7. Click Finish.

Result

The request is added to the Endpoints section of the Request Library.

8. In the Request Library, select the request element.

Result

The generic service client shows three steps: Edit Request, Invoke, and View Response. The details for the

request are displayed under the Edit Request step.

9. Based on the request selected in Step 2, on the Message page, use the Form, Tree, or Source views to edit the

contents of the request.

Each view shows a different format of the same data. To add or remove XML elements in the Form or Tree

view, click Schema > Validate and Assist to comply with an XSD specified in the schema catalog.

10. On the Transport page, if necessary, change the transport configuration to be used by the request.

To create and edit transport and security configurations, use the Transport tab.

11. If you selected SOAP XML request in step 2, on the Request Stack page, specify whether you want to override

the security or processing algorithms that are applied to the outgoing request for the WSDL file.

To add a Response Stack page to edit the security or processing algorithms for incoming responses, click

Show Response Stack.

Note: These settings apply only to the current request. To edit the request or response stack for all

requests that use the current WSDL file, click Edit WSDL Security to open the WSDL Security Editor.

12. When you are ready, click Invoke to send the service request.

685

HCL OneTest Performance

686

Result

The generic service client sends the request and displays the message return under the View Response step.

What to do next

Successful requests are recorded and added to the Request History list. If you are using HCL OneTest™ Performance ,

you can create a service test by clicking the Generate Test Suite button ().

Sending OData endpoint batch requests
To test services that use OData protocol, you can send requests in a batch. The request contains HTTP operations

such as GET, POST, and PUT to manage data in the service.

Before you begin

You must have sent individual requests through Generic Service Client (GSC).

About this task

When you send requests in a batch, you can group a set of operations into one HTTP request. You can start a batch

request from GSC or from a service test. To initiate a batch request from a service test in the Test editor, select

multiple requests to include in a batch, right-click and select $batch odata requests.

To initiate a batch request from GSC, complete the following steps:

1. Click the Open the Generic Service Client toolbar button and select the Requests page.

2. Click the Add icon and click a type of request that you want to send or in Request Library, right-click

EndPoints and select Send a Batch Request.

3. In the ODATA batch information page, select the OData version that your application supports.

4. To set HTTP headers, ensure that the Set ODATA batch request http headers radio button is selected.

If needed, you can change the headers on the next page of the wizard.

5. To group appropriate requests into change sets, select the ODATA batch with changesets radio button.

6. In Selection of calls to batch, select the requests to include in the batch.

If you initiated the batch request from the service test, the requests are already selected.

7. Click Next.

8. In the Configure Protocol window, select HTTP and specify the HTTP transport configuration.

If necessary, click New to create an HTTP transport configuration for the call.

To send the HTTP/2 requests, in the Create HTTP Protocol configuration window, click the Activate check

box. Before capturing the HTTP/2 traffic, configure the computer. See Preparing to record a test for the

HTTP/2 service on page 404 for instructions.

9. Click Finish.

Result

The request is added to the Endpoints section of the Request Library.

10. In the Request Library, select the request element.

Chapter 7. Test Author Guide

Result

The generic service client shows three steps: Edit Request, Invoke, and View Response. The details for the

request are displayed under the Edit Request step.

11. On the Transport page, if necessary, change the transport configuration to be used by the request.

To create and edit transport and security configurations, use the Transport tab.

12. When you are ready, click Invoke to send the service request.

Result

The generic service client sends the request and displays the message return under the View Response step.

Sending WebSphere Java MQ endpoint requests
You can send requests to services that use a WebSphere Java MQ endpoint.

Before you begin

If the service uses Secure Sockets Layer (SSL) authentication, create an SSL configuration before sending the

request. For more information, see Creating SSL configurations on page 678.

To send a request to a Java MQ service:

1. Click Open the Generic Service Client () and select the Requests page.

2. Click Add () or in Request Library, right-click EndPoints and select a type of request to send.

3. In the Configure Protocol window, select WebSphere Java MQ and specify the transport configuration. If

necessary, create the transport configuration for the call by clicking New (see Creating a WebSphere Java MQ

transport configuration on page 674).

4. Complete the following information in the General tab:

Learn more about the UI elements in the General tab:

Queue

Name of the queue as defined on the WebSphere MQ server.

Message type

The types of messages are these:

◦ Datagram means that the message does not require a reply.

◦ Request means that the message requires a reply.

◦ Reply means that the message is a reply to an earlier request message.

◦ Report means that the message is reporting on some expected or unexpected

occurrence, usually related to some other message. An example is a request

message that contained data that was not valid.

Message Persistence

This value indicates whether the message is persistent or not. If the message is

persistent, it survives the system failures and restarts of the queue manager. If the

687

HCL OneTest Performance

688

message is not persistent, it survives a restart if it is present on a queue having the

NPMCLASS(HIGH) attribute. However, even with the NPMCLASS(HIGH) attribute a

message does not survive a QMGR class. Nonpersistent messages on queues having

the NPMCLASS(NORMAL) attribute are discarded at queue manager restart, even if the

message is found on the auxiliary storage during the restart procedure.

Dynamic Reply

Select this check box for the WebSphere MQ server to dynamically create a temporary

queue as a reply. If this check box is not selected, the message in Reply Queue is used.

Reply Queue

This is the name of the message queue to which the application that issued the get

request for the message should send the reply and report messages.

Reply Manager

This is the name of the queue manager on which the reply-to queue is defined.

Additional properties

Specify the additional properties for the queues.

5. Optional: If necessary, complete the following information on the Config tab:

Learn more about the UI elements in the Config tab:

Message Priority

This is the priority of the message. The lowest priority is 0.

Encoding

This is the numeric encoding of numeric data in the message. This value does not apply

to numeric data in the MQMD structure itself.

Expiry Interval

This is the period of time, in tenths of a second, after which the message becomes

eligible to be discarded if it has not already been removed from the target queue. The

expiry interval is set by the application that put the message.

Character set

This is the character set identifier of the character data in the application message data.

6. Optional: In the Report tab, select the report messages to receive.

7. Optional: If necessary, complete the following information in the Context tab:

Chapter 7. Test Author Guide

Learn more about the UI elements in the Context tab:

Application Identity Data

This information is defined by the application suite. Use it to provide information about

the message or its originator.

Application Origin Data

This information is defined by the application suite. Use it to provide additional

information about the origin of the message.

Accounting Token

This information is needed by the application to appropriately charge for the work that is

done as a result of the message.

User ID

This is the user identifier of the application that originated the message.

8. Optional: In the Identifiers tab, for the messages that require binary input, specify the ID in the string format

in the second column. The first column is filled automatically in the hexadecimal format.

9. Optional: In the Segmentation tab, select the segment of the message and click Next.

10. This step is not applicable for a Text request. On the Select Root Element page, if the service uses a specific

XML Schema Definition (XSD), select one from the list. If the XSD element is not listed, click Browse to import

the XSD file, and select the root element for the request. If no XSD is available for the service, select No

Schema.

11. Click Finish. The request is added to the Endpoints section of the Request Library.

12. In the Request Library, select the request element.

Result

The generic service client shows three steps: Edit Request, Invoke, and View Response. The details for the

request are displayed under the Edit Request step.

13. Based on the request selected in Step 2, on the Message page, use the Form, Tree, or Source views to edit the

contents of the request.

Each view shows a different format of the same data. To add or remove XML elements in the Form or Tree

view, click Schema > Validate and Assist to comply with an XSD specified in the schema catalog.

14. On the Transport page, if necessary, change the transport configuration to be used by the request.

To create and edit transport and security configurations, use the Transport tab.

15. If you selected SOAP XML request in step 2, on the Request Stack page, specify whether you want to override

the security or processing algorithms that are applied to the outgoing request for the WSDL file.

To add a Response Stack page to edit the security or processing algorithms for incoming responses, click

Show Response Stack.

689

HCL OneTest Performance

690

Note: These settings apply only to the current request. To edit the request or response stack for all

requests that use the current WSDL file, click Edit WSDL Security to open the WSDL Security Editor.

16. When you are ready, click Invoke to send the service request.

Result

The generic service client sends the request and displays the message return under the View Response step.

What to do next

Successful requests are recorded and added to the Request History list. If you are using HCL OneTest™ Performance ,

you can create a service test by clicking the Generate Test Suite button ().

Testing all operations in a WSDL file
You can use the generic service client to rapidly send requests to a service using all the operations in a Web Services

Description Language (WSDL) file. The calls are generated with default values based on the type of data.

Before you begin

Ensure that you have a valid WSDL file. Ensure that the WSDL files use the correct syntax for the test environment.

The generic service client might not work with some Web Services Description Language (WSDL) files.

If the service uses Secure Sockets Layer (SSL) authentication, create an SSL configuration before invoking the call.

See Creating SSL configurations on page 678 for details.

If the service uses SOAP security for encryption, signature, or other security algorithms, you must first configure

the environment with the correct libraries and configuration files, and then create a security profile for the WSDL.

See Configuring the environment for SOAP security on page 397 and Creating security profiles for WSDL files on

page 526 for details.

Calls will be generated for each operation in the WSDL file using the default values for each type. For example, strings

will use the default value str. You can change the default values in the XML Default Values preferences.

1. Open the generic service client and click the Requests tab, and then, click Add a WSDL file.

2. In the Add WSDL Files window, select an existing WSDL or import a WSDL with one of the following methods:

Choose from:

◦ Click Import from File to import a WSDL file from the file system.

◦ Click Import from URL to download and import an online WSDL from the web.

◦ Click Import from WSRR to import a WSDL from an IBM® WebSphere® Service Registry and

Repository (WSRR). Enter the URL of the WSRR and click Connect. You can click Search to browse

the contents of the repository.

◦ Click Import from UDDI to import a WSDL from a Universal Description Discovery and Integration

(UDDI) repository. Enter the URL of the UDDI and click Connect. You can click Filter and

Search to browse the contents of the repository.

Chapter 7. Test Author Guide

3. Click OK.

Result

The WSDL is added to the Call Library.

4. In the Call Library, right-click the WSDL and select Test WSDL Methods.

The call is automatically configured with any SOAP or JMS endpoints that are available in the WSDL.

What to do next

Successful calls are recorded and added to the Request History list. If you are using HCL OneTest™ Performance, you

can click the Generate Test Suite () button to create a service test.

Viewing message content
The Raw Transaction Data view displays the raw XML, text, or binary content of any service request or response that

is selected in the generic service client.

About this task

The Raw Transaction Data view displays plain text, XML, or binary data, depending on the type of the message

content.

To view text, XML, or binary message content:

1. In the generic service client, click the View menu, and select Raw Transaction Data.

If you are using HCL OneTest™ Performance , click Window > Show View > Other > Generic Service Client >

Raw Transaction Data

2. Select a service request or response.

If you are using HCL OneTest™ Performance, this view is also linked to the selected request or response in

service tests, service stubs, or in the test log.

3. Depending on the nature of the message content, the following actions are available:

Text mode

When a plain text element is displayed, you can select and copy text. Click Colorize Text to

enable or disable text colorization for HTML.

XML mode

When an XML element is displayed, you can select and copy text. Click Colorize Text to enable

or disable text colorization for XML. Click Enable XML Pretty Serialization to improve readability

by adding line breaks and indentation to the XML content.

If the XML content is modified by a request or response stack or by the WSDL security editor, the

Stack Contents pane displays the list of steps in the stack. You can select each step to view the

changes to the XML content. You can also select one or two steps and click Compare Steps to

open a comparison window.

691

HCL OneTest Performance

692

Binary mode

When a binary element is displayed, you can switch between Binary and Raw-ASCII views. Right-

click the binary view to perform the following actions:

◦ Select: Opens the Select window, where you can select binary data by string or by

specifying the number of characters to select. When a portion of binary data is selected,

you can copy it to the clipboard.

◦ Go to Offset: Opens the Go to Offset window, where you can move to bytes at a

particular offset.

◦ Find: Opens the Find window, where you can search for and replace binary data in a

number of formats.

◦ Encodings: Select the encoding to use for displaying binary data in the text column.

Synchronizing a remote WSDL file
For web services that make their Web Services Description Language (WSDL) file available from a URL, you might

have to ensure that the WSDL that you work with is always up to date. By synchronizing the WSDL, you ensure that the

local copy of the WSDL in your workspace is regularly synchronized with the remote WSDL.

Before you begin

Ensure that you have a valid WSDL file. Ensure that the WSDLs use the correct syntax for the test environment. The

product might not work with some WSDL files.

WSDL synchronization only works with remote WSDLs that are imported from a URL.

The WSDL synchronization runs either when the workbench is started or after a specified period. If the remote WSDL

changes, the local copy of the WSDL is updated. Depending on the changes, a merge is performed and any service

requests that use the WSDL are updated. If the changes to the WSDL cannot be automatically applied to the service

requests, for example if an operation is removed or renamed or if the XML structure of the service request is changed,

the test is marked with a error.

To import a synchronized remote WSDL:

1. Open the generic service client, click the Requests tab, and then, click Add a WSDL file .

2. In the Add WSDL Files window, click Import from URL to download and import a remote WSDL from the web.

3. On the Import WSDL from URL page, type the URL of the remote WSDL.

If you are connecting through a proxy or a corporate firewall, click Proxy properties to specify your network

settings.

4. In the Synchronization policy area, specify whether and when to synchronize WSDLs:

Choose from:

◦ Select Never if you do not want the remote WSDL to be updated.

◦ Select On session launch to synchronize the WSDL each time you start the workbench.

◦ Select Every to specify a synchronization period in days.

5. Click OK.

Chapter 7. Test Author Guide

Result

The WSDL is added to the Call Library.

What to do next

After the WSDL is imported, you can change the synchronization settings by right-clicking the WSDL in the generic

service client Call Library or in the test navigator. Then select WSDL Synchronization. The WSDL Synchronization

window also displays the date of the latest synchronization.

Related information

Sending service requests with WSDL files on page 680

Testing all operations in a WSDL file on page 690

Synchronizing a local WSDL file with GSC
If you edit a local WSDL source file, the Generic Service Client (GSC) should display the changes in the UI. You must

keep the GSC up-to-date with the WSDL changes to ensure that you test the latest service request.

About this task

When you set GSC to automatically pick the WSDL changes, the GSC calls are fully re-created. This means that when

you make some changes to WSDL, there might be some content that you did not change, however, was dependent on

the changed content. Therefore, when you use this preference, the whole structure of the GSC calls is re-created.

The Request History view in GSC shows the changes occurred to the WSDL file.

To apply the local WSDL changes in GSC:

1. Click Window > Preferences > Generic Service Client.

2. Select the Apply WSDL changes to GSC check box.

Adding static XML headers to a service request
You can add static XML headers to service requests to ensure compliance with WS-Addressing, WS-

ReliableMessaging, and WS-Coordination specifications as well as other predefined standards.

About this task

Static XML headers are compliant with the web service specifications for service-oriented architecture (SOA). Checks

are performed to ensure that the XML headers are valid.

To add a static XML header to a request:

1. Open a service request in the generic service client. The location of the XML header depends on the product

that you are using:

Choose from:

693

HCL OneTest Performance

694

◦ For IBM® Security AppScan®, click the Request Stack tab and in the algorithm stack for the request,

click Add > Static XML Headers.

◦ For HCL OneTest™ Performance or other products, click the Message tab and click Form.

2. On the Header bar, click Add () to open the menu.

3. Select the web service specification for the request to be comply with, or click More to open a detailed list of

specifications.

Result

The XML structure of the header is created.

4. Edit the header as required.

Some elements require completion or content to be specified. XML elements that are invalid or require

attention are marked with a warning or an error symbol.

Related information

Editing WSDL security profiles on page 525

Adding WS-Addressing to a security configuration on page 539

Opening file attachments
When a service sends a file attachment with the response, you must import it as a resource to open the attachment.

Before you begin

Ensure that you have specified an editor to view the attachment type in. Click Window > Preferences > General >

Editors > File associations, and specify the editor.

1. Open the message return, and click the Attachment tab.

File attachments are listed with a default name, a MIME type, and a contents ID.

2. Select the line for the attachment that you want to open, and click Open.

3. In the Create Resource window, type a name for the resource, and select a location where it will be imported,

and click OK.

Ensure that the name of the resource includes a file extension that is compatible with the MIME type of the

attachment.

What to do next

After the attachment has been imported, you can click on Open again to open the file in the corresponding editor.

Emulating workloads
You emulate a workload by creating a schedule and adding user groups/rate runner groups, tests, and other elements

to it.

Chapter 7. Test Author Guide

Schedule overview
A schedule is the "engine" that runs a test. However, schedules are much more than simple vehicles for running tests.

You can design or emulate the real-life workload by creating various groups and dividing the load across different

remote agents that generate load on the application under test. A schedule can be as simple as one virtual user or

one iteration running one test, or as complicated as hundreds of virtual users or iteration rates in different groups,

each running different tests at different times.

You can create a VU Schedule or a Rate Schedule. The VU Schedule is used to add virtual users to generate the load

on the application under test. The Rate Schedule is used to ascertain the rate at which a task can be achieved in a

specific time frame. The Rate Schedule can be used on agents that were purchased only with PVU-based licenses.

You can use a schedule to control tests in the following ways:

• Group tests under groups, to emulate the actions of different types of users or rates.

• Set the order in which tests run: sequentially, randomly, or in a weighted order.

• Set the number of times that each test runs.

• Run tests at a certain rate

• Run tests for a certain time, and increase or decrease virtual users or rate during the run

When you create a schedule, it is displayed with one group, as shown in the following image. You can add more

groups, tests, and other items to the schedule to emulate a workload.

When you add items to a schedule, they appear in italic type, as shown i. The italic type changes to regular type after

you save the schedule.

695

HCL OneTest Performance

696

Creating a VU Schedule
You can create a VU Schedule to accurately emulate the actions of individual users.

1. Right-click the project in the Test Navigator view, and then click New > VU Schedule.

2. Enter a name for the VU Schedule, and then click Finish.

Result

A new VU Schedule that contains one user group is displayed.

3. Perform the following steps to add User Group and Locations on which each user group must run:

a. Right-click the VU Schedule, and then click Add > User Group.

b. Click a user group, and then select Run this group on the following locations from the Locations tab.

4. Right-click the User Group, and then click Add > Loop to set the loops for the tests.

Loops are used to run many iterations of a test, to run tests at a set rate, and to run tests in stages.

5. Right-click the Schedule Contents, and then click Add > Random Selector to contain the selector and their

weights.

Selectors are used to run a series of tests in random order, thus emulating the varied actions of real users,

instead of running each test within a user group sequentially. The weight that you assign each selector

determines the statistical probability that its child element is selected during an iteration.

6. Right-click the Schedule Contents, and then click Add > Test to contain the test.

7. Perform the following steps to set the stages for the VU Schedule:

a. Select the User Load from the Category field.

b. Click Add.

c. Enter a value in the Number of users field in the stage.

d. Select the appropriate option to set duration of the stage.

e. Click OK.

Each stage lasts for a specific amount of time and contains a specific number of users. By setting stages, you

can model workloads that reflect real-world usage over time. Putting the tests in a stage in an infinite loop

prevents virtual users from finishing before the stage ends.

Chapter 7. Test Author Guide

8. Add other schedule elements to refine the schedule structure: Right-click a schedule element, and click Insert

(adds the new element before the selection) or Add (adds the new element after the selection).

Element Purpose For more information

Synchronization point Used for coordinating the activi­

ties in a schedule, such as forcing

virtual users to wait at a specific

point

Synchronizing users on

page 711

Delay Used to emulate user actions ac­

curately; for example, a user might

delay before placing an order

Delaying virtual users or actions

on page 710

Comment Used for your notes and com­

ments regarding the schedule ele­

ment

9. Set the VU Schedule options:

Category options Typical setting For more information

User Load Select this option to model work­

loads over time and change the

number of users that perform cer­

tain tasks to reflect real-world us­

age.

Setting user loads on page 700

Think time Use the options on this page to in­

crease, decrease, or randomize the

think time. The default setting is to

use the recorded think time.

Think time overview on

page 723

Resource Monitoring Select Enable resource monitoring

to enable resource monitoring.

You can capture resource monitor­

ing data from these sources:

◦ Apache HTTP Server Man­

aged Beans

◦ Apache Tomcat Managed

Beans

◦ IBM® DB2® monitoring

◦ IBM® Tivoli® monitoring

Enabling Resource Monitor­

ing from the workbench on

page 750

Enabling Resource Monitoring on

Windows Vista, Windows 7, and

Windows Server 2008

697

HCL OneTest Performance

698

Category options Typical setting For more information

◦ IBM® WebSphere® Perfor­

mance Monitoring Infras­

tructure

◦ JBoss Application Server

Managed Beans

◦ Java™ Virtual Machine

Managed Beans

◦ Oracle Database monitor­

ing

◦ Oracle WebLogic Server

Managed Beans

◦ SAP NetWeaver Managed

Beans

◦ The rstatd daemon

(UNIX™)

◦ Simple Network Manage­

ment Protocol (SNMP)

agents

◦ Windows™ Performance

Monitor

Resource Monitoring from Service Select this option to continually

observe the health of the system's

resources. To monitor a remote

system under test, you can install

an agent on that system.

Resource Monitoring Service on

page 766

Statistics log level Typically, keep the default set­

tings. If you are running a long

test, change the sampling rate

from the default 5 seconds to a

larger interval.

Setting the statistics displayed

during a run on page 772

Variable Initialization A variable is declared in the test

variables section of the test. You

can use it throughout the test as a

reference for any field that can be

substituted.

Test variables on page 602

Requirements You can define performance re­

quirements to specify the accept­

Defining requirements in sched­

ules on page 731

Chapter 7. Test Author Guide

Category options Typical setting For more information

able thresholds for the perfor­

mance parameters in a schedule.

Test log level Typically, keep the default setting

of Primary test actions. You must

have at least this level of logging

to create a Page Percentile report

and to see page title verification

points that you have set.

Setting the data that the test log

collects on page 774

Response time breakdown Select Enable collection of re­

sponse time data to enable re­

sponse time breakdown.

You can collect response time

breakdown data from HTTP or

SOA tests.

Enabling response time break­

down collection on page 768

Enabling response time break­

down collection on Windows Vista,

Windows 7, and Windows Server

2008 on page 768

Problem definition log level Change the default settings only

when requested to do so by Sup­

port.

Setting the problem determination

level for schedules on page 779

Application Performance Manage­

ment

You can use Application Perfor­

mance Management (APM) in a

schedule to enable AppDynamics

or Dynatrace applications and en­

hance the data collection during

load testing by adding HTTP head­

ers to the request in your HTTP

tests.

Using Application Performance

Management in a schedule on

page 721

Advanced tab (at the bottom of

the VU Schedule Details area)

Click Edit Options to set proto­

col-specific options that apply to

all tests in the schedule. Setting

protocol-specific options for a

schedule is similar to setting pro­

tocol-specific options for a user

group.

Emulating slower network traffic

on page 708

Running long duration Citrix tests

on page 785

What to do next

After you create a VU Schedule that describes the behavior for your software system, run it against successive builds

of the application under test or with an increasing number of virtual users. Then analyze the results that are reported.

699

HCL OneTest Performance

700

Setting user loads
By setting stages, you can model workloads over time and change the number of users that perform certain tasks to

reflect real-world usage. You can vary the user load and collect performance metrics for each stage independently,

which means that a single run can more efficiently accomplish the work of multiple runs that require shutting down

and restarting users. Each stage, which lasts a specific amount of time and contains a specific number of users,

defines a different load.

About this task

When a VU Schedule contains stages, you can place the tests in the schedule in an infinite loop, as shown in the

following figure. This setting prevents virtual users from finishing the stage before the allotted time.

You can also use the Percentage of users allowed to exit during execution option to specify the number of users that

can stop during a stage without stopping the stage or the entire test run.

To add stages to a VU Schedule:

1. In the Test Navigator, browse to the schedule and double-click it.

Result

By default, the User Load option contains one stage with five users that run until finished. The following figure

shows the default User Load option.

Chapter 7. Test Author Guide

2. In the User Load section, click Add.

3. In the Create User Stage window, enter the information for a stage, and click OK.

Options Description

Number of

users

Enter the total number of users in the stage. This is not the number of users to add to or to re­

move from those currently running; it is the total number of active users at this stage.

Stage Dura­

tion

Enter the length of time (and the time units) for the stage to run. After the Number of users

setting is achieved, the users will run for up to this amount of time. When the time expires, the

users continue to run if they are needed for the next stage, or, if not, they are stopped.

Rate of

Change

Specify the amount of time to delay, when changing the number of users, between adding or

removing each user.

701

HCL OneTest Performance

702

Options Description

Adding or removing all users over a time period changes the users in a uniform random distri­

bution over the time specified for changing users, which is the time before the settle and the

stage begin. This slight variance closely emulates human behavior.

Adding or removing one user every time unit adds the same delay for each user. Although

this option does not emulate human behavior as closely as the first option, it is useful when

you must adhere to a certain rate because of limitations of the system under test, such as the

time it takes for a user to log on to the system.

Settle Time After the desired user population has been reached, a system might still experience a period

of flux in reaction to the change in user population. Setting a settle time allows the system to

re-establish its steady-state equilibrium so that it can accurately reflect the user population.

The Stage Duration starts after the settle time expires. The settle time is not part of the stage

duration and the settle-time metrics are not included in the Compare report, which is gener­

ated at the end of the run. However, settle time does affect how long a VU Schedule runs, be­

cause it adds time to the beginning of each stage. And, although the Compare report does

not include the settle-time metrics, these metrics are collected and you can include them by

changing the time range of the report.

If your system does not have significant flux or if the stage is long enough that the flux com­

prises only a minor part of it, you might not need a settle time.

4. In the User Load section, modify the stages as necessary:

a. Click Up or Down to change the order of the rows.

b. Double-click a row to modify it.

5. Enter the Time limit for a user to respond to a stop request value.

If a stage contains fewer virtual users than its predecessor, the excess users are asked to stop. This value

gives a stopped virtual user extra time to complete its current action (such as an HTTP request). If the virtual

user cannot complete its action before the time limit expires, it is forced to stop. Note that a long time limit

might delay the next stage.

6. Enter a value for Percentage of users allowed to exit during execution to specify the percentage of users that

can stop during a stage of a test run. The default is 0%, which means if any users stop during a stage, the

entire test ends after that stage completes. If you enter a value, the test run can continue to the next stage

even if some users stop running. You can specify a value from 0 to 100 with fractions up to one decimal place.

Examples of valid percentages include 0.5%, 3%, and 99.1%.

7. To stop the run after a specific number of successive failed stages, select the Exit run for failing

requirements check box and specify a value in Number of failing stages in a row. If, at the end of a completed

stage, that stage has failed, and if such stage failures happen successively for the specified number of times,

the VU Schedule will stop.

Chapter 7. Test Author Guide

8. Examine the User Load Preview section to verify that the stages are set correctly. The red line segments

indicate that the total number of users has been achieved for the stage and the settle time, if one is specified,

has ended.

Result

The following figure illustrates a VU Schedule with two 16-minute stages. The second stage has a 4-minute

change rate and a 4-minute settle time:

What to do next

You can display a Compare report, which compares the time ranges of each stage, when the run is complete. This

report provides a quick side-by-side analysis of how the system under test performs under various user loads. To

display a Compare report, right-click the test results; then click Compare All Time Ranges.

User group overview
User groups enable you to group tests in a logical order.

703

HCL OneTest Performance

704

With user groups, you can control test execution in several ways:

• Group tests by characteristics. For example, you could have two user groups—a Buyers group and a Browsers

group—that represent the types of users on your system.

• Influence the order in which tests are run. When you run a VU Schedule, the first test in each user group runs

—in parallel, not sequentially. After the first test in a user group is completed, the second test runs, then the

third, and so on.

Exemple

The following VU Schedule contains one user group.

If you run this VU Schedule with 10 users, they are assigned to the only user group—Browsers and Buyers. When

the run starts, the 10 virtual users start running the first test in parallel. As soon as one test is finished, a virtual

user moves to the second test. Thus, you have 10 virtual users, all starting at the same time and running each test

sequentially. This does not give you much control over the run.

Exemple

The following VU Schedule contains the same tests in the same order, but they are divided between two user groups.

Conceptually, this VU Schedule is easier to understand, because the user's tasks are grouped logically—the Browsers

browse, and the Buyers browse and then bid on a product. But, even more important, this one gives a more accurate

representation of the types of users on your system, because each user group contains tests that represent the

actions that they do, and the proportions of the user groups (70% and 30%) represent the proportions of the users on

your system.

If you run this VU Schedule with 10 users, seven are assigned to the Browsers group, and three are assigned to the

Buyers group. When the run starts, the seven Browsers and the three Buyers start in parallel. Thus, you have seven

Browsers, each running two tests sequentially, and three Buyers, each running three tests sequentially.

Chapter 7. Test Author Guide

Adding a user group to VU Schedule
By defining user groups, you can group related tests and run the tests in parallel. Tests belonging to different user

groups run in parallel.

1. In the Test Navigator, double-click the VU Schedule.

2. Right-click the name of VU Schedule, and then click Add > User Group.

3. In Group name, type a descriptive name for the user group.

4. Under Group size, select Absolute or Percentage, and type the number of users or a percentage of users in

the group.

Option Description

Absolute Specifies a static number of virtual users. Type the

maximum number of virtual users that you want to be

able to run. For example, if you type 50, you can run

up to 50 virtual users each time you run a schedule.

Typically, you create an Absolute user group only if

the group does not add a workload. For example, if

one test prepared a website for use and another test

restored the site to its initial state, each test would be

in an Absolute user group that contains one user.

Percentage Specifies a dynamic number of users. Type the per­

centage of the workload that the user group rep­

resents. Typically, you assign user groups a per­

centage, rather than an absolute number. For exam­

ple, perhaps 70.0% of your users browse your web­

site, and 30.0% order an item from your website. Set

up two user groups in this proportion. Then, at the

schedule level, type the initial number of users to run.

You can also add users during the run. The schedule

distributes the users among the dynamic user groups

according to the percentages you specify.

Tip: You can specify fractional percentages.

5. Under Locations, select Run this group on the local computer or Run this group on the following locations.

Option Description

Run this group on the local computer The user group runs on your computer. Use this op­

tion if the workload is small or if you are testing the

VU Schedule.

705

HCL OneTest Performance

706

Option Description

Run this group on the following locations Typically, you run user groups on remote comput­

ers. When user groups run on remote computers, the

workbench activity on the local computer does not

affect the ability to apply load. Run user groups at re­

mote locations in these cases:

◦ When a large number of virtual users are run­

ning and the local computer does not have

enough processor or memory resources

to support this load. You can conserve re­

sources by running the users on different lo­

cations, so that fewer users run on each com­

puter.

◦ When a test requires specific client libraries

or software. The user group that contains this

test must run on a computer that has the li­

braries or software installed.

6. To declare a remote location:

a. Click Add > Add New.

Result

The Add New wizard opens. On the first page of the wizard, you can specify general properties for the

remote location.

b. In Hostname, type the IP address or the fully qualified host name of the remote computer.

c. In Name, type a descriptive name for the remote computer.

d. In Deployment Directory, enter a fully qualified pathname of the directory, which is in the remote

computer to store the test assets.

Note: The environment variables such as %TEMP% are not supported in the Deployment

Directory field.

e. In Operating System, select the operating system of the remote computer, and then click Next.

f. Specify the IP aliasing properties for this location. To make it appear as though each virtual user has

its own IP address, click Enable IP Aliasing.

g. To use IP addresses from all network interfaces at the remote location, click Use IP addresses from all

network interfaces.

Chapter 7. Test Author Guide

h. To use addresses from a subset of network interfaces, click Only use IP addresses from the following

network interfaces.

Tip: Click Add to add the name of an interface and Edit to change the interface name. Specify

network interfaces separated by commas, for example, eth0, eth1. If you do not use this form,

the connection attempt fails.

i. Click Next. On the third page of this wizard, you can specify file locations.

j. In File name, type the name of the file to contain information about this computer, and then click Next.

Note: The data stored in the file includes information such as the host name and deployment

directory. You can change this information later by opening the Test Navigator and double-

clicking the file.

7. To add an already declared location:

a. Click Add > Add Existing.

b. In the Select Location window, select the computer on which the user group will run, and then click OK.

Exemple

The following schedule shows two user groups. Browsers represent 70.0% of the users, and Buyers represent the

remaining 30.0%:

What to do next

After you have added user groups to the VU Schedule, add the tests that each user group will run.

Adjusting user groups
You can adjust multiple user groups simultaneously to distribute a load across groups and to set the groups to run on

the workbench computer. Typically, when you run VU Schedule, user groups run on remote agent computers, not on

the local workbench computer.

1. In the Test Navigator, double-click the VU Schedule.

2. Under Schedule Contents, select the groups to adjust.

3. Under User Group Details, adjust the group sizes or set all groups to run on the workbench computer.

707

HCL OneTest Performance

708

Option Description

Percentage Click to distribute the load for the user group based

on percentage.

Absolute Click to distribute the load for the selected user

group,based on absolute numbers.

Emulating slower network traffic
You can emulate various WAN connection speeds used for HTTP traffic to determine its effect on response times and

throughput.

About this task

You can set a user group to emulate the speed at which HTTP data is sent and received. By delaying the network

uploads and downloads to emulate a slower network connection, the user group mirrors real-world interaction with

production servers.

To emulate line speed:

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. In the schedule, click the user group for which you want to define a line speed.

3. In the Schedule Element Details area, click the Options tab.

4. To declare the line speed value:

a. Click Enable line speed control.

b. Select the actual line speed, or select Custom values to enter a value.

c. Select the required line speed, or select Custom values to enter a value, which must be lower than the

actual line speed.

Exemple

If a user group employs multiple agent computers (locations) that have different real line speed values, to obtain the

highest possible accuracy, we recommend that you divide the user group into smaller user groups so that each user

group contains agents with the same actual line speed value. However, even if the actual line speeds are different, if

they are both much larger than the required line speed, then the inaccuracy will be small, and may even be tolerable.

The following example illustrates this difference. The actual line speeds are different (100 Mbps and 10 Mbps) but

are both much larger than the desired line speed of 56 Kbps:

The computed line speed delay for a 5000 byte response where the actual line speed is 100 Mbps and the desired line

speed is 56 Kbps is 706 ms. The computed line speed delay for a 5000 byte response where the actual line speed is

10 Mbps and the desired line speed is 56 Kbps is 702 ms. In this example, the inaccuracy is only 4 ms.

Chapter 7. Test Author Guide

Running a user group at a remote location
You can run a user group at a remote location (also called an agent computer), rather than on your local computer, to

prevent your workbench activity from affecting the ability to apply load.

Before you begin

Before you run a user group at a remote location, verify that:

• HCL OneTest™ Performance Agent is installed on the remote computer. The agent is configured and

connected to the HCL OneTest™ Performance workbench.

• Firewall is disabled on the workbench computer or configured to allow incoming connections on the port

number 7080.

• A reasonable number of virtual users will run at the remote location. When you assign a user group to a

remote location, do not overload the remote computer (agent). If you exceed the number of virtual users that

the remote computer can run, the performance measurements of the server will be skewed because they will

be affected by the performance of the computer. The test results will reflect the load of the computer more

than the load of the server. For best results on a computer with a 1 GHz processor and 1 GB of RAM, do not

exceed 1000 concurrent virtual users.

About this task

Generally, you should run user groups at a remote locations. You must run a user group at a remote location in these

cases:

• When a large number of virtual users are running and the local computer does not have enough processor

or memory resources to support this load. You can conserve resources by running the users on different

locations, so that fewer users run on each computer.

• When a test requires specific client libraries or software. The user group that contains this test must run on a

computer that has the libraries or software installed.

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. In the schedule, click the user group that you want to run on a different computer.

3. In the Schedule Element Details area, click Run this group on the following locations.

4. To declare a remote location:

a. Click Add > Add New.

Result

The Add New wizard opens. On the first page of the wizard, you can specify general properties for the

remote location.

b. In Hostname, type the IP address or the fully qualified host name of the remote computer.

c. In Name, type a descriptive name for the remote computer.

709

HCL OneTest Performance

710

d. In Deployment Directory, enter a fully qualified pathname of the directory, which is in the remote

computer to store the test assets.

Note: The environment variables such as %TEMP% are not supported in the Deployment

Directory field.

e. In Operating System, select the operating system of the remote computer, and then click Next.

f. Specify the IP aliasing properties for this location. To make it appear as though each virtual user has

its own IP address, click Enable IP Aliasing.

g. To use IP addresses from all network interfaces at the remote location, click Use IP addresses from all

network interfaces.

h. To use addresses from a subset of network interfaces, click Only use IP addresses from the following

network interfaces.

Tip: Click Add to add the name of an interface and Edit to change the interface name. Specify

network interfaces separated by commas, for example, eth0, eth1. If you do not use this form,

the connection attempt fails.

i. Click Next. On the third page of this wizard, you can specify file locations.

j. In File name, type the name of the file to contain information about this computer, and then click Next.

Note: The data stored in the file includes information such as the host name and deployment

directory. You can change this information later by opening the Test Navigator and double-

clicking the file.

5. To add an already declared location:

a. Click Add > Add Existing.

b. In the Select Location window, select the computer on which the user group will run, and then click OK.

Delaying virtual users or actions
By adding a delay to a schedule or a compound test, you can emulate user actions more accurately.

1. In the Test Navigator, browse to the schedule or compound test and double-click it.

2. Right-click the schedule or test element to be delayed, and then click Add > Delay.

3. In the Element Details area, type the length and the time units of the delay.

Exemple

After you add a delay, you generally add the schedule or test elements that the delay controls. The elements are at the

same level as the delay—they are not children of the delay.

Chapter 7. Test Author Guide

The following schedule shows three delays. The Browsers delay 10 seconds between each browse action. The Buyers

delay 30 seconds between each Browse action and one minute before they decide to bid on an item.

Synchronizing users
Inserting a synchronization point enables you to coordinate the activities of a number of virtual users by pausing and

resuming activities. You can synchronize all virtual users at the beginning of a schedule and stagger the release times

so that the users do not overload the system. Synchronization points are also useful in stress testing.

About this task

You can insert a synchronization point into a schedule or a test. The advantage of inserting a synchronization point

into a schedule is that the synchronization point is more visible than in a test. Also, you can define release options

and select a timeout for a synchronization point set in a schedule.

Synchronization points within loops are not reset. In other words, once a synchronization point has been released (in

the first iteration of a loop) it stays released for all further iterations.

To insert a synchronization point into a schedule:

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. Right-click the element just below the place that you want to add the synchronization point, and then click

Insert > Synchronization point.

3. Enter a name for the synchronization point, or select the name of an existing synchronization point to modify

its release type.

Result

711

HCL OneTest Performance

712

The synchronization point opens in the schedule for you to set its attributes.

4. Set the release type; that is, whether you want the users to be released at the same time or at staggered

times. Use the Together release type when you are preforming a stress test on the system. Use the Staggered

release type when you want the users released in such a way that they will not overwhelm the system.

Option Description

Together Releases all users at once from a synchronization

point. The default restart time is 0, which means that

when the last user reaches the synchronization point,

all users are released together immediately.

To delay the users, enter a number in the Restart

Time field. For example, if you set the restart time to

4 seconds, after all of the users reach the synchro­

nization point (or the timeout occurs), they wait 4

seconds, and then they are all released.

Staggered Releases the users one by one from a synchroniza­

tion point.

The amount of time that each user waits to be re­

leased is chosen at random and is uniformly distrib­

uted within the range that you set in the Minimum

time and the Maximum time fields.

For example, if the Minimum time is 1 second and

the Maximum time is 4 seconds, after the users

Chapter 7. Test Author Guide

Option Description

reach the synchronization point (or the timeout oc­

curs), each user waits between 1 and 4 seconds after

being released. All users are distributed randomly be­

tween 1 and 4 seconds.

5. Set the timeout period. The timeout period begins when the first virtual user reaches the synchronization

point. If all the users that are associated with the synchronization point do not reach it when the timeout

period ends, any users at the synchronization point are released. A timeout of 0 means that there is no

timeout.

Setting a timeout is useful, because one user might encounter a problem that prevents him from reaching the

synchronization point. You do not want to hold up all users because of a problem with one user.

A user reaching a synchronization point after a timeout is not held. However, the user is delayed if the

Minimum time and Maximum time are set.

Creating a Rate Schedule
By creating a Rate Schedule, you can model the different behaviors of how the application is accessed and measure

the rate accuracy.

About this task

The Rate Schedule can be run only on agent locations.

When you run a Rate Schedule, it tries to achieve the desired rate with the specified number of clients. However, if the

actual rate falls below the specified threshold level, the product will automatically add more number of clients within

the purview of the maximum number of clients to reach the desired rate. You can modify the threshold level based on

the need of the tests at Window > Preferences > Test > Test Execution > Actual rate threshold (percentage).

1. Click File > New > Rate Schedule or from the Test Navigator view, right-click the project and click New > Rate

Schedule.

2. Select a project for the Rate Schedule, specify the name of the Rate Schedule, and click Next.

3. Specify the number of stages and the number of rate runner groups for the Rate Schedule.

The number of stages and rate runner groups is determined by the amount of load you want to generate and

the model of the workload.

4. Click Finish.

The Rate Schedule is created.

5. To make changes to the stages in the Rate Schedule, for the Load category in the Rate Schedule Details

section, click Add, Edit, or Remove buttons.

6. To add tests to the Rate Runner Group, select it and click AddTest and select a test.

7. To add a new Rate Runner Group, select the Rate Schedule and click Add > Rate Runner Group. For more

information, see Adding Rate Runner Groups on page 717.

713

HCL OneTest Performance

714

8. To specify the agents to generate the load, select the Agents category in the Rate Schedule Details section

and add agent locations. For more information, see Adding Agent Locations on page 719.

9. Optional: Set the loops for the tests (or other schedule elements) to use: Right-click the Rate Runner Group

to contain the loop, and click Add > Loop. Loops are used to run many iterations of a test, to run tests at a set

rate, and to run tests in stages.

10. Add selectors and their weights: Right-click the schedule element to contain the selector, and click Add >

Random Selector. Selectors are used to run a series of tests in random order, therefore emulating the varied

actions of real users, instead of running each test within a Rate Runner Group sequentially. The weight that

you assign each selector determines the statistical probability that its child element is selected during an

iteration. For more information, see Running tests in random order on page 738.

11. Add other schedule elements to refine the schedule structure: Right-click a schedule element, and click Insert

(adds the new element before the selection) or Add (adds the new element after the selection).

Some of the elements to add to the Rate Schedule:

Element Purpose More information

Delay Used to emulate actions accu­

rately; for example, a transaction

might be delayed before placing

an order.

Delaying actions on page 710

Comment Used for your notes and com­

ments regarding the schedule ele­

ment.

Transaction Used to group certain actions in a

transaction.

Adding transactions on

page 740

12. Save the Rate Schedule.

Setting rate load
By setting stages, you can model workloads over time and change the number of transactions that perform certain

tasks to reflect real-world usage. You can divide the load into stages and collect performance metrics for each stage

independently, which means that a single run can more efficiently accomplish the work of multiple runs. Each stage,

which lasts a specific amount of time and contains a specific number of transactions, defines a different load. Each

load is used to derive a certain rate of transactions in a given time.

About this task

You can add load only to the Rate Schedule Details section. When you add the load, they are automatically displayed

in the Rate Runner Group Details section. Managing the rate at which the load is to be run is specified in the Rate

Runner Group Details section. You can change the rate at the time of the run too.

Chapter 7. Test Author Guide

1. In the Test Navigator, browse to the rate schedule and double-click it. In the Rate Schedule editor that opens,

the Load category displays one stage that runs for 10 minutes.

2. In Rate Schedule Details section, click Add.

3. Specify the duration of the stage and the settle time. The time required for the system to stabilize in between

reaching the peak load and starting another stage is called settle time.

4. Click OK.

Result

The new stage is added to the Rate Schedule and is displayed to all the Rate Runner Groups.

5. In Time limit to respond to a stop request, specify a duration value.

If a stage contains fewer iterations than its predecessor, the excess iterations in the previous stage are asked

to stop. This duration value gives a stopped iteration extra time to complete its current action (such as an

HTTP request). If the iteration cannot complete its action before the time limit expires, it is forced to stop.

Note that a long time limit might delay the next stage.

6. Optional: To update the stage details, click a Rate Runner Group, select a stage from the table, and click the

Show Advanced check box. You can also click the Edit button and update the following options.

Iteration rate

Specify the rate at which a transaction needs to be executed.

Distribution

Specify the frequency rate at which the rate generator should run.

Constant: The workload of the rate generator occurs exactly at the rate you specify. For example,

if the iteration rate is 4 per minute, the workload starts at 15 seconds, 30 seconds, 45 seconds,

and 60 seconds, which is exactly 4 every minute, evenly spaced, with a 15-second interval.

Uniform: The time between each workload is not constant. However, the workload that occurred

over time averages out to the rate that you specified. The time between the start of each

workload is chosen randomly with a uniform distribution within the selected range.

Negative Exponential: This type of distribution emulates the spike of activity followed by a lean

period that is typical of user behavior. Therefore, if the rate is 4 every minute, the probability that

the workload starts immediately is high but decreases over time. HCL OneTest™ Performance

maintains the desired average rate.

Change Rate

Use this option to ramp up or ramp down the iteration rate to the desired level.

Min Clients

Specify the minimum number of clients to be used to achieve the desired rate of execution. This

option is typically used by an advanced user if the default number of clients do not meet the

desired rate.

715

HCL OneTest Performance

716

Max Clients

Specify the maximum number of clients to be used to achieve the desired rate of execution.

7. Save the Rate Schedule.

Rate Runner group overview
With the Rate Runner group, you can group tests in a logical order and run them in parallel.

You can control test execution in Rate Runner groups in several ways:

• Group tests by characteristics: For example, you could have two groups such as Buyers group and Browsers

group. These groups represent the types of users on your system.

• Influence the order in which tests are run: When you run the Rate Schedule, the first test in each group runs in

parallel, and not in sequence. After the first test in the group is completed, the second test runs, then the third,

and so on.

Exemple

The following Rate Schedule contains one user group.

If you run this Rate Schedule with 10 iterations, they are assigned to the only Rate Runner group: Browsers and

Buyers. When the run starts, the 10 iterations start running the first test in parallel. As soon as one test is finished,

an iteration moves to the second test. Thus, you have 10 iterations, all starting simultaneously and running each test

sequentially. This does not give you much control over the run.

Exemple

The following Rate Schedule contains the same tests in the same order, but they are divided between two Rate

Runner groups. Conceptually, this Rate Schedule is easier to understand, because the user's tasks are grouped

logically as Browsers browse and Buyers browse and then bid on a product.

Chapter 7. Test Author Guide

Adding Rate Runner Groups
By defining Rate Runner Groups, you can group related tests. The tests within a group run in a sequence and the tests

across the groups are run in parallel.

About this task

For example, there are two Rate Runner Groups, such as Rate Runner Group A and Rate Runner Group B. Each group

contains one test. When you run the Rate Schedule, both the tests run in parallel. If there are more tests in the groups,

those tests will run after the first test completes.

1. From the Test Navigator view, double-click the Rate Schedule.

2. In the Rate Schedule editor, select the schedule and click Add > Rate Runner Group.

3. In the Group name, type a descriptive name for the user group.

4. In the table, click Show Advanced check box and click Edit.

5. You can modify the following options for the Rate Runner Group:

Iteration Rate

Specify the rate at which a transaction needs to be executed.

Constant: The workload of the rate generator occurs exactly at the rate you specify. For example,

if the iteration rate is 4 per minute, the workload starts at 15 seconds, 30 seconds, 45 seconds,

and 60 seconds, which is exactly 4 every minute, evenly spaced, with a 15-second interval.

Uniform: The time between each workload is not constant. However, the workload that occurred

over time averages out to the rate that you specified. The time between the start of each

workload is chosen randomly with a uniform distribution within the selected range.

Negative Exponential: This type of distribution emulates the spike of activity followed by a lean

period that is typical of user behavior. Therefore, if the rate is 4 every minute, the probability that

the workload starts immediately is high but decreases over time. HCL OneTest™ Performance

maintains the desired average rate.

Change Rate

Click this option to set a delay between starting and stopping each iteration. The All iterations

over option produces a slight variance that is representative of human behavior. The One

iteration every option adds the same delay to each iteration, which prevents many iterations

from performing an action simultaneously if the system under test has limitations.

Min Clients

Specify the minimum number of clients to be used to achieve the desired rate of execution. This

option is typically used by an advanced user if the default number of clients do not meet the

desired rate.

Max Clients

Specify the maximum number of clients to be used to achieve the desired rate of execution.

717

HCL OneTest Performance

718

6. Define the scope of the tests in the Rate Runner Group.

Define Locally: Click this button to use the tests from the Rate Schedule.

Use compound test: Clkick this button to define the group from the compound test. You can click Browse

to add an existing compound test to the Rate Runner group or click Create to create a compound test. The

definition of the compound test is then applied to the Rate Runner group.

7. In the Options tab, define the protocol-specific options.

Select Override think time options to specify a think time behavior for the current group.

Use the recorded think time

Select to play back a test at the same rate that it was recorded. This option has no effect on the

think time.

Specify a fixed think time

Each think time is exactly the same value that you specify. Although this does not emulate users

accurately, it is useful if you want to play a test back quickly.

Increase/decrease the think time by a percentage

Type a percentage in the Think time scale. Each think time is multiplied by that percentage. A

value of 100 causes no change in think times. A value of 200 doubles the think times, therefore

the schedule plays back half as fast as it was recorded. A value of 50 reduces the think times by

half, therefore the schedule plays back twice as fast. A value of 0 indicates no delays.

Vary the think time by a random percentage

Each think time is randomly generated within the upper and lower bounds of the percentages

that you supply. The percentage is based on the recorded think time. For example, if you select a

Lower limit of 10 and an Upper limit of 90, the think times will be between 10 % and 90 % of the

original recorded think time. The random time is uniformly distributed within this range.

Limit think times to a maximum value

Setting a maximum think time is useful with tests that emulate actual think times. By setting

a maximum, you do not have to search for and edit each long think time within a test, if, for

example, you are interrupted during recording. No think time used will be greater than the

maximum limit you set, even if you have chosen to vary the think time by a percentage that

would exceed this maximum. To restore the original think times, clear this check box.

8. Click the Edit Options button to edit certain options that apply to specific test extensions.

9. In the Variable Initialization tab, create or select the existing variables to be used by all the tests in a Rate

Runner group. For more information, see Assigning variables to schedule and groups on page 730

10. Save the schedule.

Chapter 7. Test Author Guide

Run a Rate Runner group at a remote location
To generate good amount of load, you need computers with enough processing capability and throughput. It is a good

practice to install the workbench on your computer and the agents on remote computers. The agents on the remote

computers help generate the load.

Before you begin

Before you run a user group at a remote location, verify that:

• HCL OneTest™ Performance Agent is installed on the remote computer. The agent is configured and

connected to the HCL OneTest™ Performance.

• One transaction rate per second is equivalent to one Virtual Tester. From 9.2.0.1, to run a Rate Schedule with

more than 5 transactions per second, you must have appropriate VT Pack licenses.

• Firewall is disabled on the workbench computer or configured to allow incoming connections on the port

number 7080.

• A reasonable number of iterations will run at the remote location. When you assign a Rate Runner group to a

remote location, do not overload the remote computer (agent). If you exceed the number of iterations that the

remote computer can run, the performance measurements of the server will be skewed because they will be

affected by the performance of the computer. The test results will reflect the load of the computer more than

the load of the server. For best results on a computer with a 1 GHz processor and 1 GB of RAM, do not exceed

1000 concurrent iterations.

About this task

Generally, you should run the groups at a remote locations. You must run a Rate Runner group at a remote location in

these cases:

• When a large number of iterations are running and the local computer does not have enough processor or

memory resources to support this load. You can conserve resources by running the iterations on different

locations, so that reasonable number of iterations run on each computer.

• When a test requires specific client libraries or software. The Rate Runner group that contains this test must

run on a computer that has the libraries or software installed.

1. From the Test Navigator view, double-click the Rate Schedule

2. Select the name of the Rate Schedule and from the Rate Schedule Details section, select the Agents category.

You can also select the agents at the Rate Runner Group level. Select a Rate Runner Group and click the

Agents tab.

Note: When the agents are declared for both Rate Runner Group and Rate Schedule, the Rate Runner

Group agents take precedence.

3. To declare a remote location:

719

HCL OneTest Performance

720

a. Click Add > Add New.

Result

The Add New wizard opens. On the first page of the wizard, you can specify general properties for the

remote location.

b. In Hostname, type the IP address or the fully qualified host name of the remote computer.

c. In Name, type a descriptive name for the remote computer.

d. In Deployment Directory, enter a fully qualified pathname of the directory, which is in the remote

computer to store the test assets.

Note: The environment variables such as %TEMP% are not supported in the Deployment

Directory field.

e. In Operating System, select the operating system of the remote computer, and then click Next.

f. Specify the IP aliasing properties for this location. To make it appear as though each virtual user has

its own IP address, click Enable IP Aliasing.

g. To use IP addresses from all network interfaces at the remote location, click Use IP addresses from all

network interfaces.

h. To use addresses from a subset of network interfaces, click Only use IP addresses from the following

network interfaces.

Tip: Click Add to add the name of an interface and Edit to change the interface name. Specify

network interfaces separated by commas, for example, eth0, eth1. If you do not use this form,

the connection attempt fails.

i. Click Next. On the third page of this wizard, you can specify file locations.

j. In File name, type the name of the file to contain information about this computer, and then click Next.

Note: The data stored in the file includes information such as the host name and deployment

directory. You can change this information later by opening the Test Navigator and double-

clicking the file.

4. To add an already declared location:

a. Click Add > Add Existing.

b. In the Select Location window, select the computer on which the user group will run, and then click OK.

5. Save the schedule.

Chapter 7. Test Author Guide

Using Application Performance Management in a schedule
You can use Application Performance Management (APM) in a schedule to enable AppDynamics or Dynatrace

applications and enhance the data collection during load testing by adding HTTP headers to the request in your HTTP

tests. You can also use APM to monitor the performance of applications.

Before you begin

You must have completed the following tasks:

• Created a VU schedule or Rate schedule.

• Added an HTTP test to the schedule.

About this task

You can select the page or the transaction to enable the data to be displayed in the selected application and run the

schedule. After the schedule run is complete, you can open the Test Log page, and select the request. You can then

click the Protocol Data tab and open the Request page.

Based on the page or transaction that you select, the Request page displays a header that is added automatically to

the current page of every request as described in the following table:

If you select... Then...

Pages
A header called PT_Page with a value of the current

page is added to every request.

Transactions
A header called PT_Transaction with a value of the cur­

rent page is added to every request.

Note: If you do not add any transaction to the

schedule, then the header is not added to the re­

quest.

Note: The PT_Page and PT_Transaction request headers that are added to the selected requests during the

test run can enhance the data collection with AppDynamics or Dynatrace.

1. Open the schedule from the test editor.

2. Select the schedule from the Schedule Contents section.

3. Select Application Performance Management from the Category field.

4. Select one of the following checkboxes to enable transaction and page requests into APM by using HTTP

headers.

721

HCL OneTest Performance

722

◦ Enable AppDynamics

◦ Enable Dynatrace

5. Select any of the following checkboxes to control the header that is added to every request:

◦ Pages: Select this checkbox to add a header called PT_Page with a value of the current page name to

every request.

◦ Transactions: Select this checkbox to add a header called PT_Transaction with a value of the current

transaction name to every request within a transaction.

6. Select one of the following options to filter the requests:

◦ All: Click this option to add headers to all the requests.

◦ Primary Request Only: Click this option to add headers to the primary requests only.

7. Select the Filter by Host/Port checkbox to filter the requests based on the hostname and port number of the

existing connections in the tests.

8. Select the Filter by User Defined checkbox, and then perform the following steps if you want to filter the

requests based on the strings that you defined:

a. Click Add.

b. Enter a string name in the Text field.

c. Select any of the following checkboxes based on your requirement:

▪ Case-sensitive: Select this checkbox to find the content that is sensitive to the capitalization of

letters that are entered in the Text field.

▪ Regular expression: Select this checkbox to accept a regular expression to match the string

that is entered in the Text field.

d. Click OK.

9. Select any one of the following checkboxes to add the filters for the category:

◦ Both filters match: Click this option to select only the requests that match both the Filter by Host/Port

and Filter by User Defined filters.

◦ Either filter matches: Click this option to select the requests that match either Filter by Host/Port or

Filter by User Defined filters.

Results

You have enabled the AppDynamics or Dynatrace application in a schedule by using APM.

What to do next

You can save and run the schedule. After the schedule run is complete, you can open the Test Log page, and select

the request. You can then click the Protocol Data > Request and verify the request details.

Chapter 7. Test Author Guide

Think time overview
Think time is a delay in the processing of a request to reproduce the time that a human would take to read or examine

the data that is displayed from a previous user action. Think time is calculated from the time that a request is

received (that is, the display is complete on the monitor) until the time that the user clicks a key or link to perform an

action.

Setting think time behavior in schedules
You can increase, decrease, or randomize think time in your tests, or you can play it back exactly as recorded.

To set the think time in a schedule:

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. You can set the think time behavior for an entire schedule or you can override the think time behavior for any

specific user group.

Choose from:

◦ To set the think time behavior for the entire schedule, in the Schedule Contents area, click the name of

the schedule and click the Think Time tab.

◦ To override the think time behavior for a specific user group, in the Schedule Contents area, click the

name of the user group, click the Options tab, and select the Override think time options check box.

3. Set the think time behavior to one of the following options:

Option Description

Use the recorded think time. This option does no affect the think time. The time

that it takes for a test to play back is the same as the

time that it took to record it. So, for example, if you

were interrupted for five minutes during recording,

the same five-minute think time occurs when you run

the test.

Specify a fixed think time. Each virtual user's think time is exactly the same val­

ue: the value that you type. Although this option does

not emulate users accurately, it is useful if you want

to play a test back quickly.

Increase/decrease the think time by a percentage. In the Think time scale field, specify a percentage by

which each virtual user's think time is multiplied. A

value of 100 indicates no change in think time. A val­

ue of 200 doubles the think times, so that the sched­

ule plays back half as fast as it was recorded. A val­

ue of 50 reduces the think times by half, so that the

723

HCL OneTest Performance

724

Option Description

schedule plays back twice as fast. A value of 0 indi­

cates no delays at all.

Vary the think time by a random percentage. Each virtual user's think time is randomly generat­

ed within the upper and lower bounds of the percent­

ages that you supply. The percentage is based on the

recorded think time. For example, if you select a low­

er limit of 10 and an upper limit of 90, the think times

are between 10 percent and 90 percent of the original

recorded think time. The random time is distributed

uniformly within this range.

4. To set a maximum think time, select the Limit think times to a maximum value check box and specify a value.

5. Save the schedule.

Limiting think times in schedules
You can speed up playback by defining a maximum value for the think times of virtual users in schedules.

About this task

Setting a maximum think time is useful with tests that mimic the actual user's think times. For example, if you are

interrupted when you record a test, you do not have to record the test again. Instead, you can set a maximum think

time. By setting a maximum, you can truncate all think times that exceed the specified value, without having to search

for and edit each long think time. No think time used will be greater than the maximum limit you set, even if you have

chosen to vary the think time by a percentage that would exceed this maximum.

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. In the Schedule Contents area, click the name of the schedule.

3. Click the Think Time tab and select the Limit think times to a maximum value check box.

4. In Maximum think time, type a number and select a time unit.

What to do next

To restore the original think times, clear the Limit think times to a maximum value check box.

Limiting think times in tests
You can speed up playback and the time that debugging tests requires by defining a maximum value for the think time

of a single user test playback.

About this task

Chapter 7. Test Author Guide

Limiting think time is especially useful when you are debugging a test. By setting a maximum, you can truncate all

think times that exceed the specified value, without having to search for and edit each long think time. No think time

will be greater than the maximum you set.

Note: This maximum applies to running individual tests. The limit does not apply to running tests in

schedules. When a test is run as part of a schedule, the maximum think time value is ignored.

1. In the Test Navigator, click Window > Preferences > Test > Test Execution.

Result

The Test Execution window opens.

2. The default value for maximum think time is 2 seconds. To change the maximum think time value, in Max

think time (seconds), change the number. If you do not want to limit the amount of think time during test

playback, enter a large number.

3. Click Apply, and then click OK.

What to do next

To restore the original think time default settings, click Restore Defaults.

Working with agents
If you have a significant workload to test, typically a single computer might not be able to process the load efficiently.

You need to distribute the load across multiple computers, also called HCL OneTest™ Performance agents. The

agents are installed on computers to generate the load on the application.

You create VU Schedule to generate user load and you create Rate Schedule to generate transaction load on the

agent locations. You use the HCL OneTest™ Performance workbench to distribute the load. When you distribute the

load among agent computers, carefully consider the load that each agent computer can take efficiently.

To view the health of the agent computers, see Agents Health Report on page 1009.

HCL OneTest™ Performance agent, also known as load generation agent, is used to generate load for the application

under test by creating simulated connections.

When you install HCL OneTest™ Performance Agent, you can specify the host name of the workbench to poll.

After the installation, the agent automatically connects to the workbench. If you want to share the agent with

multiple workbenches, you can either manually add them to the majordomo.config file at installationDir/

Majordomo or use the Share Agent with New Workbench option that is mentioned in the Checking status of agents

on page 726 topic.

When you run a schedule with multiple agents, an agent might be lost, especially during the long load test run. Losing

an agent is not common and occurs during some extreme cases such as when computer's memory is exhausted.

When an agent is lost, by default, the schedule is stopped. When the schedule is stopped in this manner, you must fix

the reason of agent loss or add more agents before running the schedule. To continue to run the schedule without the

lost agent, in the Schedule editor, click the Advanced tab and clear the Loss of an agent halts execution check box.

725

HCL OneTest Performance

726

Note:

• You can install HCL OneTest™ Performance and HCL OneTest™ Performance Agent on any of the

supported platforms that are mentioned in the System Requirements on page 18. It is not necessary

that both are installed on the same platforms or the bitness of the platform must be same.

• If you are creating load on the HCL OneTest™ Performance Agent computer, ensure that, in the

workbench, you point to the agent computers.

• If you are using HCL OneTest™ Performance workbench 8.3 or later, you must use HCL OneTest™

Performance Agent 8.3 or later. Also, it is recommended to use the same release version for both.

The HCL OneTest™ Performance workbench automatically deploys test assets that are required for execution to

participating agents. For more information about the deployment directory, see Managing deployment directory on

page 728.

A typical setup of HCL OneTest™ Performance workbench, HCL OneTest™ Performance agents, and the system under

test is shown here:

Related information

Troubleshooting performance testing on page 1112

Configuring port numbers for agents on page 727

Checking the status of agents
Before running a schedule or test, you can check whether the agents are active and connected to the workbench.

Chapter 7. Test Author Guide

Before you begin

Ensure that the HCL OneTest™ Performance agent is running and points to the correct workbench. When installing the

agent, ensure to specify the correct non-secure port number where the workbench listens for the agent. You can view

or change the non-secure port number of the current workbench at Windows > Preferences > Test > Server.

About this task

An agent can be in one of the following statuses:

Agent status Description

Ready Majordomo is running on an agent computer and is in

regular (default 5 seconds) contact with a workbench.

Busy Agent is participating in the schedule execution.

Lost Contact Agent has not contacted the workbench for the past 10

seconds.

If you want an agent to take direction from more than one workbench, you can share the agent with those

workbenches. Also, if you no longer wish for an agent to contact a workbench you can disconnect it.

Note: The majordomo.config file located at installationDir/Majordomo in the HCL OneTest™

Performance agent computer contains the host name and the port number of the workbench the agent polls

for work to do. By default, the agent polls for work at the interval of every 5 seconds.

1. To check the status of agents, on the toolbar, click .

Result

The Agent Status window lists the agents that are connected to the workbench, the license mode, operating

system, architecture, and status of the agents.

2. To share an agent with other workbenches, in the Agent Status window, select an agent and click Share Agent

with New Workbench.

3. Specify the host name and port number of the new workbench and click OK.

4. To disconnect an agent from the workbench, select an agent and click Disconnect Agent from this

Workbench.

To disconnect the agent from all the workbenches, you must perform the disconnection from each

workbench.

Configuring port numbers for agents
If any service, such as an application server, on the workbench computer uses the default port numbers, you can

change the port numbers so that agents can communicate through the new port numbers.

About this task

By default, the port numbers for unsecured and secured ports are 7080 and 7443. The HCL OneTest™ Performance

agents poll the workbench using the non-secure port number. If you want to encrypt the communication between the

727

HCL OneTest Performance

728

workbench and agents, select Workbench and agent communication is encrypted using TLS/SSL. HCL OneTest™

Performance then uses the secure port number for communicating with agents. The workbench internally sends the

secure port number to the agents via messages exchanged over the non-secure port number.

Note:

• If you change the non-secure port number, you must configure the agents to poll the new port

number. In the HCL OneTest™ Performance computer, open the majordomo.config file located at

installationDir/Majordomo and update the port number.

• If two instances of a workbench are opened on one computer, first workbench gets access to port

7080 to communicate to an agent. For the another workbench to access the agent, you must use a

different port number.

• To work with a dataset, you must ensure that two consecutive port numbers are available. One of

the ports is used to communicate between the workbench and agent, and the other is for the dataset

server. For example, you must ensure that the port number 7081 is open for the dataset server if the

default port number 7080 is used to communicate between the workbench and agent. Similarly, if you

use any different port number for communication between the workbench and agent, you must ensure

that the next port number is available for the dataset server.

1. In HCL OneTest™ Performance, click Windows > Preferences > Test > Server.

2. Specify the new port numbers and click OK.

What to do next

You must now update the majordomo.config file for the agents to poll the new port numbers.

Managing the deployment directory for agents
You can choose to delete or keep the deployment directory for agents after schedule execution. By default, HCL

OneTest™ Performance does not delete the deployment directory.

About this task

The deployment directory stores the files that are required for test execution. If you do not delete the deployment

directory, the next time that you run a schedule, HCL OneTest™ Performance only retrieves the test assets that it does

not have or that have changed since the last execution. This mechanism reduces the launch time for subsequent test

executions.

However, if you have many schedules and the accumulation of files in the deployment directory might create a

problem, you can choose to delete the deployment directory on the agent computers. The deletion of the deployment

directory depends on the successful completion of a schedule. A schedule execution is deemed successful when all

the agents reach a state of inactivity with no active users or when the schedule execution reaches the end of the last

stage and then stops.

Chapter 7. Test Author Guide

Note: If the run is stopped manually, the run encounters a severe error, or communication between the agents

and workbench stops, the deployment directory is not deleted even if you specify to delete it.

To delete the deployment directory on the agent computers after schedule execution, click Windows > Preferences >

Test > Server and select the Delete deployment directory on the agent after execution check box.

Configuring the high-resolution timer
You can configure agent computers to use a high-resolution timer when collecting performance data. The high-

resolution timer ensures that all measurements are precise to within 1 millisecond.

Before you begin

The high-resolution timer is used by default on the Linux™ operating system. You do not need to configure the high-

resolution timer on the Linux™ operating system. For the Microsoft™ Windows™, AIX®, and z/OS® operating systems,

the high-resolution timer is not used by default.

Enabling the high-resolution timer can increase processor usage on Windows™ agent computers. Typically, processor

usage increases by 10% to 25%, but the increase can vary based on workload. Enable the high-resolution timer

on Windows™ agent computers if you are measuring response times less than 15 milliseconds. Enable the high-

resolution timer if you are measuring response times of less than 150 milliseconds and need 1 millisecond precision

instead of 15 millisecond precision. If you enable the high-resolution timer on Windows™ agent computers, monitor

the processor usage to determine whether the trade-off of higher processor usage is acceptable.

To enable the high-resolution timer on an agent computer:

1. In the Test Navigator, open the location that represents the agent computer.

2. Click the General Properties tab.

3. On the General Properties page, click Add to create a property for the selected location.

4. In the New Property window, create a property entry:

a. In Property Name, type RPT_VMARGS.

b. In Operator, select =.

c. In Property Value, type -DrptNanoTime.

If you need to set multiple RPT_VMARGS values for a location, place them in the same property entry and

separate them with a space. Do not use multiple property entries to set multiple RPT_VMARGS values for a

location.

5. Click OK, and then save the location.

Result

The high-resolution timer is enabled for the location.

Adding a test to a schedule
By adding a test to a schedule, in this context, is used to refer to both VU Schedule and Rate Schedule, you can

emulate the action of an individual user.

729

HCL OneTest Performance

730

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. Right-click the schedule element that will contain the test, and then click Add > Test.

3. In the Select Tests window, expand the project name to display the test that you want to add.

4. Click the name of the test, and then click OK.

Result

The test is displayed in the schedule.

Adding must run tests
In a schedule, you can use the Finally block to specify tests that must be run after the main workload is completed,

when the last stage duration is expired, or a schedule is stopped manually.

About this task

A schedule can contain many user groups. A user group can contain only one Finally block. A Finally block can

contain many tests.

1. From the Test Navigator, open a schedule.

2. Select a user group and click Add > Finally.

3. Select the Finally block and click Add > Test Invocation.

4. Select the tests that you want to add and click OK.

Assigning variables to schedule and groups
In addition to assigning variables at the test level, you can assign variables at the schedule, in this context, is used to

refer to both VU Schedule and Rate Schedule level and User or Rate Runner group level. When you assign variables

at the schedule level, all the tests and groups in the schedule can use the variable initial values, if they have the same

variable names.

About this task

When you initialize variables at the schedule level, all the groups in the schedule use the variable initial values, except

those for which a specific value is defined. If the same variable initial value is defined at the group level and schedule

level, precedence is given to the group level and then to the schedule level. If the visibility of a test variable is set to

This test only, the test does not use the value that is defined at the group level or schedule level.

If a variable is initialized at various places such as test, compound test, schedule, or user group, the product uses the

following order to initialize the value of the variable when running the test. The variable set in the variable table of the

compound test editor takes the highest precedence followed by others:

1. Compound test setting in the variable table UI

2. Compound test specified in a var file

3. User group setting in the variable table UI

4. User group specified in a var file

5. Schedule specified setting in the variable table UI

Chapter 7. Test Author Guide

6. Schedule specified in a var file

7. Command line

Note: You must select All tests for this user from the Visible in drop-down list to take the precedence of

variable initialization.

1. In the Test Navigator view, double-click a schedule to open it.

2. To assign a variable at the schedule level or a group level, in the Schedule Contents area, select a schedule or

a group.

3. In the Schedule Elements Details area, for a schedule select the Variable Initialization category, or at the

group level, click the Variable Initialization tab, and click Add.

4. Type a variable name and its initial value.

If you have already defined the variables at the test level and want to reuse them, click Select existing

variables.

5. Optional: To use the variables from an existing file, click the Use variable initial values file check box, browse

for the file, and click Finish.

6. Click Options > Save.

Defining requirements in schedules
You can define performance requirements to specify the acceptable thresholds for the performance parameters in a

schedule. The performance requirements that you define can also be used to validate the service-level agreements.

About this task

You can define both the performance and functional requirements in the schedules. The verdict of the schedule is

computed based on the requirements defined in the schedule. You can view the verdict in the Requirements report.

You can add the requirement for counters, which you can generate, by using the custom code in a schedule. After the

test run is initiated, you can view the information about the counters graphically when the test run starts the custom

code.

1. Find the schedule you want and double-click it.

Result

The schedule is displayed.

2. Perform the following steps in the VU Schedule Details pane:

a. Select Requirements from the Category field.

b. Select Enable Requirements check box.

3. Enter a name for a requirement in the Name field.

Alternatively, you can click Use Defaults to use the default name for a requirement.

4. Perform the following steps, to set an Operator and Value for the requirements you defined:

731

HCL OneTest Performance

732

a. Click the Operator field to display the list of mathematical operators and select an operator for the

requirement from the list.

b. Enter a value for the requirement in the Value field.

The value you enter is selected as the standard value for the requirement by default.

c. Clear the Standard check box or let the selection remain as is based on the following options:

▪ Clear the selection – This action enables the value of the selected requirement to be a

supplemental value.

▪ Retain the selection – This action enables the value of the selected requirement to be a

standard value.

5. Perform the following steps to add the counter information generated by using the custom code to a

requirement:

a. Expand the Custom section and double-click the row.

Result

The Add Custom Requirement window is displayed.

b. Enter the path that you used in the custom code in the Counter path field.

For example, if you specify the counter as getValueCounter("New Counter","Test","Test Value") in the

custom code, then you must enter the counter path as /New Counter/Test/Test Value.

c. Select the Component from the list, and then click OK.

6. To remove the selected requirement, select the requirement, and then click Clear.

Note: The requirement is disabled and can be redefined.

Exemple

You can define the performance requirements in a schedule or in a test if your protocol supports it. When you define

a requirement in a test, the requirement is defined individually for each test element even if you select multiple test

elements. When you define a requirement in a schedule, the requirement is applied to the aggregate of test elements.

For example, assume that you select every page in a test and define the following as a requirement: Page Response

Time(Average) must be less than 5 seconds.

This means that if one page in the test has a response time of 6 seconds, the requirement on that page fails. If the

other pages have a response time of less than 5 seconds, the requirement is pass.

For example, in a schedule you can define the following requirement: Response Time For All Pages (Average) as less

than 5 seconds. This measures the average response time for all the pages. If one page has a response time of 30

seconds and if there are 7 pages that have a lower response time such that the average response time is less than 5

seconds, then the page with a response time of 30 seconds also passes the requirement.

Chapter 7. Test Author Guide

What to do next

After you defined the requirements in a VU Schedule, you can run the requirement against the application under test,

and then analyze the results that are reported.

Related information

Defining requirements in tests on page 454

Reports and counters on page 1007

Creating custom Java code on page 847

Adding custom counters to reports on page 869

Repeating tests in a schedule
By adding a loop to a schedule, in this context, is used to refer to both VU Schedule and Rate Schedule, you can repeat

a test for a number of iterations and set the rate for running a test. If the loop contains a synchronization point, the

synchronization point is released after the first iteration of the loop and stays released for all further iterations.

About this task

A schedule that contains only user groups and tests runs each test in a user group sequentially. Loops provide more

sophisticated control than running a simple sequence of consecutive tests.

You can set a loop within a schedule or a test. The following table shows the advantages of both methods:

Loop

loca­

tion Results

Sched­

ule

Loops in schedules are easy to locate and modify.

Loops in schedules close the server connection at the end of each iteration and reopen it at the beginning of

the next iteration. This action models the behavior of a user closing and reopening a browser.

Use this method to run a test at a set rate. For more information, see Running tests at a set rate on

page 737.

Test Loops in tests can be more granular, and thus provide a higher level of control.

Loops in tests reuse the server connection during each loop iteration.

Use this method, with loops that have high iteration counts, to stress test a server.

To add a loop to a schedule:

733

HCL OneTest Performance

734

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. Click the item that you want to be the parent of the loop, and then click Add > Loop.

3. In the Schedule Element Details area, type the number of iterations for the loop to repeat.

Option Description

Count-based Runs for the number of iterations that you select.

Time-based Runs at least for the time that you specify. The loop

always finishes the iteration. For example, if you

select a time of 1 second and a loop takes 10 sec­

onds to run, the loop finishes one iteration, and then

checks the time.

Infinite Runs until the schedule duration ends. Use this op­

tion to gather performance data over time: set an in­

finite loop, and then set the schedule to stop after a

specific time.

4. To maintain a set transaction rate for all schedule items that are children of this loop:

Example

a. Select Control the rate of iterations.

b. In the Iteration rate field, type a number, and select a time unit.

This sets the actual rate.

c. Select or clear the Randomly vary the delay between iterations check box. Selecting this check box

causes the delay to vary slightly. This option models users more accurately, because the iterations are

spread out randomly over a certain period of time.

Note: Statistically, the Randomly vary the delay between iterations option sets delay amounts

at random from a negative exponential distribution with the same mean as the fixed delay

value. The negative exponential distribution has a long "tail," which means that a very small

number of delays will have very large values. Therefore, make sure that the application you

are testing is not negatively affected by long periods of inactivity (such as a timeout that

disconnects the user).

d. Select or clear the Delay before the first iteration of the loop check box. Selecting this check box

staggers the first delay in each iteration so that you get a realistic mix at the first iteration.

Exemple

Chapter 7. Test Author Guide

The following schedule contains two loops. Note that the Browse and Bid tests, which are controlled by the loop,

must be children of the loop.

Creating rate generators in user groups
A rate generator is a workload container that specifies the number of tasks that the virtual testers run in a given time

period. For example, you might be testing an Order Entry group that completes 10 forms every hour, or you might be

testing a web server that you want to be able to support 100 hits every minute. Use a rate generator to model this

time-based behavior.

Before you begin

Create a schedule and ensure that user groups have tests.

About this task

If the rate generator does not meet the target rate, it could mean that there are performance issues with the

application or there are insufficient virtual users or agents to meet the target rate. All rate generators are coordinated,

which means they have a built-in synchronization point and all virtual testers work together to generate the workload.

You can add a rate generator to a user group in a schedule.

Some of the important points about the rate generator are as follows:

• You cannot have elements such as loop, finally, rate generator, or transaction as a parent to the rate generator.

• The same rate generator, as identified by name, can appear in more than one User Group in a schedule.

• Rate generators can only be added to percentage user groups. A percentage user group containing a rate

generator may not be modified to be a fixed user group.

1. From the Test Navigator view, double-click a Schedule to open.

2. Select a user group, and then click Add > Rate Generator.

3. Specify a name to the rate generator.

4. Set the duration of the rate generator.

735

HCL OneTest Performance

736

◦ To specify the number of iterations that the rate generator should run, select Count-based.

◦ To specify the minimum time for the generator to run, select Time-based. The generator always

finishes the iteration. For example, if you select a time of 1 second and a rate generator takes 10

seconds to run, the generator finishes one iteration, and then checks the time.

◦ To continue running the rate generator until it is manually stopped by you or when the last schedule

stage duration expires, select Infinite.

5. The Uninterruptible iteration option modifies the behavior of the rate generator if schedule execution is

stopping. Select this check box to continue running the rate generator until the current iteration completes. If a

timeout to stop schedule execution occurs before an iteration completes, the rate generator stops.

6. Set the rate type of the rate generator.

◦ To ensure that all of the virtual users in the schedule maintain the desired transaction rate irrespective

of the user load, select Total Rate.

◦ To adjust the transaction rate proportionally to the number of virtual users specified in a stage of a

schedule, select User Rate. For example, to compare a workload at 100 virtual users a minute, 200

virtual users a minute, and 300 virtual users a minute, set the stages with that many virtual users.

User rate is dynamic and is adjusting at stages, whether users are ramping up or down or are added

manually.

7. In Iteration rate, specify the number of times the rate generator runs in a specified time period.

8. In Variance, specify a percentage value that is used to determine the range when the transactions start.

For example, the transaction rate is 4 every minute (that is, 1 transaction for every 15-second interval). If you

select a variance of 20%, your transaction has a 3-second window on each side of that 15-second interval,

because 20% of 15 seconds is 3 seconds. Therefore, the first transaction starts at 12–18 seconds. The

second transaction starts 15 seconds (plus or minus 3 seconds) after the first transaction starts. If the first

transaction starts at 12 seconds, the second transaction would start at 24 to 30 seconds. However, if the first

transaction starts at 18 seconds, the second transaction would start at 30 to 36 seconds.

Because each transaction starts randomly within the range that you specify, it is normal for transactions to

run at a rate that is faster or slower than the rate that you selected for short periods of time. For example, if

a transaction starts every 12 seconds for a minute, the rate for that initial interval is 5 every minute and not

the rate of 4 every minute that you selected. Over time, however, the transaction rate averages out to 4 every

minute.

9. In Distribution, specify the frequency rate at which the rate generator should run.

◦ Select Constant for the workload of the rate generator to occur exactly at the rate you specify. For

example, if the iteration rate is 4 every minute, the workload starts at 15 seconds, 30 seconds, 45

seconds, and 60 seconds, which is exactly 4 every minute, evenly spaced, with a 15-second interval.

◦ Select Uniform when the time between each workload is not constant. However, the workload that

occurred over time averages out to the rate that you specified. The time between the start of each

Chapter 7. Test Author Guide

workload is chosen randomly with a uniform distribution within the selected range as specified in

Variance.

◦ Select Negative Exponential to emulate the spike of activity followed by a dull period that is typical of

user behavior. So, if the rate is 4 every minute, the probability that the workload starts immediately is

high, but decreases over time. HCL OneTest™ Performance maintains the desired average rate.

10. Add the test under the Rate Generator and save the schedule. After the schedule run completes, in addition to

the Performance Report, the Rate Generator report is available.

Related reference

Rate Generator report on page 1015

Running tests at a set rate
To run a test at a set rate, you add a loop to the schedule to control the iteration rate, and then add tests to the loop.

The tests, which are children of the loop, are controlled by the loop. If the loop contains a synchronization point, the

synchronization point is released after the first iteration of the loop and stays released for all further iterations.

To add a loop that controls the iteration rate for running tests:

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. Click the element that will be the parent of the loop, and then click Add > Loop.

3. In the Schedule Element Details area, type the number of iterations that the loop will repeat.

4. To continue executing the loop even after a request to stop the schedule execution is issued, select the

Uninterruptible iteration check box.

The schedule execution stops after the current loop iteration is complete. This check box is available only for

schedules.

5. To maintain a set transaction rate for all schedule items that are children of this loop, select the Control the

rate of iteration check box.

6. At Iteration rate, type a number and select a time unit.

This sets the actual rate.

7. Select or clear the Randomly vary the delay between iterations check box. Selecting this check box causes

the delay to vary slightly. This option models your users more accurately because rather than delaying

iterations at fixed intervals, the delay amounts are varied randomly while maintaining the same average

iteration rate.

Note: Statistically, the Randomly vary the delay between iterations option sets delay amounts at

random from a negative exponential distribution with the same mean as the fixed delay value. The

negative exponential distribution has a long "tail," which means that a very small number of delays

737

HCL OneTest Performance

738

will have very large values. Therefore, make sure that the application you are testing is not negatively

affected by long periods of inactivity (such as a timeout that disconnects the user).

8. Select or clear the Delay before the first iteration of the loop check box. Selecting this check box staggers the

first delay in each iteration, so that you get a realistic mix at the first iteration.

What to do next

After you have added the loop, you add the schedule items, usually tests, that the loop controls.

Running tests in random order
A schedule that contains only user groups and tests will run each test in a user group sequentially. By adding a

random selector to a schedule, you can repeat a series of tests in random order, thus emulating the varied actions of

real users.

To add a random selector to a schedule:

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. Click the name of the schedule element to contain the random selector, and then click Add > Random

Selector.

3. In the Schedule Element Details area, add the number of iterations to loop.

Result

Think of yourself as a "random selector." You are blindfolded, and you have a bucket that contains 10 red balls

and 10 green balls. You have a 50% chance of picking a red ball, and a 50% chance of picking a green ball. You

pick a ball randomly—it is red. You then replace the ball in the bucket. Every time you pick a ball, you have a

50% chance of getting a red ball. Because the ball is replaced after each selection, the bucket always contains

10 red balls and 10 green balls. It is even possible (but unlikely) that you will pick a red ball every time.

4. Set the weight of the random selector. The weight determines the statistical probability that a specific element

will be selected.

a. Right-click the random selector and click Add > Weighted Block.

b. In the Weight field, type an integer.

This integer shows the relative proportion that each test runs.

Result

Chapter 7. Test Author Guide

Assume that a random selector contains two tests: Browse and Bid. You assign Browse a weight of 7 and Bid

a weight of 3. Each time the loop is processed, Browse has a 70% chance of being selected, and Bid has a

30% chance of being selected.

Exemple

When a selector contains many different weights, you can mathematically determine the likelihood that a block will be

executed. To do this, add the weights together and divide the weight for each block by that total.

For example, assume a selector contains six blocks set to the following weight:

• two blocks set to a weight of 1

• one block set to a weight of 2

• two blocks set to a weight of 5

• one block set to a weight of 9

The total of the weights is: 1 + 1 + 2 + 5 + 5 + 9 = 23. Therefore, the statistical likelihood of selection is:

Weight of block Likelihood of block being selected

1 (two blocks) 1/23. = 0.0435, or about 4.35% (for each block)

2 2/23 = 0.0870, or about 8.70%

5 (two blocks) 5/23 = 0.2174, or about 21.74% (for each block)

9 9/23 = 0.3913, or about 39.13%

739

HCL OneTest Performance

740

Note that a higher weight increases the likelihood, but does not guarantee, that a block will be executed. Some

variation might occur. For example, if you run a test 23 times, you cannot predict that the first and second blocks will

execute exactly once, the third block exactly twice, the fourth and fifth blocks exactly five times, and the sixth block

exactly nine times. However, the more times that the blocks are executed, the more accurate this prediction is.

Adding a transaction to a schedule
A transaction is a specific group of test elements whose performance you are interested in. When viewing the test

results, you can view performance data about any transactions that you have added.

About this task

You can add a transaction to a test or to a schedule, in this context, is used to refer to both VU Schedule and Rate

Schedule. When specifying error conditions for a transaction, you can set the behavior of the condition to affect the

health of the transaction. The Transaction Health tab of the Transaction report displays the health of the transactions

in a test.

To put a group of schedule elements into a transaction:

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. In the schedule, select the test elements to group together. Use Shift+click to select multiple contiguous

elements; use Control+click to select multiple noncontiguous elements; each noncontiguous element is put in

a separate transaction.

3. Click Add (to place the transaction after the selected element) or Insert (to place the transaction immediately

before the selected element or block), and click Transaction.

4. In the Schedule Element Details area, give the transaction a meaningful name. This is useful in the

Transactions report, which lists transactions by name.

What to do next

You can now use the Add or Up and Down buttons to add the tests or elements to the transaction.

Emulating network traffic from multiple hosts
By default, when you run a schedule, each virtual user has the same IP address. However, you can make each virtual

user appear as though it is running on its own host. To do this, you configure IP aliases on the host computer, and

enable IP aliasing in the schedule. When you run the schedule, the network traffic will appear to be generated by

multiple hosts.

About this task

To avoid IP conflicts, the IPs have to be legitimate, available within the same subnet, and blocked for distribution.

Chapter 7. Test Author Guide

Configuring IP aliases for a remote Windows™ location
To make it appear that a virtual user has its own IP address during a schedule run, configure IP aliases for each

Windows™ remote location.

1. Click Start > Settings > Control Panel > Network Connection.

2. Open the network interface that you want to associate the IP aliases with. In most cases this is the Local Area

Connection. Click Properties.

3. Scroll down to Internet Protocol (TCP/IP), and click Properties.

4. You must be using static IP addresses to create IP aliases on this host. Therefore, confirm that Use the

following IP address is selected, and then click Advanced.

5. Create the IP aliases:

a. Click Add in the IP Addresses area of the IP Settings page to specify the IP address of the new alias.

Make sure that the address is valid for the network and is not being used by another host.

b. Enter the IP address and the subnet mask of the new alias.

6. After you create the alias, click OK in each previous dialog to complete the configuration.

7. Set the schedule so that the virtual users will use IP aliases during a run; for information, see Enabling virtual

users to use IP aliases on page 743.

Results

When you run the schedule, it will give the impression that the network traffic is being generated from multiple hosts.

What to do next

You can insert custom code into your test to retrieve the runtime IP addresses of each virtual user. For information,

see Retrieving the IP address of a virtual user on page .

Note: To add multiple IP aliases, use the netsh command, as shown in the following example:

netsh -c Interface ip add address name="Gig Ethernet" addr=10.10.0.21 mask=255.255.0.0

The ntcmds.chm file, typically located in C:\WINDOWS\Help, contains more details about the netsh

command. When you are finished with the IP aliases, use the following command to remove them:

netsh -c Interface ip delete address name="Gig Ethernet" addr=10.10.0.21

You can also use a batch file to add and delete the aliases.

Configuring IP aliases for a remote Linux™ location
To make it appear that a virtual user has its own IP address during a schedule run, configure IP aliases for each

Linux™ location.

1. Use the ip(8) command to create an IP alias.

Example

The following example attaches the IP address 9.37.207.29 to the eth0 network interface:

ip address add 9.37.207.29 dev eth0

741

../topics/cretrvipadd.html
../topics/cretrvipadd.html
../topics/cretrvipadd.html
../topics/cretrvipadd.html

HCL OneTest Performance

742

Note: To create a large number of aliases on a Redhat Linux™ platform, follow the instructions in the

file /etc/sysconfig/network-scripts/ifup-aliases.

The following example deletes the alias:

ip address del 9.37.207.29 dev eth0

2. Set the schedule so that the virtual users will use the IP aliases during a run; for information, see Enabling

virtual users to use IP aliases on page 743.

Results

When you run the schedule, it will give the impression that the network traffic is being generated from multiple hosts.

What to do next

You can insert custom code into your test to retrieve the runtime IP addresses of each virtual user. For information,

see Retrieving the IP address of a virtual user on page .

Configuring IP aliases for a remote AIX® location
To make it appear that a virtual user has its own IP address during a schedule run, configure IP aliases at each remote

AIX® location

1. Use the ifconfig command to create an IP alias.

To have the alias created when the system starts, add the ifconfig command to the /etc/rc.net script.

Example

The following example creates an alias on the en1 network interface. The alias must be defined on the same

subnet as the network interface.

ifconfig en1 alias 9.37.207.29 netmask 255.255.255.0 up

The following example deletes the alias:

ifconfig en1 delete 9.37.207.29

2. Set the schedule so that the virtual users will use the IP aliases during a run; for information, see Enabling

virtual users to use IP aliases on page 743.

Results

When you run the schedule, it will give the impression that the network traffic is being generated from multiple hosts.

What to do next

You can insert custom code into your test to retrieve the runtime IP addresses of each virtual user. For information,

see Retrieving the IP address of a virtual user on page .

../topics/cretrvipadd.html
../topics/cretrvipadd.html
../topics/cretrvipadd.html
../topics/cretrvipadd.html
../topics/cretrvipadd.html
../topics/cretrvipadd.html
../topics/cretrvipadd.html
../topics/cretrvipadd.html

Chapter 7. Test Author Guide

Enabling virtual users to use IP aliases
After you have configured aliases at on remote computers, you set the schedule so that the virtual users can use the

configured IP aliases.

Before you begin

Before you can enable virtual users to use IP aliases, you must:

1. Configure the aliases at the remote location.

2. Add the remote location to the user group.

To set the schedule so that the virtual users will use the IP aliases during a run:

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. Click the user group whose virtual users will use aliasing.

3. Click Run this group on the following locations.

Result

The list of locations shows whether IP aliasing is enabled at that location.

4. To change whether IP aliasing is enabled or disabled, click a row in the table, and then click Edit.

5. On the IP aliasing page, click Enable IP Aliasing.

Option Select when

Use IP addresses from all network interfaces You have one network interface, or you have multiple

interfaces and want to use them all.

Only use IP addresses from the

following network interfaces

You want to use some, but not all, network interfaces.

Select the check box next to the interfaces that you

want to use. Click Add to add a new network inter­

face. Typically, you enter an interface name in the

form eth0 (Windows™ and Linux™) or en0 (AIX®).

Monitoring resource data
Resource Monitoring is used to capture data, such as processor or memory usage, while running a test schedule. It

can provide a comprehensive view of a system under test, to help identify issues. You can monitor data sources from

a local or cloud schedule, or from a Service.

To use Resource Monitoring, you must enable Resource Monitoring in the test schedule and add data sources. There

are two options to monitor data sources from the schedule editor:

743

HCL OneTest Performance

744

• Monitoring data sources that are available in the local schedule or the cloud schedule, you must enable

resource monitoring from the workbench to use the data sources of the local or cloud schedule.

• Monitoring data sources from a Service, you must enable this option to connect the workbench with the server

on which the Resource Monitoring Service is installed.

By default, this is HCL OneTest™ Server' s URL that is entered in the preferences but it can be changed for another

URL if the data sources must be monitored from another server.

Enablement of Resource Monitoring services for a schedule
You can enable the Resource Monitoring service in HCL OneTest™ Performance for a performance schedule to

monitor the resources in a schedule and capture the performance statistics of such resources during the run time of

the schedule.

When you connect HCL OneTest™ Performance to HCL OneTest™ Server, the Resource Monitoring sources that you

added at project level in HCL OneTest™ Server are displayed in HCL OneTest™ Performance.

You can configure HCL OneTest™ Performance to access HCL OneTest™ Server by using an offline user token. You

must generate the offline user token from HCL OneTest™ Server that you can provide on the product Preferences

window in HCL OneTest™ Performance so that a connection is established between HCL OneTest™ Performance and

HCL OneTest™ Server.

After you establish the connection with HCL OneTest™ Server, you can then monitor the following Resource

Monitoring sources in HCL OneTest™ Performance:

• Apache httpd server

• NGINX server

• Java Virtual Machine

• Windows Performance Host

• Linux Performance Host

• Docker Host

• OpenMetrics exporter

• Prometheus server

If you enable the Resource Monitoring service for a schedule, then you can add the Resource Monitoring sources by

using any of the following methods:

• Resource Monitoring sources that are displayed by names

• Resource Monitoring sources that are displayed by labels

After you add the Resource Monitoring sources to the performance schedule that is available in your HCL OneTest™

Performance project, you can run the schedule from HCL OneTest™ Performance.

Chapter 7. Test Author Guide

If you want to run a performance schedule from the HCL OneTest™ Performance command line, you can use the

-overridermlabels parameter to enable the Resource Monitoring service. See Running a schedule from a command

line on page 823.

Adding Resource Monitoring sources to a performance schedule
You can add the Resource Monitoring sources to a performance schedule. After you add the Resource Monitoring

sources, you can run the schedule from HCL OneTest™ Performance.

Before you begin

You must have completed the following tasks:

• Accessed HCL OneTest™ Server.

• Configured the Resource Monitoring sources in HCL OneTest™ Server for your project. For more information

about Resource Monitoring sources, refer to Monitoring host resources.

• Specified the HCL OneTest™ Server URL in the product preferences window (Window > Preferences > Test >

HCL OneTest Server > Resource Monitoring).

• Generated an offline user token in HCL OneTest™ Server.

For more information about generating an offline token, refer to Generating an offline token.

• Selected the project in the product Preferences window from the Project to get sources from the drop-down

list.

Note: The Project to get sources from the drop-down list displays all the projects on HCL OneTest™

Server. The name of the team space for the project is displayed within parenthesis. You can select the

appropriate project when there are identical project names in different team spaces.

About this task

You can add only Resource Monitoring sources that you added on the Resource Monitoring page of the HCL

OneTest™ Server project to the schedule. The Resource Monitoring sources that are added in the team space are not

available for selection.

You can add the Resource Monitoring sources to the schedule by using the labels. In this method, you can select all

the Resource Monitoring sources that are added to HCL OneTest™ Server at the project and the team space level.

1. Find a schedule from the Test Navigator pane and double-click it.

The schedule is displayed in a schedule editor.

745

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_config_sources.html
https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html

HCL OneTest Performance

746

Note: A schedule can be a VU schedule or a Rate schedule.

2. Perform the following steps in the Schedule Details section of the schedule editor:

a. Select the Resource Monitoring from Service option from the Category drop-down list.

b. Select the Enable resource monitoring from service checkbox.

Result

The methods of adding the Resource Monitoring sources are displayed.

3. Select the Collect from the following sources option.

4. Perform the following steps to select the Resource Monitoring sources to the schedule:

a. Click Add/Remove.

The list of Resource Monitoring sources that you added in HCL OneTest™ Server is displayed.

Note: Only the Resource Monitoring sources that you added on the Resource Monitoring page

of the HCL OneTest™ Server project is displayed. The Resource Monitoring sources that are

added in the team space are not displayed.

Tip: If you are unable to view the Resource Monitoring source in Sources from the Resource

Monitoring Service dialog, you can click Refresh to fetch the list of available Resource

Monitoring sources.

b. Select the Resource Monitoring sources that you want to add to the schedule.

c. Click Finish.

Result

The selected Resource Monitoring sources are added to the schedule.

5. Perform the following steps to set the Polling Time interval:

a. Click the Polling Time option for the corresponding Resource Monitoring source that you added, and

then click the Menu icon.

Result

The Set Time dialog is displayed.

b. Enter a time duration in the Polling interval field.

c. Select the time unit from the drop-down list.

Chapter 7. Test Author Guide

Note: The default Polling Time is 5 Seconds.

d. Click OK.

The polling time is a time interval at which time the values for the Resource Monitoring source are collected

when the schedule runs. For example, if you set the polling time as 5 seconds, data from the Resource

Monitoring source is collected every 5 seconds.

6. Select the Ignore invalid resources when executing the schedule checkbox to suppress any error message

about the Resource Monitoring sources and continue running the schedule during the run time.

Note: The errors can occur if the Resource Monitoring sources are unreachable or unavailable. After

the schedule run completes, you can view the logs and verify the error messages.

7. Save the schedule.

Results

You have enabled the Resource Monitoring service for the performance schedule and added the Resource Monitoring

sources to the performance schedule in HCL OneTest™ Performance.

What to do next

You can add a test to the schedule and run the schedule in HCL OneTest™ Performance. After the run completes, you

can view the details of the Resource Monitoring sources in the Performance Report as follows:

• The Resources page displays the following information:

◦ Resource monitoring sources that were monitored during the run time of the schedule.

◦ All resource counters for those Resource Monitoring sources that were monitored during the run time

of the schedule.

◦ Unavailable Resource Monitoring sources that were unreachable or unavailable during the run time of

the schedule.

• The Performance Summary table under the Resources graph lists the following information:

◦ The type of Resource Monitoring sources.

◦ The most recent values of their corresponding resource counters were monitored during the run time

of the schedule.

Related information

Resource page in the Performance report on page 1025

Adding Resource Monitoring sources to a performance schedule by using labels on page 748

747

HCL OneTest Performance

748

Adding Resource Monitoring sources to a performance schedule by using labels
You can add the Resource Monitoring sources to a performance schedule in HCL OneTest™ Performance by using

labels that are created in HCL OneTest™ Server. After you add the Resource Monitoring sources, you can run the

schedule from HCL OneTest™ Performance.

Before you begin

You must have completed the following tasks:

• Accessed HCL OneTest™ Server.

• Configured the Resource Monitoring sources in HCL OneTest™ Server for your project. For more information

about Resource Monitoring sources, refer to Monitoring host resources.

• Specified the HCL OneTest™ Server URL in the product preferences window (Window > Preferences > Test >

HCL OneTest Server > Resource Monitoring).

• Generated an offline user token in HCL OneTest™ Server.

For more information about generating an offline token, refer to Generating an offline token.

• Selected the project in the product Preferences window from the Project to get sources from the drop-down

list.

Note: The Project to get sources from the drop-down list displays all the projects on HCL OneTest™

Server. The name of the team space for the project is displayed within parenthesis. You can select the

appropriate project when there are identical project names in different team spaces.

About this task

After the schedule run completes, you can view the labels and the Resource Monitoring sources associated with

those labels on the Resource page of the Performance Report. The Resources page also displays the Resource

Monitoring sources that were unreachable or unavailable during the run time of the schedule.

You must note down the labels that you added to the Resource Monitoring sources in HCL OneTest™ Server. Because

you must use these labels to add the Resource Monitoring sources to the performance schedule.

When you run the schedule from HCL OneTest™ Server, the same labels are displayed on the Results page for the

schedule. You can open the schedule and go to the Details card to view the Resource Monitoring labels for the

schedule that you run.

1. Find a schedule from the Test Navigator pane and double-click it.

The schedule is displayed in a schedule editor.

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_config_sources.html
https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html

Chapter 7. Test Author Guide

Note: A schedule can be a VU schedule or a Rate schedule.

2. Perform the following steps in the Schedule Details section of the schedule editor:

a. Select the Resource Monitoring from Service option from the Category drop-down list.

b. Select the Enable resource monitoring from service checkbox.

Result

The methods of adding the Resource Monitoring sources are displayed.

3. Select the Collect from sources matching at least one of the following labels option.

4. Perform the following steps to select the Resource Monitoring sources to the schedule:

a. Click Add.

Result

The Add Label dialog is displayed.

Note: All labels that you added at the team space level or project level for the Resource

Monitoring sources in HCL OneTest™ Server are available for selection.

b. Select a label from the drop-down list.

c. Optional: Enter a name for the label in the Enter a label field.

You can add a label in a performance schedule, and then use the same label for the Resource

Monitoring source in HCL OneTest™ Server before running the schedule.

d. Click OK.

Note: You can add multiple labels to a performance schedule if required.

Optionally, you can edit or delete the labels that you added if required. You can select the label from the Data

Source table, and then click Edit to edit an existing label. If you want to remove an existing label that you do

not want to use in the schedule, you can click Remove.

5. Enter a time duration in the Polling Time field, and then select the time unit from the drop-down list.

The polling time is a time interval at which time the values for the Resource Monitoring source are collected

when the schedule runs. For example, if you set the polling time as 5 seconds, data from the Resource

Monitoring source is collected every 5 seconds.

6. Select the Ignore invalid resources when executing the schedule checkbox to suppress any error message

about the Resource Monitoring sources and continue running the schedule during the run time.

749

HCL OneTest Performance

750

Note: The errors can occur if the Resource Monitoring sources are unreachable or unavailable. After

the schedule run completes, you can view the logs and verify the error messages.

7. Save the schedule.

Results

You have enabled the Resource Monitoring service for a performance schedule and added the Resource Monitoring

sources by using labels to the performance schedule in HCL OneTest™ Performance.

What to do next

You can add a test to the schedule and run the schedule in HCL OneTest™ Performance. After the run completes, you

can view the labels and the Resource Monitoring sources in the Performance Report as follows:

• The Resources page displays the following information:

◦ Labels and Resource Monitoring sources associated with those labels that were monitored during the

run time of the schedule.

◦ All resource counters for those Resource Monitoring sources that were monitored during the run time

of the schedule.

◦ Unavailable Resource Monitoring sources that were unreachable or unavailable during the run time of

the schedule.

• The Performance Summary table under the Resources graph lists the following information:

◦ The type of Resource Monitoring sources.

◦ The most recent values of their corresponding resource counters were monitored during the run time

of the schedule.

Related information

Resource page in the Performance report on page 1025

Enabling Resource Monitoring from the workbench
You can enable Resource Monitoring from the workbench to capture system resource data such as processor or

memory usage.

Before you begin

To capture accurate resource monitoring data, you must ensure that the clocks on all computers are synchronized.

Chapter 7. Test Author Guide

Note: If you do not synchronize the clocks on the workbench and on all of the computers involved in a test,

resource counters will be displayed inaccurately (with respect to time) in the reports. (There are a number of

tools that are available at no cost on the web to help you accomplish synchronization.)

1. Open a schedule in the editor.

2. In the Performance Schedule Details area, select the Resource Monitoring option in the Category drop-down

list.

3. Select the Enable resource monitoring check box.

Result

This activates the Data Source table.

4. If this is a new schedule, the Data Source table is empty. If the resource monitoring data sources are available

in the local schedule and you create the cloud schedule from it, the data sources are automatically added to

the cloud schedule. Clicking Remove does not delete the data source from the file system; it merely removes

it from this view. Other test schedules or applications might still use the data source.

5. If you have existing locations in your workspace, you can click Add to add and configure them. If you do not

configure the existing location, you are warned in the Data Source table that it is Not Configured.

6. Select Ignore invalid resources when executing the schedule to suppress error messages about resource

monitoring data sources. These errors can occur if the data sources are unreachable or invalid. If you select

this option, you must view logs to see the error messages.

Results

You have enabled Resource Monitoring from the workbench.

What to do next

You must specify the data sources. Configuration changes that you make for a particular data source are stored

with that location. This configuration storage means that you have to set up a data source only once. If you export

a schedule, it contains the data source configuration information. This data might include potentially sensitive

information, such as stored passwords.

Adding sources for resource monitoring data
If you enable resource monitoring, you must specify the sources of resource monitoring data. A cloud schedule can

contain resource monitoring locations that can be in the local premises, in the cloud location, or in both the places.

1. Open a schedule for editing.

2. At the bottom of the Resource Monitoring page, click Add. You might need to scroll down in the view.

Result

The Create and manage configurations wizard opens.

3. Do one of these steps:

Choose from:

751

HCL OneTest Performance

752

◦ To create a resource monitoring location, click Create new resource monitoring location.

◦ To add an existing location or to create a resource monitoring location that is based on an existing

location, click Create or add a resource monitoring location from an existing source.

4. Type an IP address or the fully qualified host name. This address or host name is for the node to monitor, not

the Tivoli Enterprise™ Monitoring Server. The IP address can be of a computer that is in the cloud.

Result

You can choose the types of data sources.

5. Select from these data sources:

Choose from:

◦ Apache HTTP Server Monitoring

◦ Apache Tomcat Application Server Monitoring

◦ IBM DB2 Monitoring

◦ IBM Tivoli Monitoring

◦ IBM WebSphere PMI Monitoring

◦ JBoss Application Server Monitoring

◦ JVM Monitoring

◦ Oracle Database Monitoring

◦ Oracle WebLogic Server Monitoring

◦ SAP NetWeaver Web Application Server Monitoring

◦ SNMP Monitoring

◦ UNIX rstatd monitor

◦ Windows Performance Monitor

You can select multiple types of data sources, but you must configure each one separately. You cannot collect

Windows™ Performance Monitoring data from a computer that is running the Linux™ operating system. Also,

you cannot collect Windows™ Performance Monitoring data if your workbench is running the Linux™ operating

system. In other words, to collect Windows™ Performance Monitoring data, the workbench and the node to

monitor must both be running the Windows™ operating system.

What to do next

Configure the data sources.

Adding Apache HTTP Server sources
To capture resource monitoring data from Apache HTTP Server, you must configure the data source.

Before you begin

Enable Status Support on the Apache HTTP Server by modifying the httpd.conf file. Refer http://httpd.apache.org/

docs/2.2/mod/mod_status.html for details.

Then, restart Apache HTTP Server.

http://httpd.apache.org/docs/2.2/mod/mod_status.html
http://httpd.apache.org/docs/2.2/mod/mod_status.html

Chapter 7. Test Author Guide

1. On the Location page, specify the connection and authentication information for the server that runs

Apache HTTP Server. If you have to change the port that is used to communicate with the server, change

the information in Connection. Typically, your Apache HTTP Server system administrator specifies this

information. The port number must match the port that you specified when configuring Java™ Management

Extensions on the server.

2. If administrative security is enabled on the server, select Administrative security enabled.

a. Type the user ID and password for Apache HTTP Server in Authentication.

b. Select Save Password to save your password locally. If you do not save your password, you might be

prompted for it (depending on the host system configuration) when you edit the configured location or

when you run test schedules that use the location.

3. On the Resource page, select the type of data to capture. The tree view shows the counter groups and

counters that are available from the application server. Be selective; monitoring all possible resource data

requires substantial amounts of memory. Hold your mouse pointer over a counter to see details about what

the counter measures.

4. Configure the options on the Options page.

a. Click Reset counters at start of run (client side reset only) to set the counters to 0 at the start of

a schedule run. This does not change the actual values of the counters on the application server.

Instead, the recorded values of the counters are corrected to start at 0.

b. In Polling Interval, specify in seconds the interval for collecting resource data. For example, if you

accept the default setting of 5 seconds, counter information is collected at 5-second intervals from the

specified host during the schedule run.

c. In Timeout Interval, type a time value in seconds. If the resource monitoring host does not respond

within this amount of time during a schedule run, an error is logged.

5. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

6. Click Next.

7. Enter a name for the location in the Name field, and then click Finish.

Adding Apache Tomcat sources
To capture resource monitoring data from Apache Tomcat, you must configure the data source.

Before you begin

The Java™ Management Extensions must be configured on the server that is running Apache Tomcat. After installing

Apache Tomcat on Microsoft™ Windows™, run the Configure Tomcat shortcut. Click the Java tab, and then edit the

Java Options. Following are sample Java™ options:

-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=8880
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false

On Linux™, set the environment variable CATALINA_OPTS in either TOMCAT_HOME/bin/setenv.sh or TOMCAT_HOME/

bin/catalina.sh file. For example,

753

HCL OneTest Performance

754

export CATALINA_OPTS="-Dcom.sun.management.jmxremote=true
 -Dcom.sun.management.jmxremote.port=8686
 -Dcom.sun.management.jmxremote.ssl=false
 -Dcom.sun.management.jmxremote.authenticate=false
 -Djava.rmi.server.hostname=your.server.domain.com"

Then, restart Apache Tomcat.

1. On the Location page, specify the connection and authentication information for the server that runs Apache

Tomcat. If you need to change the port that is used to communicate with the server, change the information

in Connection. Typically, your Tomcat system administrator specifies this information. The port number must

match the port that you specified when configuring Java™ Management Extensions on the server.

2. If administrative security is enabled on the server, select Administrative security enabled.

a. Type the user ID and password for Apache Tomcat in Authentication.

b. Select Save Password to save your password locally. If you do not save your password, you might be

prompted for it (depending on the host system configuration) when you edit the configured location or

when you run test schedules that use the location.

3. On the Resource page, select the type of data to capture. The tree view shows the counter groups and

counters that are available from the application server. Be selective; monitoring all possible resource data

requires substantial amounts of memory. Hold your mouse pointer over a counter to see details about what

that counter measures.

4. Configure the options on the Options page.

a. In Polling Interval specify in seconds the interval for collecting resource data. For example, if you

accept the default of 5 seconds, counter information is collected at 5-second intervals from the

specified host during the schedule run.

b. In Timeout Interval, type a time value in seconds. If the resource monitoring host does not respond

within this amount of time during a schedule run, an error is logged.

5. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

6. Click Next.

7. Enter a name for the location in the Name field, and then click Finish.

Adding IBM® DB2® sources
To capture resource monitoring data from IBM® DB2®, you must configure the data source.

Before you begin

Your DB2® administrator must turn on the snapshot monitor switches for the resource monitoring data to collect.

If the monitor switches are off, none of the resource counter groups will contain counters. For more information on

the DB2® snapshot monitor, see these topics in the DB2® documentation:System monitor switches and Snapshot

monitor.

To configure the DB2® data source:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.mon.doc/doc/c0005719.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.mon.doc/doc/c0006003.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.mon.doc/doc/c0006003.html

Chapter 7. Test Author Guide

1. On the Location page, specify the connection and authentication information for the instance of DB2® to

use to capture resource monitoring data. If you need to change the port that is used to communicate with

the computer that is running DB2®, change the information in Connection. Typically, your DB2® system

administrator specifies this information.

2. Under Database Settings, type a name in Database Name and partition number in Partition number.

If the instance of DB2® to monitor uses the Database Partitioning Feature (DPF), then change the partition

number to the partition to monitor. Otherwise, leave the partition number set to the default, 0.

3. Type the user ID and password for DB2® in Authentication.

To collect resource monitoring data from DB2®, the specified user account must have SYSADM, SYSCTRL,

SYSMAINT, or SYSMON authority.

a. Select Save Password to save your password locally. If you do not save your password, you might be

prompted for it (depending on the host system configuration) when you edit the configured location or

when you run test schedules that use the location.

4. Optional: On the Monitoring Status page, click Check Monitoring Status to determine the state of the monitor

switches on the DB2® server.

The states of the following monitor switches are checked:

DFT_MON_BUFPOOL

Buffer pool switch

DFT_MON_LOCK

Lock switch

DFT_MON_SORT

Sort switch

DFT_MON_STMT

Statement switch

DFT_MON_TABLE

Table switch

DFT_MON_TIMESTAMP

Timestamp switch

DFT_MON_UOW

Unit of work switch

5. On the Resource page, select the type of data to capture. The tree view shows the database server and its

counter groups and counters. Be selective; monitoring all possible resource data requires substantial amounts

of memory. Clear the Show only selected counters check box to see all available counters. Hold your mouse

pointer over a counter to see details about what that counter measures.

6. Configure the option on the Options page.

755

HCL OneTest Performance

756

a. In Polling Interval specify in seconds the interval, for collecting resource data. For example, if you

accept the default of 5 seconds, counter information is collected at 5-second intervals from the

specified host during the schedule run.

b. In Timeout Interval, type a time value in seconds. If the resource monitoring host does not respond

within this amount of time during a schedule run, an error is logged.

7. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

8. Click Next.

9. Enter a name for the location in the Name field, and then click Finish.

Adding IBM® Tivoli® Monitoring sources
To capture resource monitoring data from an IBM® Tivoli Enterprise™ Monitoring Server, you must configure the data

source.

To configure the IBM® Tivoli® Monitoring source:

1. On the Tivoli Enterprise™ Monitoring Server page, specify the monitoring server that you want to use to

capture resource monitoring data.

a. Type the IP address or the fully qualified host name of the monitoring server in the Host field on the

Tivoli Enterprise™ Monitoring Server page. This is different from the Host field at the top of the Create

and manage configurations wizard.

b. Type the user ID and password for the monitoring server in Authentication.

c. Change the Connection information if needed. Typically, your Tivoli® system administrator will specify

this information.

d. Select Save Password to save your password locally. If you do not save your password, you might be

prompted for it (depending on the host system configuration) when editing the configured location or

when running test schedules that use the location.

Result

After you have specified the monitoring server, you can choose resources to capture. If the host is not

managed by the monitoring server, you will see an error message.

2. On the Resource page, select the type of data that you want to capture. The tree view shows the host and

all of its available IBM® Tivoli® Monitoring agents, and their respective counter groups and counters. Be

selective; monitoring all possible resource data requires substantial amounts of memory. Clear the Show only

selected counters check box to see all available counters. Hold your mouse pointer over a counter to see

details about what that counter measures.

3. Configure time intervals on the Options page.

a. Type the Polling Interval in seconds, for collecting resource data. For example, if you accept the

default of 5 seconds, counter information will be collected at 5-second intervals from the specified

host during the schedule run.

b. In Timeout Interval, type a time value in seconds. If the resource monitoring host does not respond

within this amount of time during a schedule run, an error is logged.

Chapter 7. Test Author Guide

4. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

5. Click Next.

6. Enter a name for the location in the Name field, and then click Finish.

Adding IBM® WebSphere® Performance Monitoring Infrastructure sources
To capture resource monitoring data from the IBM® WebSphere® Performance Monitoring Infrastructure, you must

configure the data source.

To configure the IBM® WebSphere® Performance Monitoring Infrastructure data source:

1. On the Location page, specify the connection and authentication information for the instance of WebSphere®

Application Server to use to capture resource monitoring data. If you need to change the SOAP port used

to communicate with the computer that is running WebSphere® Application Server, change the Connection

information. Typically, your WebSphere® system administrator will specify this information.

2. If administrative security is enabled on the computer that is running WebSphere® Application Server, select

Administrative security enabled.

a. Type the user ID and password for WebSphere® Application Server in Authentication.

b. Select Save Password to save your password locally. If you do not save your password, you might be

prompted for it (depending on the host system configuration) when you edit the configured location or

when you run test schedules that use the location.

3. On the Resource page, select the type of data to capture. The tree view shows the application server and its

counter groups and counters. Be selective; monitoring all possible resource data requires substantial amounts

of memory. Clear the Show only selected counters check box to see all available counters. Hold your mouse

pointer over a counter to see details about what that counter measures.

4. Configure the options on the Options page.

a. Click Reset counters at start of run (client side reset only) to set the counters to 0 at the start of a

schedule run.

This does not change the actual values of the counters on the application server. Instead, the recorded

values of the counters are corrected to start at 0. For example, if you monitor the ServletRequestCount

counter, it starts at 0 instead of its previous value.

b. Type the Polling Interval in seconds, for collecting resource data. For example, if you accept the

default of 5 seconds, counter information will be collected at 5-second intervals from the specified

host during the schedule run.

c. In Timeout Interval, type a time value in seconds. If the resource monitoring host does not respond

within this amount of time during a schedule run, an error is logged.

5. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

6. Click Next.

7. Enter a name for the location in the Name field, and then click Finish.

757

HCL OneTest Performance

758

Adding Java™ Virtual Machine sources
To capture resource monitoring data from a Java™ Virtual Machine (JVM), you must configure the data source.

Before you begin

The Java™ Management Extensions must be configured on the server that is running the JVM. Following are sample

arguments to pass to the JVM:

-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=8880
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false

1. On the Location page, specify the connection and authentication information for the computer that is running

the JVM. If you need to change the port that is used to communicate with the server, change the information

in Connection. The port number must match the port that you specified when configuring Java™ Management

Extensions on the server.

2. If administrative security is enabled on the JVM computer, select Administrative security enabled.

a. Type the user ID and password in Authentication.

b. Select Save Password to save your password locally. If you do not save your password, you might be

prompted for it (depending on the host system configuration) when you edit the configured location or

when you run test schedules that use the location.

3. On the Resource page, select the type of data to capture. The tree view shows the counter groups and

counters that are available from the computer running the JVM. Be selective; monitoring all possible resource

data requires substantial amounts of memory. Hold your mouse pointer over a counter to see details about

what that counter measures.

4. Configure the option on the Options page.

a. In Polling Interval specify in seconds the interval for collecting resource data. For example, if you

accept the default of 5 seconds, counter information is collected at 5-second intervals from the

specified host during the schedule run.

b. In Timeout Interval, type a time value in seconds. If the resource monitoring host does not respond

within this amount of time during a schedule run, an error is logged.

5. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

6. Click Next.

7. Enter a name for the location in the Name field, and then click Finish.

Adding JBoss Application Server sources
To capture resource monitoring data from JBoss Application Server, you must configure the data source.

Before you begin

Before you can capture resource monitoring data from JBoss Application Server, you must specify the path to the

JBoss client file, jbossall-client.jar on the JBoss Client Preferences page. The JBoss client file is provided

Chapter 7. Test Author Guide

with JBoss, not with HCL OneTest™ Performance. The version of the JBoss client file must match the version of

JBoss Application Server running on the server under test.

Note: HCL OneTest™ Performance supports JBoss Application Server version 5.x.

To configure the JBoss Application Server data source:

1. On the Location page, specify the connection and authentication information for the instance of JBoss

Application Server to use to capture resource monitoring data. If you need to change the SOAP port used to

communicate with the computer that is running JBoss Application Server, change the Connection information.

Typically, your JBoss system administrator specifies this information.

2. If administrative security is enabled on the computer that is running JBoss Application Server, select

Administrative security enabled.

a. Type the user ID and password for JBoss Application Server in Authentication.

b. Select Save Password to save your password locally. If you do not save your password, you might be

prompted for it (depending on the host system configuration) when you edit the configured location or

when you run test schedules that use the location.

3. On the Resource page, select the type of data to capture. The tree view shows the application server and its

counter groups and counters. Be selective; monitoring all possible resource data requires substantial amounts

of memory. Clear the Show only selected counters check box to see all available counters. Hold your mouse

pointer over a counter to see details about what that counter measures.

4. Configure the option on the Options page.

a. Type the Polling Interval in seconds, for collecting resource data. For example, if you accept the

default of 5 seconds, counter information will be collected at 5-second intervals from the specified

host during the schedule run.

b. In Timeout Interval, type a time value in seconds. If the resource monitoring host does not respond

within this amount of time during a schedule run, an error is logged.

5. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

6. Click Next.

7. Enter a name for the location in the Name field, and then click Finish.

Adding Microsoft™ Windows™ Performance Monitor sources
You must add and configure the Microsoft™ Windows™ Performance Monitor data source to capture resource

monitoring data.

Before you begin

You must have completed following tasks:

759

HCL OneTest Performance

760

• Ensured that the host that you want to monitor must be accessible through the Windows™ network.

• Enabled the File and Printer Sharing option on the computer running the Windows operating system. For more

information refer to the Microsoft Community forum.

• Disabled the Simple File Sharing option, where remote connections are processed as access by the Guest

user.

• Ensured that you have not set system policies, so that remote connections are processed as access by the

Guest user. For more information refer to the Microsoft documentation.

About this task

The Windows Performance Monitor option is enabled only for Microsoft Windows computers. If you monitor the

source from a non-Windows computer, this option is disabled. The resource monitoring data is collected by using the

net use command by establishing a connection between remote computers.

If you can connect to a shared hard disk drive on the remote host from HCL OneTest™ Performance, then you can

collect resource monitoring data from Windows Performance Monitor on the remote host. If the File and Printer

Sharing option is disabled on the remote host and you attempt to set up resource monitoring in a schedule, then the

following error message is displayed:

IWAY0241E The host name IP_address is either not a known host or is not a Windows host.

1. Click the Location tab and perform the following steps:

a. Enter the following details of the Windows operating system for which you want to collect resource

monitoring data:

Fields Actions

User
Enter a user ID of the Windows operating system.

Note: The user ID must correspond to a user that is a member of the Per­

formance Monitor Users group or the Administrators group on the comput­

er from which you want to collect resource monitoring data. If the user is

not in the corresponding group on the computer that you want to monitor,

no Windows Performance Monitor data is collected.

Password
Enter a password that is associated with the user ID.

Domain
Optional: Enter the domain name where you hosted Windows Performance Moni­

tor.

https://answers.microsoft.com/en-us/windows/forum/all/turning-on-file-and-printer-sharing-windows-10/bb3066eb-f589-4021-8f71-617e70854354
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/security-options

Chapter 7. Test Author Guide

Fields Actions

Note: If you hosted Windows Performance Monitor in a different domain,

then you cannot capture resource monitoring data from the source.

b. Select the Save Password checkbox to save your password locally.

If you do not save your password, depending on the host system configuration, you might have to

provide password each time when you edit the configured location or run schedules that uses the

location.

2. Click the Resource tab and perform the following steps:

a. Select the required checkboxes to capture the type of data.

The tree view shows the host and all its counter groups and counters.

b. Select the Show only selected counters checkbox to view only the selected counters.

Tip: Monitoring all possible resource data requires substantial amounts of memory. You can place

your mouse pointer over a counter to view details about the counter and its measures.

3. Click the Options tab and perform the following steps:

a. Enter a value in the Polling Interval (in seconds) field to collect resource data at specified interval.

For example, if you accept the default value of 5 seconds, then the counter information is collected at

five second intervals from the specified host during the schedule run.

b. Enter a value in the Timeout Interval (in seconds) field to log an error in the test log.

If the resource monitoring host does not respond within the specified time during a schedule run, an

error is logged.

4. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

5. Click Next.

6. Select a project from the list to save the location of the new resource monitoring.

7. Enter a name for the location of the resource monitoring in the Name field, and then click Finish.

Results

You have added the Windows Performance Monitor source.

What to do next

You can run the schedule to collect the resource monitoring data from the Windows Performance Monitor source.

See Running a local schedule or test on page 783.

761

HCL OneTest Performance

762

Adding Oracle Database sources
To capture resource monitoring data from Oracle Database, you must configure the data source.

Before you begin

Before you can capture resource monitoring data from Oracle Database, you must specify the path to the Oracle

Database client file, ojdbc6.jar on the Oracle Database Client Preferences page. The Oracle Database client file

is provided with Oracle Database, not with HCL OneTest™ Performance. The version of the Oracle Database client file

must match the version of Oracle Database that is running on the server under test.

1. On the Location page, specify the connection and authentication information for the server that runs Oracle

Database. If you have to change the port that is used to communicate with the server, change the information

in Connection. Typically, your Oracle Database system administrator specifies this information.

2. In Database Name, type the name of the database to monitor.

3. On the Resource page, select the type of data to capture. The tree view shows the counter groups and

counters that are available from the application server. Be selective; monitoring all possible resource data

requires substantial amounts of memory. Hold your mouse pointer over a counter to see details about what

that counter measures.

4. Configure the options on the Options page.

a. In Polling Interval, specify in seconds the interval for collecting resource data. For example, if you

accept the default setting of 5 seconds, counter information is collected at 5-second intervals from the

specified host during the schedule run.

b. In Timeout Interval, type a time value in seconds. If the resource monitoring host does not respond

within this amount of time during a schedule run, an error is logged.

c. Clear the Keep cursors open during runtime check box to allow database cursors to close while tests

run. By default, Keep cursors open during runtime is selected, which prevents database cursors from

being closed while tests run.

5. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

6. Click Next.

7. Enter a name for the location in the Name field, and then click Finish.

Adding Oracle WebLogic Server sources
To capture resource monitoring data from Oracle WebLogic Server, you must configure the data source.

Before you begin

To capture resource monitoring data from Oracle WebLogic Server, you must specify the path to the client files:

• wljmxclient.jar

• wljmsclient.jar

• wlclient.jar

Chapter 7. Test Author Guide

These Oracle WebLogic client files are provided with Oracle WebLogic, not with HCL OneTest™ Performance, so you

must copy the client files from the server to a folder on the workbench computer. In HCL OneTest™ Performance,

click Window > Preferences > Test > Performance Resource Monitoring > Oracle WebLogic Client Preferences and

specify the path to the folder containing the client files. The versions of the client files must match the version of

Oracle WebLogic Server running on the server under test. By default, for Oracle WebLogic Server 10g Release 3 (10.3),

the client files are installed in the c:\bea\wlserver_10.3\server\lib\ folder.

About this task

The resource monitoring for Oracle WebLogic server works with the Internet Inter-ORB Protocol (IIOP). If you use JMX

protocol in Oracle WebLogic Server, you can use the JVM monitoring option.

1. In the Schedule editor, select the Resource Monitoring category, and click Add.

2. On the Location page, for a new resource monitoring location, specify the connection and authentication

information for the computer that runs the Administration Server instance of Oracle WebLogic Server for the

domain. If you need to change the port that is used to communicate with the Administration Server for the

domain, change the information in Connection. Typically, your WebLogic system administrator specifies this

information.

An Oracle WebLogic domain consists of one or more Oracle WebLogic Server instances. One server is the

Administration Server. If you want to collect resource monitoring from an Oracle WebLogic domain that

consisting of multiple servers, the specified host must be the Administration Server. The Administration

Server is also known as the domain controller.

3. If administrative security is enabled on the Administration Server, select Administrative security enabled.

a. Type the user ID and password for Oracle WebLogic Server in Authentication.

b. Select Save Password to save your password locally. If you do not save your password, you might be

prompted for it (depending on the host system configuration) when you edit the configured location or

when you run test schedules that use the location.

4. On the Resource page, select the type of data to capture. The tree view shows the application servers that the

Administration Server manages and their counter groups and counters. Be selective; monitoring all possible

resource data requires substantial amounts of memory. Clear the Show only selected counters check box

to see all available counters. Hold your mouse pointer over a counter to see details about what that counter

measures.

5. Configure the options on the Options page.

a. In Polling Interval specify in seconds the interval for collecting resource data. For example, if you

accept the default of 5 seconds, counter information is collected at 5-second intervals from the

specified host during the schedule run.

b. In Timeout Interval, type a time value in seconds. If the resource monitoring host does not respond

within this amount of time during a schedule run, an error is logged.

6. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

7. Click Next.

8. Enter a name for the location in the Name field, and then click Finish.

763

HCL OneTest Performance

764

Adding SAP NetWeaver sources
To capture resource monitoring data from SAP NetWeaver, you must configure the data source.

Before you begin

Before you can capture resource monitoring data from SAP NetWeaver, you must specify the path to the client files:

• com_sap_pj_jmx.jar

• exception.jar

• logging.jar

• sapj2eeclient.jar

Specify the path to the client files on the SAP NetWeaver Web Application Server Client Preferences page. The SAP

NetWeaver client files are provided with SAP NetWeaver, not with HCL OneTest™ Performance. The versions of the

client files must match the version of SAP NetWeaver running on the server under test. Copy the client files to the

workbench computer, and then specify the path to the files.

The resource monitoring feature was tested on SAP NetWeaver 7.0 (2004s). Resource monitoring from other versions

of SAP NetWeaver might not be supported.

1. On the Location page, specify the connection and authentication information for the instance of SAP

NetWeaver to use to capture resource monitoring data. If you need to change the port for communicating

with the computer that is running SAP NetWeaver, change the Connection information. Typically, your SAP

NetWeaver system administrator specifies this information. Use the P4 port to communicate with the

computer that is running SAP NetWeaver. The default value of the P4 port is 50004. For more information

about port numbers, see the SAP NetWeaver documentation.

2. Ensure that Administrative security enabled is selected.

a. Type the user ID and password for SAP NetWeaver in Authentication.

To capture resource monitoring data from SAP NetWeaver, you must use an account with

administrator rights.

b. Select Save Password to save your password locally. If you do not save your password, you might be

prompted for it (depending on the host system configuration) when you edit the configured location or

when you run test schedules that use the location.

3. On the Resource page, select the type of data to capture. The tree view shows the application server and its

counter groups and counters. Be selective; monitoring all possible resource data requires substantial amounts

of memory. Clear the Show only selected counters check box to see all available counters. Hold your mouse

pointer over a counter to see details about what that counter measures.

4. Configure the options on the Options page. Type the Polling Interval in seconds, for collecting resource data.

For example, if you accept the default setting of 5 seconds, counter information will be collected at 5-second

intervals from the specified host during the schedule run.

5. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

Chapter 7. Test Author Guide

6. Click Next.

7. Enter a name for the location in the Name field, and then click Finish.

Adding Simple Network Management Protocol sources
To capture resource monitoring data from a Simple Network Management Protocol (SNMP) agent, you must

configure the data source.

1. On the Location page, specify the connection and authentication information for the SNMP agent.

2. In MIB path, type or browse to the management information base (MIB) file. Typically, MIB files are supplied by

manufacturers of devices that support SNMP.

3. On the Resource page, select the type of data to capture. The tree view shows the counter groups and

counters that are available from the application server. Be selective; monitoring all possible resource data

requires substantial amounts of memory. Hold your mouse pointer over a counter to see details about what

that counter measures.

4. Configure the options on the Options page.

a. Click Reset counters at start of run (client side reset only) to set the counters to 0 at the start of a

schedule run.

This setting does not change the actual values of the counters on the device that runs the SNMP

agent. Instead, the recorded values of the counters are corrected to start at 0.

b. In Polling Interval, specify in seconds the interval for collecting resource data. For example, if you

accept the default setting of 5 seconds, counter information is collected at 5-second intervals from the

specified host during the schedule run.

c. In Timeout Interval, type a time value in seconds. If the resource monitoring host does not respond

within this amount of time during a schedule run, an error is logged.

5. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

6. Click Next.

7. Enter a name for the location in the Name field, and then click Finish.

Adding UNIX™ rstatd sources
To capture resource monitoring data from the UNIX™ rstatd daemon, you must configure the data source. UNIX™

rstatd is bundled with most Linux™ distributions.

Before you begin

To collect resource monitoring data from UNIX™ rstatd, the portmapper service must be enabled on the host

computer. To determine whether the portmapper service is enabled, type the following on the command line of the

host computer:

rpcinfo -p localhost

765

HCL OneTest Performance

766

The portmapper service is listed in the output of the rpcinfo command. If it is not, contact your system administrator

for help with installing or configuring the portmapper service.

1. On the Resource Monitoring tab of the schedule editor, click Enable resource monitoring, and then click the

Add button.

2. Click Next and type the hostname of the computer that you want to monitor.

3. In Data Sources, click UNIX rstatd monitor, and on the Locations tab, specify the connection parameters:

a. Click UDP or TCP protocol.

b. To use a different port number, click Use port and type the port number.

4. On the Resource tab, select the type of data that you want to capture. The tree view shows all available

performance counters, with a default set of counters preselected. To see all available counters, clear the

Show only selected counters check box.

Be selective; monitoring all possible resource data requires substantial amounts of memory. Hold your mouse

pointer over a counter to see details about what that counter measures.

5. Configure time interval on the Options page.

a. In Polling Interval, type a time value in seconds for collecting resource data. For example, if you accept

the default of 5 seconds, counter information will be collected at 5-second intervals from the specified

host during the schedule run.

b. In Timeout Interval, type a time value in seconds. If the resource monitoring host does not respond

within this amount of time during a schedule run, an error is logged.

6. Click the Cloud Options tab, and then select the Location In Public Cloud checkbox to collect the resource

monitoring data for the system under test that is in the public cloud.

7. Click Next.

8. Enter a name for the location in the Name field, and then click Finish.

Resource Monitoring Service
When you apply load to a system under test, the system's resources are consumed increasingly. If the capacity of

the resources does not match the load, you will notice performance degradation in the results. With the Resource

Monitoring Service, you can continually observe the health of the system's resources.

To monitor a remote system under test, you can install an agent on that system. For testing, you would need many

machines. For example, you might have one machine with the application server, another machine with the database

server, and some machines to apply the user load. Due to network or firewall issues, sometimes, it becomes difficult

for multiple machines to connect to each other. Resource Monitoring Agents are installed on the target machines so

that they can establish a connection with HCL OneTest™ Server to gather resource statistics of the target host.

The agent always initiates the connection with the Resource Monitoring Service. Also, to monitor the resources, you

must first add them to the Resource Monitoring Service web UI. For example, if you want to view the throughput,

requests rate, and CPU usage of the Apache server, you must add it as a data source. For more information about

Resource Monitoring Agents and Services, see HCL OneTest™ Server documentation.

https://help.hcltechsw.com/onetest/hclonetestserver/index.html
https://help.hcltechsw.com/onetest/hclonetestserver/index.html
https://help.hcltechsw.com/onetest/hclonetestserver/index.html
https://help.hcltechsw.com/onetest/hclonetestserver/index.html
https://help.hcltechsw.com/onetest/hclonetestserver/index.html

Chapter 7. Test Author Guide

Starting Resource Monitoring Service
You must access the Resource Monitoring web UI to perform the resource monitoring operations such as adding the

data sources, counters, and viewing the live performance statistics.

Before you begin

You must have installed HCL OneTest™ Server. For more information about installing the software, see HCL OneTest™

Server documentation.

1. Go to the HCL OneTest™ Server URL.

Result

For example, https://server.ip.nip.io.

2. Enter your user name and password, and then click Login.

Monitoring response time breakdown
You can use response time breakdown to see statistics on any page element that is captured while running a test

schedule or imported from historical data.

Response time breakdown is a type of application monitoring that shows how much time was spent in each part

of the system under test as the system was exercised. The response time breakdown view is associated with a

page element (URL) from a particular execution of a test or schedule. This view shows the "insides" of the system

under test, because the data collection mechanisms are on the systems under test, not the load drivers. Response

time breakdown provides information down to the Java™ EE method level for applications that are running on IBM®

WebSphere® Application Server or BEA WebLogic Server, as well as calls from Java™ EE methods to plain old Java™

objects (POJOs).

You can collect response time breakdown data from HTTP and SOA tests. Response time breakdown does not apply

to other protocols, such as SAP.

Typically, you capture response time breakdown in real time in development, or test, environments, rather than

production environments. To capture response time breakdown data, you must enable it in a test or schedule and

configure the amount of data to be captured.

The data collection infrastructure collects response time breakdown data. Each application server on which the

application runs and from which you want to collect data must have the data collection infrastructure installed

and running. In addition, each application server must be configured, or instrumented, to use the data collection

infrastructure. See the installation guide to learn more about installing the data collection infrastructure.

HCL OneTest™ Performance provides limited ability to collect response time breakdown data. You can collect

response time breakdown data for up to four processor cores on one application tier. For enhanced response

time breakdown collection, contact your account representative to learn more about IBM® Rational® Application

Performance Analyzer.

767

https://hclonetestserver.hcldoc.com/v1002/help/index.jsp
https://hclonetestserver.hcldoc.com/v1002/help/index.jsp
https://hclonetestserver.hcldoc.com/v1002/help/index.jsp
https://hclonetestserver.hcldoc.com/v1002/help/index.jsp
https://hclonetestserver.hcldoc.com/v1002/help/index.jsp
https://hclonetestserver.hcldoc.com/v1002/help/index.jsp

HCL OneTest Performance

768

Note: Rational® Application Performance Analyzer is a version of HCL OneTest™ Performance that is

licensed for extended response time breakdown data collection. To install, configure, or use Rational®

Application Performance Analyzer, follow the documentation for HCL OneTest™ Performance.

Enabling response time breakdown collection
You can enable response time breakdown collection to see how much time is spent in each part of the application as

it runs.

Before you begin

To collect response time breakdown, the data collection infrastructure must be installed, configured, and running

on all computers that are used in the distributed application under test. If you enable response time breakdown

collection for a test and the remote computers are not running the data collection infrastructure, the following error is

displayed: IWAY0159E The data collection infrastructure does not appear to be running on hostname. Please ensure

that it is running and try again.

1. Open a schedule in the editor.

2. In the Schedule Element Details area, click the Response Time Breakdown tab.

3. Select Enable collection of response time data.

Result

This activates the test list, the location list, and Options.

4. Click Add.

Choose from:

◦ To add a new response time breakdown location, select Add New.

◦ To add an existing response time breakdown location, select Add Existing.

Add locations for every application server from which to collect response time breakdown information.

Results

You have enabled response time breakdown data collection.

What to do next

Set logging detail levels.

Enabling response time breakdown collection on Windows™ Vista, Windows™ 7, and
Windows™ Server 2008
Microsoft™ Windows™ Vista, Windows™ 7, and Windows™ Server 2008 include security features that are not in

previous versions of Windows™. You must adjust the security settings of these operating systems to collect response

time breakdown data. The default security settings do not allow response time breakdown collection. By default, the

firewall blocks inbound connection attempts. You must create an inbound connection rule to allow the HCL OneTest™

Performance Agent to connect to the computer.

Before you begin

Chapter 7. Test Author Guide

To collect response time breakdown, the data collection infrastructure must be installed, configured, and running

on all computers that are used in the distributed application under test. If you enable response time breakdown

collection for a test and the remote computers are not running the data collection infrastructure, the following error is

displayed: IWAY0159E The data collection infrastructure does not appear to be running on hostname. Please ensure

that it is running and try again.

1. Open the Windows™ Administrative Tools Control Panel, and click Local Security Policy.

Result

The Local Security Policy window opens.

2. Expand Windows Firewall with Advanced Security.

3. Expand Windows Firewall with Advanced Security - Local Group Policy Object.

4. Select Inbound Rules. Right-click the pane on the right, and select New Rule; then complete these steps:

a. On the Rule Type page, select Port; then click Next.

b. On the Protocol and Port page, select TCP, and enter these ports: 10002, 10003, 10004, 10005, 10006;

then click Next.

c. On the Action page, ensure that Allow the Connection is selected; then click Next.

d. On the Profile page, select all profiles; then click Next.

e. On the Name page, type a name, for example, Remote Agent Controller, and click Finish.

5. Right-click the new rule, and select Enable Rule.

Setting logging levels
To limit the amount of response time breakdown data collected, adjust logging levels.

Before you begin

To set logging levels, you need to have a schedule where you have enabled response time breakdown data collection.

1. Open a schedule in the editor.

2. In the Schedule Element Details area, click the Response Time Breakdown tab.

3. Choose a Detail level of Low, Medium, or High.

4. If you set the detail level to High or Medium, also click Only sample information from a subset of users to

prevent the log from getting too large.

769

HCL OneTest Performance

770

a. Click Fixed number of users, and type a number to specify that the given number of users from each

group is sampled. Unless you have specific reasons to collect data from multiple users, select Fixed

number of users, and specify one user per user group.

b. You can also click Percentage of users, and specify a percentage. That percentage is sampled from

each user group, but at least one user is sampled from each user group.

What to do next

Now you can run schedules and capture response time breakdown data.

Related information

Filtering POJO packages, methods, and classes on page 771

Enabling response time breakdown collection for specific page elements
You can enable response time breakdown for specific pages or page elements to see how much time is spent in

each part of the application as the schedule runs. Enabling response time breakdown collection for only certain page

elements can be useful if you want to minimize the amount of collected data. Enabling response time breakdown

collection for a whole test or schedule can require substantial amounts of memory.

Before you begin

To collect response time breakdown, the data collection infrastructure must be installed, configured, and running on

all computers that are used in the distributed application under test. To learn how to install and configure the data

collection infrastructure, see the installation guide on page and Configuring the data collection infrastructure

on page 160. If you enable response time breakdown collection for a test and the application servers are not running

the data collection infrastructure, the following error is displayed: IWAY0159E The data collection infrastructure does

not appear to be running on hostname. Please ensure that it is running and try again.

1. Open a test in the editor.

2. Expand the list under Test Contents to display the pages or page elements of interest.

3. Select the pages or page elements to collect response time breakdown data for. Under Test Element Details,

select Enable response time breakdown. You might need to scroll down in the test editor view to display the

Enable response time breakdown check box.

The Enable response time breakdown check box is displayed only for elements that support response time

breakdown data collection. The specific elements that support response time breakdown vary depending on

the protocol (HTTP, SAP, Citrix, and so on).

Note: Restricting the scope of the response time breakdown collection improves performance and

memory utilization. Enable response time breakdown at as fine-grained a level as possible. Enabling

../topics/c_installingproduct.html
../topics/c_installingproduct.html
../topics/c_installingproduct.html
../topics/c_installingproduct.html

Chapter 7. Test Author Guide

response time breakdown at too broad a scope can greatly increase the time spent in areas with a

large number of Java™ EE interactions.

Result

You are prompted to select an existing response time breakdown location or to add a new response time

breakdown location.

4. To add other response time breakdown locations, click Add on the Advanced page.

Choose from:

◦ To add a new response time breakdown location, select Add New.

◦ To add an existing response time breakdown location, select Add Existing.

Add locations for every server from which to collect response time breakdown information.

Results

You have enabled response time breakdown data collection for the specified page elements.

Filtering POJO packages, methods, and classes
You can filter selected plain old Java™ object (POJO) packages, methods, and classes from response time breakdown

collection.

Before you begin

Create a test or schedule that is enabled for response time breakdown collection.

1. Open the location that you used for response time breakdown collection.

2. Click the General Properties tab.

3. Click Add to create a new property.

4. In the New Property window, type RTB_POJO_EXCLUDE for the Property Name.

5. In Property Value, type a semicolon-separated list of the POJO packages, methods, and classes to filter.

Use an asterisk (*) for a wildcard character.

Result

When you run the test again, the POJO methods and classes that you selected are filtered from response time

breakdown collection.

Exemple

Assume that the RTB_POJO_EXCLUDE property has this property

value:com.ibm._js*;com.ibm.websphere.samples.plantsbywebspherewar.*;com.ibm.websphere.samples.plantsbywebsphereejb.Util.debug.

All packages with names that start with com.ibm._js, the

com.ibm.websphere.samples.plantsbywebspherewar package, and the

com.ibm.websphere.samples.plantsbywebsphereejb.Util.debug method are excluded from response

time breakdown results.

771

HCL OneTest Performance

772

Setting log and statistic levels
Within a schedule, you set the size and sampling rate of the test log and the problem determination log, as well as the

statistics that are displayed during a run.

Setting the statistics displayed during a run
You can set the type of data that you see during a run, the sampling rate for that data, and whether data is collected

from all users or a representative sample.

To set the level of statistics logging:

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. In the Schedule Contents area, click the name of the schedule.

3. On the Statistics page, set Statistics log level to one of the following options:

Option Description

None No statistics are displayed during the run, and any

report that depends on statistics is not generated.

At the end of the run, you see only a Summary re­

port that contains three items: the time the run took,

whether the results were on the local computer (or, if

a remote location, which one), and the status of the

run, which is Complete.

Schedule Actions Select this option if you are interested only in the

number of users. Schedule actions report the number

of active and completed users in the run.

Primary Test Actions Select this option to limit the processing required

by the workbench. Primary test actions include all

schedule actions plus:

◦ For HTTP tests, HTTP page-related actions

(attempts, hits, and verification points).

◦ For SAP tests, SAP screens.

◦ For Citrix tests, all keyboard and mouse ac­

tions.

◦ For socket tests, this option does not apply.

Secondary Test Actions Select this option to limit the processing required by

the workbench. Secondary test actions include all pri­

mary test actions plus HTTP page element–related

actions.

Chapter 7. Test Author Guide

Option Description

◦ For HTTP tests, HTTP page element–related

actions.

◦ For SAP tests, SAP screen element–related

actions.

◦ For Citrix tests tests, statistics are identical to

Primary Test Actions.

◦ For socket Send and Receive actions, the ex­

changed data is also available in the test log,

by means of attachments.

All For HTTP, SAP, and Citrix tests, provides statistics for

all actions.

For socket Send and Receive actions, the exchanged

data is also available in the test log, by means of at­

tachments.

4. In Statistics sample interval, type a number and select a time unit.

When you run a schedule, the reports show such information as response time during a specific interval, the

frequency of requests being transferred during an interval, and average response trend during an interval. You

set this interval here.

5. To set a sampling rate, select Only sample information from a subset of users, then select one of the

following options.

The number or the percentage that you specify is applied to each user group. If you are running user groups at

remote locations, the number or percentage that you select is distributed evenly among the remote locations.

Option Description

Fixed number of users The number is applied to each user group. Assume

that a schedule contains two user groups. One group

contains four users, and another group contains

1000 users. If you specify “2” for this option, two

users are sampled from each group.

Percentage of users The percentage is applied to each user group, but at

least one user will be sampled from each group. As­

sume that a schedule contains two user groups. One

group contains four users, and another group con­

tains 1000 users. If sampling rate is set to 10%, one

user is sampled from the first group, and 100 users

are sampled from the second group. Similarly, if sam­

pling rate is set to 25%, one user is sampled from the

773

HCL OneTest Performance

774

Option Description

first group, and 250 users are sampled from the sec­

ond group.

6. Typically, you should select Only store All Hosts statistics.

Selecting this option reduces the amount of statistical data stored, thus enabling you to test a larger load over

a longer period of time with significantly less memory usage. Although you will not be able to analyze data

from each computer that adds to your test, this data is generally not of interest.

However, if you are running a test over different WANs—and if you are interested in seeing the data from each

remote computer—you should clear this box.

Setting the data that the test log collects
The test log shows the events that occurred during a run. By setting the level of information that is collected for a

schedule run, you can control whether you receive individual response-time statistics for Page Percentile reports and

information about verification points. You can set the level of detail for each type of event: errors, warnings, and other

events.

About this task

The level of information collection directly affects log sizes. Depending on the setting that you select, the logs can

become quite large. By limiting the log level and collecting the information from a representative sample of users, you

can decrease your log size and still have sufficient information for analysis.

For example, if you are debugging a test, you might set all three What to Log fields to All or Action Details. These

settings produce large test logs, especially if your tests are long or you are running a large number of users. Large

test logs, in turn, increase the test log transfer time, and might even cause your computer to run out of disk space or

the agent computer to run out of memory. To reduce transfer times and the likelihood of running out of disk space,

sample information from a very small subset of users; smaller even than the default of 5 users per user group. A fixed

sampling rate samples the same number of virtual users from each group. A percentage sampling rate samples a

percentage of virtual users from each group, but guarantees that at least one user is sampled from a group.

To set the amount of information collected in the test log and the rate of sampling:

1. In the Test Navigator, browse to the schedule, and double-click it.

Result

The schedule opens.

2. In the Schedule Contents area, click the name of the schedule.

3. On the Test Log page, select the types of events that you want to collect under What to Log. You can collect

errors only, errors and warnings, or all events. In other words, Also show warnings and And also show all other

types are unavailable until you select Show errors and failures. Similarly, And also show all other types is

unavailable until you select Also show warnings. If none of the What to Log check boxes are selected, no test

log events are collected.

Chapter 7. Test Author Guide

4. For each type of event, set the Log Level to one of the following options:

Option Description

Schedule Actions Collects events that correspond to actions executed

in the schedule:

◦ The overall schedule verdict. The verdict can

be one of these values:

▪ Pass indicates that all verification

points matched or received the ex­

pected response. For example, a re­

sponse code verification point is set

to PASS when the recorded response

code is received during playback. If

your test does not contain verification

points, PASS means that all primary re­

quests in the test were successful.

▪ Fail indicates that at least one verifi­

cation point did not match the expect­

ed response or that the expected re­

sponse was not received.

▪ Error indicates one of the following

results: a primary request was not

successfully sent to the server, no re­

sponse was received from the server

for a primary request, or the primary

request response was incomplete or

could not be parsed.

◦ The start and stop time of the schedule, each

user group, each virtual user, and each test in­

vocation.

◦ The start and stop time of each loop iteration,

if loops are set in the schedule.

◦ The start and stop time of each selector, if se­

lectors are set.

Primary Test Actions Typically, you set data collection at this level. Primary

test actions include schedule actions, plus the follow­

ing actions:

◦ Test verdict, test start, and test stop events.

◦ Loop iteration start and loop iteration stop

events, if loops are present in the test.

775

HCL OneTest Performance

776

Option Description

◦ Transaction start and stop events if transac­

tions are present in the test.

◦ For HTTP tests, Page title verification points.

With this option you can see any page title

verification points that you have set. The fol­

lowing events are collected:

▪ The page verdict. You see a page ver­

dict only if a connection problem oc­

curs or if you have set verification

points. Any failures or errors are rolled

up to the test verdict level.

▪ The start and stop time of each page.

▪ The start and stop time of each loop,

and the number of iterations of each

loop, if you have set loops within a

page.

▪ The start and stop time of each trans­

action, and the duration of each trans­

action, if you have set page-level

transactions in your test.

◦ For SAP tests, SAP screen information, such

as SAP screen title verification points.

◦ For Citrix tests, connection elements, window

events, and image synchronizations

◦ For socket tests, connect, send, receive, and

close elements.

Secondary Test Actions Secondary test actions include primary test actions,

plus this information:

◦ For HTTP tests, request-level events. To col­

lect information about response code or re­

sponse size verification points that you have

set, set data collection at this level of detail or

greater.

▪ The time that the first byte and last

byte were sent.

▪ The time that the first byte and last

byte were received.

▪ The character set of the response da­

ta.

Chapter 7. Test Author Guide

Option Description

▪ Expected and actual values of page-

level verification points that you have

defined.

▪ HTTP think events.

▪ The start and stop time of each trans­

action, and the duration of each trans­

action, if you have set request-level

transactions in your test.

◦ For SAP tests, SAP element information (pri­

marily Set Property or Call Method actions).

◦ For Citrix tests, synchronization points, de­

lays, text elements, and logoff elements.

◦ For socket tests, this option does not apply.

Action Details Action details include secondary test actions, plus

this information:

◦ For HTTP tests, request and response data;

for example, HTTP headers and any request

data.

◦ For SAP tests, think time information.

◦ For Citrix tests, think time information, mouse

actions, and keyboard actions.

◦ For socket tests, this option does not apply.

All For HTTP, SAP, and Citrix tests, All and Action Details

provide the same information.

For socket send and receive actions, the exchanged

data is also available in the test log, by means of at­

tachments.

5. To set a sampling rate, select Only sample information from a subset of users.

The number or percentage that you select is applied to each user group. If you are running user groups at

remote locations (that is, on agent computers), the number or percentage that you select is distributed evenly

among each location.

Option Description

Fixed number of users The number is applied to each user group. Assume

that a schedule contains two user groups. One group

contains four users, and another group contains

777

HCL OneTest Performance

778

Option Description

1000 users. If you specify “2” for this option, two

users are sampled from each group.

Percentage of users The percentage is applied to each user group, but at

least one user will be sampled from each group. As­

sume that a schedule contains two user groups. One

group contains four users, and another group con­

tains 1000 users. If sampling rate is set to 10%, one

user is sampled from the first group, and 100 users

are sampled from the second group. Similarly, if sam­

pling rate is set to 25%, one user is sampled from the

first group, and 250 users are sampled from the sec­

ond group.

6. If you want to log health failure events irrespective of the standard Test Log settings, enter a value in Number

of health failure events to log (regardless of logging level). By default, this option is set to 50 and is useful to

limit the number of events in the Test Log for playbacks that are expected to generate many failures.

Option Description

Fixed number of users The number is applied to each user group. Assume

that a schedule contains two user groups. One group

contains four users, and another group contains

1000 users. If you specify “2” for this option, two

users are sampled from each group.

Percentage of users The percentage is applied to each user group, but at

least one user will be sampled from each group. As­

sume that a schedule contains two user groups. One

group contains four users, and another group con­

tains 1000 users. If sampling rate is set to 10%, one

user is sampled from the first group, and 100 users

are sampled from the second group. Similarly, if sam­

pling rate is set to 25%, one user is sampled from the

first group, and 250 users are sampled from the sec­

ond group.

With the default settings for the Test Log, where Show errors and failures option is set to All, the value

specified in this field is relevant only if you are sampling for a subset of users. If you are not sampling for a

subset of users, all the errors or failures will be logged regardless of the value in this field.

If you clear the Show errors and failures or select the Only sample information from a subset of users, then

you can use Number of health failure events to log (regardless of logging level) option to control how many

Chapter 7. Test Author Guide

failures appear in the test log. You can further refine which failure events are logged by setting the Affects

page health to No in the Error Handling page.

Perform the following sub-steps to minimize the logging of failure events:

a. Clear all the What to Log options.

b. Set the Number of health failure events to log (regardless of logging level) to 0.

c. Disable the Execution Event Console by clearing the When schedules start check box in the Execution

Event Console settings because failures are logged if they are reported in the Execution Event Console

page.

Exemple

The default setting, to log all errors and warnings, as well as primary test actions, fits most purposes. However, you

can log any type of information, from no information to all information from all users, although neither is a typical

situation.

• To see only errors and warnings, set the first two What to Log check boxes to All and clear the third check box,

And also show all other types, to avoid logging successful events.

• To check a schedule's structure, when you are not interested in the test execution results, set all three What to

Log boxes to Schedule Actions.

Both choices, as well as the default setting, will limit the size of the test log and reduce the total time to run

the schedule by significantly shortening the test log transfer time at the end of a test.

If you are debugging a test, you might set all three What to Log fields to All or Action Details. These settings produce

large test logs, especially if your tests are long or you are running a large number of users. Large test logs, in turn,

increase the test log transfer time, and might even cause your computer to run out of disk space.

Setting the problem determination level for schedules
You can set the level of information that is saved in the problem determination log during a run. By default, only

warnings and severe errors are logged. Typically, you change this log level only when requested to do so by the

Support person.

About this task

The problem determination logs contain internal information about the playback engine. These logs are particularly

useful for debugging problems such as Kerberos authentication, SSL negotiation, and resource constraints on

an agent. The log files are named CommonBaseEvents00.log and are located in the deployment directory.

For example, if you play back a schedule on an agent and set C:\Agent as the deployment directory, the

problem determination log files are in a directory similar to C:\Agent\deployment_root\<UserName>

\A1E14699848784C00D2DEB73763646462\CommonBaseEvents00.log. If a large amount of log information is

generated, multiple CommonBaseEvents files are created.

To set the level of problem-determination logging and the sampling rate:

779

HCL OneTest Performance

780

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. In the Schedule Contents area, click the name of the schedule.

3. On the Problem Determination page, set Problem determination log level to one of the following options:

Option Description

All, Finest, Finer, Fine Set these options only if you are requested to do so

by technical support.

Config Logs static configuration messages. Configuration

messages, which include hardware specifications or

system profiles, require no corrective action.

Info Logs informational messages. Informational mes­

sages, which include system state, require no correc­

tive action.

Warning Logs warning messages. This is the default setting.

Warning messages, which might indicate potential

problems, require no corrective action.

Severe Logs critical and unrecoverable errors. Critical and

unrecoverable messages interrupt normal program

execution, and require corrective action.

None Turns logging off.

4. To set a sampling rate, select Only sample information from a subset of users.

The number or the percentage that you select is applied to each user group. If you are running user groups

from remote locations, the number or percentage that you select is distributed evenly among the remote

locations.

Option Description

Fixed number of users The number is applied to each user group. Assume

that a schedule contains two user groups. One group

contains four users, and another group contains

1000 users. If you specify “2” for this option, two

users are sampled from each group.

Percentage of users The percentage is applied to each user group, but at

least one user will be sampled from each group. As­

sume that a schedule contains two user groups. One

group contains four users, and another group con­

tains 1000 users. If sampling rate is set to 10%, one

Chapter 7. Test Author Guide

Option Description

user is sampled from the first group, and 100 users

are sampled from the second group. Similarly, if sam­

pling rate is set to 25%, one user is sampled from the

first group, and 250 users are sampled from the sec­

ond group.

Results

When a user group runs on your local computer, the problem determination logs are in the deployment_root

directory in your workspace. When a user group runs at a remote location, which is the typical use case, each remote

location has a deployment directory, which you define and which is listed on the Locations page for that user group.

Note: Common Base Event XML logs from remote locations use Universal Coordinated Time (UTC), also

called Zulu time, which is likely different from your local time. For example, Eastern Standard Time (EST) is 5

hours behind UTC time.

What to do next

To view the problem determination log, open the log file in an XML editor. Select the log whose timestamp matches

that of the problem run. The most recent log has the suffix 00.log.

Setting problem determination level for tests
You can set the level of information that is saved in the problem determination log during a run. By default, only

warnings and severe errors are logged. Typically, you change this log level only when requested to do so by the

Support person.

About this task

The problem determination logs contain internal information about the playback engine. These logs are particularly

useful for debugging problems such as Kerberos authentication, SSL negotiation, and resource constraints on

an agent. The log files are named CommonBaseEvents00.log and are located in the deployment directory.

For example, if you play back a schedule on an agent and set C:\Agent as the deployment directory, the

problem determination log files are in a directory similar to C:\Agent\deployment_root\<UserName>

\A1E14699848784C00D2DEB73763646462\CommonBaseEvents00.log. If a large amount of log information is

generated, multiple CommonBaseEvents files are created.

1. Open the test for which you want to set the problem determination log level.

2. Select the root node and from the Test Details section, select Problem Determination.

3. On the Problem Determination page, set Problem determination log level to one of the following options:

781

HCL OneTest Performance

782

All, Finest, Finer, Fine
Set these options only if you are requested to do so

by technical support.

Config
Logs static configuration messages. Configuration

messages, which include hardware specifications or

system profiles, require no corrective action.

Info
Logs informational messages. Informational mes­

sages, which include system state, require no correc­

tive action.

Warning
Logs warning messages. This is the default setting.

Warning messages, which might indicate potential

problems, require no corrective action.

Severe
Logs critical and unrecoverable errors. Critical and

unrecoverable messages interrupt normal program

execution, and require corrective action.

None
Turns logging off.

4. Save the test.

Chapter 8. Test Execution Specialist Guide
This guide describes tasks that you can perform on schedules, test execution with custom code, and Extending HCL

OneTest™ Performance to support other protocols. This guide is intended for testers or test execution specialists.

Running schedules
After you have added the user groups, tests, and other items to a schedule, and you are satisfied that it represents a

realistic workload, you run the schedule.

Running a local schedule or test
You can run a test locally or a schedule, in this context, is used to refer to both VU Schedule and Rate Schedule on

remote locations with a default launch configuration.

Before you begin

To play back tests against the applications that require client authentication such as Digital Certificates, Smart Card,

or Kerberos, you must provide the appropriate authentication before playing back the test.

• To play back a test with a digital certificate, see Playing back a test with a digital certificate on page 436.

• To play back a test that require Kerberos authentication, see Generating tests that use Kerberos on page 441.

About this task

When you run a schedule or test in this way, HCL OneTest™ Performance automatically sets up a simple launch

configuration. A test runs on the local computer, with one user. A schedule runs with the user groups or Rate Runner

groups and the locations that you have set. However, the execution results have a default name (the same as the

schedule or test, with a suffix) and are stored in a default location.

The Rate Schedule can be run only on agent locations.

When you run a schedule with multiple agents, an agent might be lost, especially during the long load test run. Losing

an agent is not common and occurs during some extreme cases such as when computer's memory is exhausted.

When an agent is lost, by default, the schedule is stopped. When the schedule is stopped in this manner, you must fix

the reason of agent loss or add more agents before running the schedule. To continue to run the schedule without the

lost agent, in the Schedule editor, click the Advanced tab and clear the Loss of an agent halts execution check box.

Typically, the agents divide the load among themselves. So, running a schedule without the lost agent might give

unpredictable results. If you use a segmented dataset and if you run a schedule without the lost agent, the data is not

redistributed among the surviving agents. Also, if the schedule has multiple stages, by default, the load is distributed

among the surviving agents at the next stage. But, if the Replace lost users in current stage check box is selected,

then the load is distributed evenly among the surviving agents in the current stage. If the check box is cleared and a

percentage of users or clients are allowed to exit during stage execution, the load is distributed among the surviving

agents in the next stage. Loss of an agent in a schedule run is logged in the Performance Report.

783

HCL OneTest Performance

784

To stop a test gracefully without causing incomplete page hits, select the Active actions are allowed to complete if

stop requested check box at Window > Preferenes > Test > Test Execution.

To receive email notification for the status of the run, specify the email properties in Window > Preferenes > Test >

Test Execution.

1. In the Test Navigator, expand the project until you locate the schedule or test.

2. Right-click the schedule or test, and then click Run As > Performance Schedule or Run As > Test.

Note: If you run an HTTP schedule on a remote Macintosh computer, the test fails. The cipher suite

that is used for recording must be available in Oracle JDK on the Macintosh computer. For example,

you can use TLS_RSA_WITH_AES_128_CBC_SHA on Macintosh.

Results

After you run a test or a schedule, the Performance Test Runs view opens. In this view, you can add comments about

the selected result and view the settings that were used to run the schedule. To add comments, in the lower-left

panel of the Performance Test Runs view, click User Comments. The comments that you enter are displayed on

the Summary page of performance reports. To view the settings that were used for a schedule run, click Schedule

Settings. The Performance Test Runs View Schedule Settings page displays and shows the statistics and test log

settings that were used for the run.

Note: When you record a test that includes a file download, the file is not physically saved to disk. However,

you can confirm that the file was retrieved from the server by looking in the response of the request that

asked for the file. One method to locate the request for large downloaded files is to look for a request with a

large response size.

What to do next

You can configure a schedule or test. A typical reason for setting up a configuration is to control where the execution

results are stored. For more information, see Setting a launch configuration on page 795.

Running a long run mode SAP GUI test
When running a SAP GUI test that could last for many hours and could use up the operating system resources, you

can choose to run the test with the Long Run Mode process. It is an external process that restarts automatically after

the specified number of SAP sessions are over. So, tests of longer duration tests are more likely to finish.

About this task

The following guidelines improve the success of long duration tests:

• Use agent computers with at least 2GB of RAM and 10GB of free disk space, running the same version of the

HCL OneTest™ Performance or HCL OneTest™ Performance Agent.

• Disable antivirus software, screen savers, and automatic updaters on the agent computers during the test.

Chapter 8. Test Execution Specialist Guide

• Keep individual tests short by having loops of not more than 10 iterations within each test. Get the desired

long run duration by looping within the schedule. Do not exceed 20 or 30 virtual testers for each agent

computer with a think time of more than several seconds.

• Use tests with a minimal number of verification points.

• Do not use the Signature theme. Disable all animations in the SAP GUI.

• Do not use the mouse during the test. Any mouse click could be interpreted by a hidden SAP GUI window,

which could cause the test to fail.

• Ensure that the Screen Throughput counter remains low (approximately 1 every second for each agent).

• Before playing back a test, in SAP Connection Details editor, click Test Connection to test the connection to

the SAP GUI server.

1. In the schedule, select a User Group that includes a SAP GUI test.

2. In the User Group Details, click the Options tab and click Edit Options.

3. In Long Run Mode process renewal level, select one of the following options:

◦ Schedule: Starts the Long Run Mode process at the schedule level. All of the SAP sessions are

managed by one process.

◦ User Group: Starts the Long Run Mode process at the beginning of each user group.

◦ Virtual User: Starts the Long Run Mode process for each virtual user.

◦ Long Run Mode off: Does not use the Long Run Mode process. In this mode, the SAP GUI is directly

called by HCL OneTest™ Performance, thereby increasing the resource consumption of the operating

system.

4. In Number of SAP session starts per process, specify the number of SAP sessions to run. The Long Run

Mode process runs one session at a time. For example, if you specified 100 sessions for Virtual User, the Long

Run Mode process takes one session at a time, and when the 100 sessions are run, a new process starts.

5. Click OK and save the schedule.

Related information

Evaluating results on page 966

Running long duration Citrix tests
When tests exceed many hours, resource consumption issues can cause problems for the Citrix clients. The long

run mode increases the reliability of long duration tests with the Citrix protocol by running the test using multiple

processes.

Before you begin

Ensure that the test plays back reliably, with no errors, when run as a single test.

For Citrix tests, a new process is created for each virtual tester.

The following guidelines improve the success of long duration tests:

785

HCL OneTest Performance

786

• Use agent computers with at least 2GB of RAM and 10GB of free disk space, running the same version of the

HCL OneTest™ Performance or HCL OneTest™ Performance Agent. Disable antivirus software, screen savers,

and automatic updaters. Avoid using the agent computers during the test.

• Keep individual tests short by avoiding loops of more than 10 iterations within each test, and achieve the

desired long run duration by looping within the schedule. Do not exceed 20 or 30 virtual testers per agent

computer with a think time above several seconds.

• Use tests with a minimal number of verification points.

To enable long run mode:

1. In the Test Navigator, browse to the schedule and double-click it.

Result

The schedule opens.

2. In the schedule, click the user group for which you want to enable the long run mode.

3. In the Schedule Element Details area, click the Options tab and click Edit Options.

4. Select the Enable long run mode check box and click OK.

5. Save the schedule.

Testing with Docker images
HCL OneTest™ Performance, HCL OneTest™ UI, and HCL OneTest™ Performance Agents are available for download as

Docker images. You can use them to fulfill the continuous testing aspects of your DevOps lifecycle.

You must use only floating licenses for the product and VT-pack when playing back tests using Docker. These

licenses should be hosted on a server that can be accessed by the workbench.

Running tests with containerized agents
When you have a local workbench, instead of installing the agents on different machines and locations, you can

deploy the containerized agents to generate the load.

Before you begin

You must have configured the Docker container. See Configuring Docker containers on page 167.

About this task

Typically, when the agents are installed, you specify the workbench host name and port number to establish the

connection with the workbench. If you use containerized agents, they are already installed. Therefore, you specify the

connection information during the run.

Note: The version number of the container images and the desktop products must match. If you have

previous version of the container image, uninstall it and install the latest version.

To uninstall the image, you must stop the container by running the docker stop "CONTAINER ID" command, and then

run the docker rmi -f "image ID" command to uninstall the image.

Chapter 8. Test Execution Specialist Guide

1. Start the container instance of the agent by running the following command:

$ docker run -dit --rm -e MASTER_NAME=Workbench_name or IP -e MASTER_PORT=port_number -e
 AGENT_NAME=Agent_name -e AGENT_IP=IP_address imageName:imageVersion

Table 2. Description of parameters

Command Description

-dit Specifies that the agent container runs in the background.

--rm Specifies to clean up the container and remove the file system when the container ex­

its.

MASTER_NAME Specifies the IP or host name of the workbench.

MASTER_PORT Specifies the port number of the workbench. If you use the default port number of

7080, this command is optional.

AGENT_NAME Optional: Specifies the name of the agent that report to the workbench.

AGENT_IP Optional: Specifies the IP address of the agent that report to the workbench.

imageName:image­

Version

Specifies the name and version of the image.

2. Click the Agent Status icon from the product to verify the two container agents are polling the

workbench.

Note: The agent host names should match the IDs of the containers running in Docker. Make a note of

the IP address of the each agent since they must be used when creating the agent locations.

3. In the schedule editor, create a new location test asset for each container agent so that the selected User

Group runs on two agent locations.

787

HCL OneTest Performance

788

4. Run the schedule.

The deployment step could result in the schedule remaining in the “Launching” state for several minutes.

Running automated tests with containerized workbench and agents from Docker
To simplify the deployment piece of Continuous Testing, you can use built Docker images to deploy the workbench

and the agents and start testing in no time. You need not install the workbench and the agents on different machines.

You can deploy the Docker images and use Docker commands to play back tests.

Before you begin

You must have configured the Docker container. See Configuring Docker containers on page 167.

You must already have exported the test assets to a location from where Docker can import them. For information

about exporting the test assets, see Copying test assets with dependencies on page 570.

Note: The version number of the container images and the desktop products must match. If you have

previous version of the container image, uninstall it and install the current version. To uninstall the image, use

these commands:

1. Stop the container by running

docker stop "CONTAINER ID"

.

2. Uninstall the image by running

docker rmi -f "image ID"

.

1. To run the test without using any agents, start the container:

$ docker run --rm -e HCL_ONETEST_LICENSING_URL=<URL> HCL_ONETEST_LICENSING_ID=<server_ID>

 -v hostTestAssets:/containerTestAssets -v hostImportedData:/containerImportedData imageName:imageVersion
 cmdline -workspace //containerImportedData/workspace -project projectName -schedule testName -results
 autoResults -stdout -exportlog /containerPathExtracted/testlog.txt

Table 3.

Command Description

--rm Removes the container after the run completes.

-e Sets environment variables.

HCL_ONETEST_LICENSING_URL=<URL> Specifies the URL of the license server, usually,

https://hclsoftware.compliance.flexnet­

operations.com.

Chapter 8. Test Execution Specialist Guide

Command Description

HCL_ONETEST_LICENSING_ID=<ID> Specifies the cloud license server ID. If you are using

a Local License Server (LLS), do not use this variable.

The floating license for the product and VT-packs

must be on the license server.

hostTestAssets:/containerTestAssets Specifies the folder location on the host machine

and the container containing the compressed test

assets (Zip format). Use both the locations to map

one or more shared volumes to transfer data such as

test assets, logs, and execution results between the

host and the container.

hostImportedData:/containerImportedData Specifies the workspace location on the host ma­

chine and the container containing the test assets

that are not compressed. Results from the test exe­

cution are saved to the directory you specify on the

host machine.

TEST_IMPORT_PATH=<PATH> Specifies the location of the compressed test assets

to be imported into the container. The location path

is on the container side and not the host. For exam­

ple, /containerTestAssets/archiveName.zip. The vol­

ume and path names are user defined and should be

consistent.

imageName:imageVersion Specifies the name of the image and its version to

run.

cmdline Specifies the existing command line arguments to

define the location of the workspace, project name,

test or schedule name, results file name, and the lo­

cation of the exported logs.

Result

After the test run completes, check the hostImportedData on the host machine to view the exported log.

2. To run the tests on containerized agents, load the agent images into the Docker repository:

tar --wildcards --to-command='docker load' -xzf <workbenchImageName> 'images/'*

For example, the workbench image name could be hcl-onetest-<versionNumber>.tar.gz.

Result

When the image is loaded, the following message is displayed - Loaded image: imageFileName:versionNumber

3. Specify the agent details in the workbench. You can do this in one of the two ways:

789

HCL OneTest Performance

790

◦ Specify all of the details in the local workbench and export the test assets to the directory that will be

used by the containers to choose the tests.

◦ Bring up the workbench UI in the container to specify the agents in the schedule editor. To bring up

the workbench UI in the container, install and configure an X11 server such as Xming on your host

machine and specify -e DISPLAY=<IP>:0.0 parameter in the docker run command. The IP is the IP

address of your host machine. For information about how to install and configure Xming, see its

product documentation.

Note:

◦ If you use 'localhost' instead of the IP address with the default Docker settings, the container

will forward the display to itself. If your IP is assigned via DHCP it is liable to change and you

will need to update your container’s environment variable accordingly.

◦ Do not use underscores in the agent names.

4. To map a User Group with a specific agent, assign a static IP to the agent. To assign an IP to the agent, use

the NODE_IP parameter along with the docker run command.

Note: Ensure that this IP matches with the IP specified for the Location asset in the workbench.

5. Initiate the test runs against the agents in one of the following ways:

a. To facilitate a run where container agents will automatically connect the workbench container to run a

schedule, install the Docker Compose tool.

i. Create a docker-compose.yml file that specifies similar parameters as mentioned in step 5.

ii. To run the tests, in the command prompt, navigate to the directory containing the yml file and

run:

docker-compose up

https://docs.docker.com/compose/

Chapter 8. Test Execution Specialist Guide

In addition to the parameters in step 5, you must also specify the following two parameters in the yml

file:

▪ MASTER_NAME: Specify the name of the workbench container.

▪ AGENT_NAME: Specify the name of the agent. The agent name defined in the schedule must

match with the name of the agent container.

Sample compose file:

#SIMPLE DOCKER COMPOSE FILE/TEMPLATE
#BE SURE TO REPLACE ANY PROJECT-SPECIFIC NAMES/PATHS AND LICENSING VARIABLES WITH
 YOUR OWN VALUES
version: '2'
services:
 agent1:
 image: <agentImageName>:<imageVersion>
 environment:
 - MASTER_NAME=<workbenchImageName>
 - AGENT_NAME=<agentImageName>

 agent2:
 image: <agentImageName>:<imageVersion>
 environment:
 - MASTER_NAME=<workbenchImageName>
 - AGENT_NAME=<agentImageName-2>

 workbench:
 image: <workbenchImageName>:<imageVersion>
 entrypoint: cmdline -workspace /runData/workspaceJuly10 -project
 921proj -schedule Schedules/agentSched -results autoResults -stdout
 -exportlog /runData/agentSchedLogJuly10.txt
 ports:
 - "7080:7080"
 - "7443:7443"
 volumes:
 - C:\Tests:/Tests
 - C:\runData:/runData
 environment:
 - HCL_ONETEST_LICENSING_URL=<URL> HCL_ONETEST_LICENSING_ID=<ID>
 - TEST_IMPORT_PATH=/Tests/agentProj.zip

Note: Docker Compose is included with some versions of Docker. The tool automates some

network configurations and makes it easier to coordinate multiple containers. To check

whether you have it, run docker-compose --version.

b. Start the agent containers by passing the following command as many times as you want the number

of agents for the run. To start four agents, pass the command four times.

docker run -it -e MASTER_NAME=IP_ADDRESS -e MASTER_PORT=PortNumber -e AGENT_NAME=NameofAgent

 -e AGENT_IP=AgentIP imageName:imageVersion

Table 4. Description of parameters

791

HCL OneTest Performance

792

Command Description

-dit Specifies that the agent container runs in the

background.

-e Sets environment variables.

--rm Specifies to clean up the container and remove

the file system when the container exits.

MASTER_NAME Specifies the IP or host name of the workbench.

MASTER_PORT Specifies the port number of the workbench. If

you use the default port number of 7080, this

command is optional.

AGENT _NAME Specifies the name of the agent. When there are

multiple agents running the test, the agent names

helps you in identifying the results the agent is

associated with.

AGENT_IP Specifies the IP address of the agent.

imageName:imageVersion Specifies the name and version of the image.

6. Verify whether the schedule has completed successfully. If you used an option such as -exportlog to output

results to the shared volume, check the corresponding directory on your host machine that was mapped to

hostImportedData to retrieve the exported data.

What to do next

If the test or schedule has completed successfully, the agent will likely be running. You might have to explicitly stop

the agent by running

docker stop containerID

If you used Docker Compose tool to run the tests, you can stop the agents when the workbench container exits by

running

docker-compose up --abort-on-container-exit

Related information

Testing with containerized agents on page 786

Adjusting delays in HTTP tests
You can configure HTTP tests to use client-side processing delays. Client-side processing delays wait for the first

character or last character that is received in a response for a previous request in order to better emulate the work

Chapter 8. Test Execution Specialist Guide

done on the client computer. You can also scale the recorded delays in HTTP tests to change the rate at which a test

runs.

Configuring HTTP client delays
You can configure delays for HTTP requests to emulate client-side processing delays. Applications that use client-

side Javascript, such as Web 2.0 applications, often incur significant delays due to processing done on the client. You

can emulate this client-side processing in HTTP tests. Running an HTTP test too quickly can cause unexpectedly low

page response times to be reported, and can generate excessive load on the server under test.

About this task

To remove request delays from response times for all the tests, click Window > Preferences > Test > Test Generation

> HTTP Test Generation and select the Remove HTTP request delays from response times.

To remove request delays from response times for a specific test, in the Test editor select HTTP Options and clear

the Remove HTTP request delays from response times check box.

To configure HTTP client delays:

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. Click the name of the test.

3. Click HTTP Options.

4. On the HTTP options page, select Enable new client processing delays.

5. Under Test Contents, select the request on which to enable client processing delays.

6. Under Test Element Details, click the Advanced tab.

7. Under Client Processing Delay, click Request.

Result

A test editor window opens, listing the previous requests in the test.

8. Select the request to wait for, and then click OK.

9. For Release when, select First Character Received or Last Character Received.

10. Type any Additional delay to add in milliseconds.

Adjusting client delays for all tests
To ensure consistency in client processing delays for all the tests in a user group, starting from 9.1.1.1, you can

override the client processing delays of the tests and set it in the schedule.

About this task

To remove request delays from response times for all the tests, click Window > Preferences > Test > Test Generation

> HTTP Test Generation and select the Remove HTTP request delays from response times.

To remove request delays from response times for a specific test, in the Test editor select HTTP Options and clear

the Remove HTTP request delays from response times check box.

793

HCL OneTest Performance

794

1. In the schedule editor, select the user group for which you want to set consistent client delay.

2. Click the Options tab and click Edit Options.

3. Select the Override Test Client Delay check box, adjust the HTTP requests delay, and click OK.

Overriding the HTTP connection timeout value
By default, HTTP page connections use a timeout value of 190 seconds, which might not be sufficient for some

applications. You can override the page connection timeout value for specific pages in a test.

To configure the HTTP connection timeout:

1. In the Test Navigator view, browse to the test and double-click it.

Result

The test opens.

2. Under Test Contents, select the request on which to enable client processing delays.

3. Under Test Element Details, click the Advanced tab.

4. Under Timeout, select Override timeout value and specify the timeout delay. You can specify a numeric

value for the timeout delay or use a dynamic value from data sources such as dataset, variables, and data

correlation.

Overriding WebSocket response timeout value
By default, the timeout value for WebSocket responses is 240 seconds at the test level. This value might be

insufficient or in excess for different applications. You can customize the timeout value for specific responses.

1. In the Test Navigator view, browse to the test and double-click it. The test opens.

2. Under Test Contents, select the request on which to enable client processing delays.

3. Under WebSocket Response Details, click the Advanced tab.

4. Under Timeout, select Timeout activated and specify the timeout delay. You can specify a numeric value for

the timeout delay or use a dynamic value from data sources such as dataset, variables, and data correlation.

Related information

Recording a WebSocket test on page 342

Playing back HTTP tests faster than the recorded rate
If the client computer used for recording an HTTP test was slower than required, or if you want to emulate a faster

client computer, you can increase the playback rate without altering the actual values in the recorded test by reducing

the client delays proportionately. Similarly, you can slow down the client by increasing the client delays.

About this task

Each request in a recorded test includes a programmatically calculated delay before the request is issued. This delay

is a statistical emulation of user behavior. To see a delay in a test, click a request, and examine the Test Element

Details area:

Chapter 8. Test Execution Specialist Guide

You can scale the delay in these requests to change the rate that a test runs. This scaling occurs at the test level.

To scale the delays:

1. In the Test Navigator, browse to the test and double-click it.

Result

The test opens.

2. Click the name of the test.

3. In the Test Element Details area, select a scaling percentage. Move the slider to scale the speed at which the

HTTP requests are sent. You can specify a range from no delays to twice the recorded length.

This scale is applied to all requests in the test.

Note: If you increase playback speed dramatically, requests might occur out of order. To correct this

problem, decrease playback speed until the test runs correctly.

What to do next

You can also set a maximum HTTP delay. Click Window > Preferences > Test > Test Generation > HTTP Test

Generation. Select the Protocol tab, and enter a value for Maximum Request Delay. Although requests larger than this

value are truncated in the generated test, the recorded test still contains the original values.

Setting a launch configuration
Instead of using the default launch configuration, you can specify the file name for the execution results, the name of

the folder for the execution results, and, for a test, the number of users.

About this task

You generally run a schedule, in this context, is used to refer to both VU Schedule and Rate Schedule by right-clicking

it and selecting Run > Run VU Schedule or Run > Run Rate Schedule. However, you should set a launch configuration

when:

• You want to specify a name for the execution results, or you want them in a separate folder.

• You plan to run a test outside of a schedule, in this context, is used to refer to both VU Schedule and Rate

Schedule, and you want to run the test with more than one user.

• You want the launch configuration to appear in your toolbar menu.

• You want the launch configuration to be available to other users.

795

HCL OneTest Performance

796

To set a launch configuration:

1. In the Test Navigator, expand the project until you locate the schedule or test.

2. Right-click the schedule or test, and then click Run As > Run configuration.

If the Perspectives page is displayed, keep the defaults.

3. In the Configurations area on the left, click VU Schedule or Rate Schedule, and then click New.

Result

A test configuration, initially named New_configuration, is created. Typically, you supply a configuration name

that is similar to the schedule name.

At this point, you can run the schedule if you click Run. However, you will not have created a meaningful

configuration.

4. Click the Test Logs tab and check the default settings. To change the default settings, clear the Use defaults

check box and type a file name for the execution results. The product appends a time stamp to this name. To

overwrite the file each time that you run the configuration, select the Override existing test log check box.

5. Click the Common tab to inspect or modify your run preferences.

6. In Save as, select one of the following options:

Option Description

Local This launch configuration is stored in your work­

space, and it is not visible to other users.

Shared Other users have access to the launch configuration;

you are asked where to store it.

7. For Display in favorites menu, select one or more of the following options:

Option Description

Run The configuration is displayed in your Run toolbar

menu. If you select a toolbar menu at all, this is the

logical choice for a schedule or test.

Debug The launch configuration is displayed in your Debug

toolbar menu.

Profile The configuration is displayed in your Profile toolbar

menu.

8. Verify that Launch in background is selected. If you do not run the configuration in the background, you

cannot do anything in Eclipse until it finishes running the configuration.

9. Click Apply, and then click Run to run the configured schedule or test, or click Close to save the configuration

and run it later.

Chapter 8. Test Execution Specialist Guide

Running a configured schedule
If you do not use the default launch configuration, you can configure the schedule and then run it.

Before you begin

You must configure the schedule before you run it. For more information, see Setting a launch configuration on

page 795.

1. In the Test Navigator, expand the project until you locate the schedule.

2. Right-click the schedule, and then click Run > Run.

3. In the Configurations area on the left, click Test Schedule, and then click the name of the schedule to run.

4. Click Run.

Results

While the schedule is running, the reports are updated in real time, and you can see the changes.

Configuring multiple host names for a location
You can run several locations on the same computer by configuring multiple host names for a location. This

configuration affects all tests running at that location; all tests will run with the configured port.

To configure multiple host names for a location:

1. Open the hosts file, which maps IP addresses to hosts, with an ASCII editor.

On Windows™, the hosts file is in C:\\Windows\system32\drivers\etc\hosts. On Linux™, the hosts file

is in \etc\hosts

2. At the end of the hosts file, add your IP mappings. Use one IP address, but map it to two (or more) logical host

names.

Example

For example, you could add map the IP address 123.4.5.6. to two logical hosts, as show in the bottom two

lines:

Result

797

HCL OneTest Performance

798

3. Create two deployment locations that have names identical to the names you added in the hosts file:

a. Open the schedule that contains the user group that you want to run on multiple hosts.

b. Open the user group, and click the Location tab.

c. Click Add > Add New, and enter the location data. Make sure the locations have different directories (in

this example, they are tempa and tempb).

Example

Result

d. Click Finish.

Automating tests
You can run a schedule from the command line. You can also set preferences to export results after the run

completes from the command line or from the workbench. Together, these features let you run tests and analyze

results without opening the workbench. You can even write scripts to process the exported results.

Creating a command-line config file
You can create a command-line config file from HCL OneTest™ Performance which you can use while running tests or

schedules from the Command-line interface (CLI) and Maven.

Chapter 8. Test Execution Specialist Guide

Before you begin

You must have completed the following tasks:

• Created tests in HCL OneTest™ Performance. See Recording HTTP tests on page 335.

• Installed Maven if you are running tests from the Maven build. For more information, refer to Apache Maven

Documentation.

About this task

You can create a command-line config file from HCL OneTest™ Performance by right-clicking the test asset. The

required parameters are automatically assigned, and you can specify any optional parameters, while creating the

config file. You can use the config file to run the tests or schedules from the command-line interface and Maven plug-

in that is provided with HCL OneTest™ Performance.

1. Open HCL OneTest™ Performance.

2. Browse and select the test or schedule from the Test Navigator pane.

3. Right-click the selected test or schedule, and then click Create command line config file.

4. Enter a name for the new configuration file in the File name field, and then click Next.

5. Perform the following steps in the Command Line Arguments window:

a. Select the format of the config file from the following options:

▪ Regular – Select this format to run tests or schedules from CLI.

▪ Maven – Select this format to run tests or schedules from the Maven build.

b. Specify the values in the fields from the available configuration options, if you want to add more

parameters to the config file.

6. Click Finish.

Result

The Config file created dialog displays with the location of the config file.

Results

You have created the command line config file.

What to do next

You can run the tests either from the Maven build or CLI. See Running a test or schedule from a command line on

page 823 or Testing with Maven on page 314.

Activating secure storage of dataset passwords
You can store the encrypted dataset passwords in the Eclipse secure storage location, so that when you run the tests

from the command line, HCL OneTest™ Performance automatically uses the password and completes the test run.

Before you begin

You must have created an encrypted dataset. See Encrypting a dataset column on page 600.

799

https://maven.apache.org/install.html

HCL OneTest Performance

800

1. Open HCL OneTest™ Performance.

2. Click Window > Preferences > Test > Test Execution > Automation Security.

3. Select the Activate Secure Storage Support for Encrypted Datasets check box.

The password is storing in the Eclipse secure storage. You must not share the computer's login credentials

with others.

4. Click Add, and then select the encrypted dataset from the project.

5. Click OK.

Result

The Enter Password dialog is displayed.

6. Enter the password that you used while encrypting the dataset, and then click OK.

Results

You have added the password of the encrypted dataset in HCL OneTest™ Performance.

What to do next

You can run the tests from CLI. See Running a test or schedule from a command line on page 823.

When you run the tests from the command line, the test runs completes without the need to specify the password. If

another user runs the same tests with encrypted datasets, the dataset password must be entered for the tests to run

successfully.

Configuring to export report counters automatically
When you run a test or schedule from the Command-line interface (CLI), you can configure HCL OneTest™

Performance to export reports automatically.

1. Open HCL OneTest™ Performance.

2. Click Windows > Preferences > Test > Performance Test Reports > Export Reports.

3. Perform the following actions in the Export Reports window:

Options Actions

Command Line
Select this checkbox to export the report after the test run is complete when you run

the test or schedule from the command-line interface. The report is stored in the Ex­

ported Results Data directory. You can access this report from the Test Navigator

pane.

The report is also saved in the Results directory. You can access the Results directory

by navigating to the location of your workspace.

For example, C:\Users\username\HCL\hclonetest\workspace_­

name\project_name\Results

If you select the Command Line option, you can also select the Print simple CSV re­

ports to command line option. When you select these two options, then you can dis­

Chapter 8. Test Execution Specialist Guide

Options Actions

play the exported data on the command-line interface, if you used the -stdout para­

meter. Otherwise, the report information is printed in the CommandLineLog.txt file.

You can access this file from the following path:

C:\Users\username\AppData\Local\Temp\CommandLineLog.txt

Note: The command line preferences take the precedence over preferences

set in HCL OneTest™ Performance.

Consider that you selected the Command Line and Print simple CSV reports

to command line options. You then run the test or schedule from the com­

mand-line interface by using the -exportstats or -exportstatsformat parame­

ter. In this scenario, the report is exported to the path mentioned for the -ex­

portstats parameter.

Workbench
Select this checkbox to export report after the test run is complete when you run the

test or schedule from HCL OneTest™ Performance. The report is stored in the Export­

ed Results Data directory. You can access this report from the Test Navigator pane.

The report is also saved in the Results directory. You can access the Results directory

by navigating to the location of your workspace.

For example, C:\Users\username\HCL\hclonetest\workspace_­

name\project_name\Results

Simple (one value

per counter and per

time range)

Select this checkbox and choose the format of the report from the drop-down list to

export a simple report.

You can choose either CSV or JSON from the drop-down list.

List All Time

Ranges
Select this checkbox to include data from all the time ranges. The default time range

that is included is Entire Run.

Full (one value per

counter and per

sample interval)

Select this checkbox and choose the format of the report from the drop-down list to

export a comprehensive report that includes the result name, node name, and time

ranges. Generally, you do not include these details unless you export the customized

reports that include counters from specific test runs.

You can choose either CSV or JSON from the drop-down list.

801

HCL OneTest Performance

802

Options Actions

Split output if coun­

ters number ex­

ceeds

Select this checkbox and specify a value to create multiple CSV or JSON files if the

number of counters in the exported file exceed the specified value.

Include per in­

stance counters
Select this checkbox to include detailed data of counters for each page.

Export each agent

separately
Select this checkbox to group the data in the exported CSV or JSON file by agent that

is used during test run.

One file per agent
Select this checkbox to group the data by agent as a separate CSV or JSON files.

Note: The One file per agent option is available only when you select the Ex­

port each agent separately option.

File name format
Select a format for the file name of the exported file from the drop-down list. You can

select one of the following options from the drop-down list:

◦ Pre-9.0 release: Select this option to save the exported report file name as

[REPORT_NAME][AGENT_NAME][SPLIT_INDEX].

◦ 9.0 release: Select this option to save the exported report file name as [TEST_­

NAME][AGENT_NAME][SPLIT_INDEX]_[TIME_STAMP]_[REPORT_ID]_[EX­

PORT_TYPE].

◦ Custom pattern: Select this option and specify a pattern that you would like to

save the exported report file.

HTML report
Select this checkbox to export full report data in a HTML format.

Executive Summary

report
Select this checkbox to export the executive summary report in a HTML format. The

report that you selected from the drop-down list summarizes the state of the test or

schedule run and displays the report on only one HTML page. You can print this re­

port.

The Executive Summary report is saved in the Results directory. You can access the

Results directory by navigating to the location of your workspace.

For example, C:\Users\username\HCL\hclonetest\workspace_­

name\project_name\Results

Chapter 8. Test Execution Specialist Guide

Options Actions

Select reports to

export
Select the required reports checkbox from the list to export reports into CSV, JSON, or

HTML formats.

If you select one or more reports, then each report is exported to a separate CSV or

JSON file in the Exported Results Data directory. You can access these reports from

the Test Navigator pane.

Select the Show Report Ids checkbox to view the ID of each report. The IDs are used

when you export the specific reports from the command-line interface.

4. Click Apply and Close.

Results

You have configured HCL OneTest™ Performance to export test reports automatically into the CSV or JSON file.

Command-line parameters
You can find the information about parameters that you can use while running tests from the command-line interface

(CLI).

HCL OneTest™ Performance supports the usage of CLI to run tests. Based on the operating system where you

installed HCL OneTest™ Performance, you can go to the following directory to use CLI:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\hclonetest\cmdline

Linux™ /opt/HCL/hclonetest/cmdline

Mac /Application/HCL/hclonetest/cmdline

After navigating to the directory, you can run the test by using CLI. The CLI supports various parameters. Based on

your requirements, you can use those parameters while running tests. You can enter cmdline -help in CLI to view all

the supported parameters.

The workspace is locked after you run the tests from CLI. To check the progress of the test or schedule during the run,

you can invoke another workspace and open the project through that workspace.

The CLI does not provide a way to specify the secure storage password for encrypted datasets. You must provide

the password in HCL OneTest™ Performance and ensure that it is stored and persisted in the test before you run the

test that is associated with an encrypted dataset from CLI. See Activating secure storage of dataset passwords on

page 799.

You must provide the values for certain parameters to run tests from CLI. The minimum parameters that you need to

provide are -workspace, -project, and -suite or -schedule, or -configfile. The remaining parameters are optional. For

803

HCL OneTest Performance

804

example, if you provide a complete path of a configuration file for the -configfile parameter that contains the values

of the parameters for a test or schedule run, then you need not provide values for the -workspace, -project, and -suite

or -schedule parameters.

Note: If HCL OneTest™ Performance is not installed in default location, then you must provide the value for

-eclipsehome and -plugins parameters along with other mandatory parameters.

You can refer to the following tables to know the required and optional parameters and its description:

Table 5. Required parameters for CLI

Parameters Description

-workspace Enter the complete path of the Eclipse workspace.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace"

-project Enter the path including the file name of the project relative to the workspace.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "proj123"

OR

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "/myproj/proj123"

-suite Enter the path including the file name of the performance test relative to the project.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "/myproj/proj123"
 -suite "test1.testsuite"

OR

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "/myproj/proj123"
 -suite "Tests/test1.testsuite"

Note: You must not use both the -suite and -schedule parameters simultaneously in

a single command.

You can specify multiple tests separated by a colon character (:) to run multiple tests simul­

taneously.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "/myproj/proj123"
-suite "test1.testsuite:test2.testsuite:test3.testsuite"

-schedule Enter the path including the file name of the schedule relative to the project.

Chapter 8. Test Execution Specialist Guide

Table 5. Required parameters for CLI (continued)

Parameters Description

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "/myproj/proj123"
 -schedule "sch1"

OR

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "/myproj/proj123"
 -schedule "Schedules/sch1"

Note: You must not use both the -schedule and -suite parameters simultaneously in

a single command.

You can specify multiple schedules separated by a colon character (:) to run schedules si­

multaneously.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "/myproj/proj123"
-schedule "sch1:sch2:sch3"

-configfile Enter the complete path to a configuration file that contains the parameters for a test or

schedule run.

For more information about creating a command line config file from HCL OneTest™ Perfor­

mance, see the Related information section.

The contents of a default configuration file are as follows:

eclipsehome=C:/Program Files/HCL/HCLOneTest
plugins=C:\Program Files\HCL\HCLIMShared\plugins
workspace=C:/Users/HCL/hclonetest/workspace
project=proj1
suite=Tests/test1.testsuite
exportlogmillis=false
overwrite=false

Note: If you are creating a config file manually, the file must be in the UTF-8 format.

You must not use double quotation marks (“”) in the file even for values that contain

spaces.

Table 6. Optional parameters for CLI

Parameters Description

-compare Use this parameter along with -exportstatshtml to export the result in com­

pare mode.

805

HCL OneTest Performance

806

Table 6. Optional parameters for CLI (continued)

Parameters Description

The value can be paths to the runs and are relative to the workspace. You

must separate the paths by a comma.

-duration
Use this parameter to change the duration of the stages in the rate schedule.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-rate "Rate Runner Group 1=1/s, 3/m" -duration "Stage1=10s;
 Stage2=5m"

The stage number specified must exist in the rate schedule.

You can specify multiple stages separated by semicolon (;). The time units

that you can specify for the duration are as follows:

• ms (millisecond)

• s (second)

• m (minute)

• h (hour)

• d (day)

Note: The -duration parameter creates a new copy of the rate sched­

ule that contains the specified number of duration.

-eclipsehome Use this parameter to provide the complete path to the directory that con­

tains eclipse.exe, if HCL OneTest™ Performance is not installed in the de­

fault location.

The default location of eclipse.exe is as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\HCLOneTest

Linux™ /opt/HCL/hclonetest

Mac /Application/HCL/hclonetest

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "/myproj/proj123" -suite "test1.testsuite"
-eclipsehome D:\Testtool\HCL\HCLOneTest

Chapter 8. Test Execution Specialist Guide

Table 6. Optional parameters for CLI (continued)

Parameters Description

-execsummary Use this parameter to export all of the reports for the test run in a printable

format, also known as an executive summary, to the local computer.

You must specify the path to store the executive summary.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-execsummary "C:/Users/Tets/summary"

-execsummaryreport Use this parameter to export a specific report as an executive summary for

the test run to the local computer.

You must specify the ID of the report to export. You must use this parameter

along with the -execsummary parameter.

For example, you can specify http to export the executive summary of an

HTTP performance report.

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-execsummary "C:/Users/Tets/summary" -execsummaryreport "http"

-exportlog Use this parameter to specify the file directory path to store the exported

HTTP test log.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-exportlog "C:/Users/logs/logexport.txt"

In the -exportlog parameter, you can provide multiple values when running

multiple tests. You must use colon (:) to separate the entries of the parame­

ter value.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite:test2.testsuite"
-exportlog
 "C:/Users/logs/logexport.txt:C:/Users/logs/logexport2.txt"

If there are multiple values for the -suite parameter and a single value for the

-exportlog parameter, then the -exportlog parameter generates the appropri­

ate number of test logs by appending 0, 1, 2, and so on.

For example,

807

HCL OneTest Performance

808

Table 6. Optional parameters for CLI (continued)

Parameters Description

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite:test2.testsuite:test3.testsuite"
-exportlog "C:/Users/logs/logexport.txt"

The preceding command generates the following test logs:

• logexport_0.txt

• logexport_1.txt

• logexport.txt

The last test log generated has the same name as that of value of -export­

log parameter.

Note: If there are multiple values for the -suite and -exportlog para­

meters, then the number of -suite values must match with the num­

ber of -exportlog values. Otherwise, the following error message is

displayed:

Error, number of -suite and -exportlog entries do not match.

-exportlogmillis Use this parameter if you want to view the timestamp of the test logs in mil­

liseconds.

The default value for the -exportlogmillis is set to false. Therefore, the time­

stamp in the test logs does not contain milliseconds.

-exportstatreportlist Use this parameter to specify the IDs of reports that you want to export in

place of the default report.

You can provide multiple report IDs separated by a comma. You can navi­

gate to the Preferences of HCL OneTest™ Performance (Window > Prefer­

ences > Test > Performance Test Reports > Export Reports), and then you

can select Show Report IDs checkbox to view the report IDs.

You must use the -exportstatreportlist parameter along with the -export­

stats or -exportstatshtml parameter.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-exportstats "C:/Users/stats" -exportstatreportlist "http"

Chapter 8. Test Execution Specialist Guide

Table 6. Optional parameters for CLI (continued)

Parameters Description

-exportstats Use this parameter to provide the complete path to a directory that you can

use to store the exported report in a comma-separated values (CSV) format.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-exportstats "C:/Users/stats"

-exportstatsformat Use this parameter to specify a format for the result that you want to export

along with the -exportstats parameter.

You must use at least one of the following arguments with the -exportstats­

format parameter:

• simple.csv

• full.csv

• simple.json

• full.json

• csv

• json

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-exportstats "C:/Users/stats" -exportstatsformat "simple.json"

You can add multiple arguments separated by a comma.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-exportstats "C:/Users/stats" -exportstatsformat
 "simple.json,full.csv"

When you want to export both simple and full type of test results in a json or

csv format, you can specify json or csv as the arguments in the command.

When the test run completes, the test result exports to simple.json and

full.json files.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-exportstats "C:/Users/stats" -exportstatsformat "json"

809

HCL OneTest Performance

810

Table 6. Optional parameters for CLI (continued)

Parameters Description

You can select the Command Line checkbox from the product Preferences

(Window > Preferences > Test > Performance Test Reports > Export Re­

ports) when you want to automatically export test results to one of the se­

lected formats after the test run completes.

Remember: When you run the test from CLI, and if you use the -ex­

portstats parameter, then CLI preferences take precedence over the

Preferences set in the product. Therefore, the default format of the

exported test result is CSV.

For example, when you select the Command Line option and Report

format to json in the product Preferences, and run the test from CLI

by using the -exportstats parameter, then the result is exported to a

csv file after the test run is complete.

-exportstatshtml Use this parameter to provide the complete path to a directory that you can

use to export web analytic results.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-exportstatshtml "C:/Users/reports"

The results are exported to the specified directory. You can analyze the re­

sults on a web browser without using HCL OneTest™ Performance.

-history Use this parameter when you want to view a record of all events that oc­

curred during a test or schedule run.

You can use any of the following options:

Chapter 8. Test Execution Specialist Guide

Table 6. Optional parameters for CLI (continued)

Parameters Description

• jaeger: To send test logs to the Jaeger UI during the test or schedule

run.

Note: You must set the JAEGER_AGENT_HOST property as an en­

vironment variable by using the command line before you

use the jaeger option to send test logs to the Jaeger UI.

• testlog: To send test logs as traditional test logs in HCL OneTest™

Performance during the test or schedule run.

• null: To send no test logs either to the Jaeger UI or HCL OneTest™

Performance during the test or schedule run.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-history "jaeger"

You can add multiple arguments separated by a comma to send test logs

during the test or schedule run to HCL OneTest™ Performance and the

Jaeger UI.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-history "jaeger,testlog"

For more information about how to view test logs in the Jaeger UI and HCL

OneTest™ Performance, see the Related information section.

ignoreunhealthytranscations Use this parameter if you do not want to record the elapsed time for the un­

healthy transactions during the test run.

The default value for the ignoreunhealthytranscations parameter is set to

false. Therefore, the elapsed time is recorded for unhealthy transactions.

Note: The value provided in the ignoreunhealthytranscations para­

meter always take precedence over the Discard time measurements

811

HCL OneTest Performance

812

Table 6. Optional parameters for CLI (continued)

Parameters Description

for unhealthy transactions option set in the product preferences

(Window > Preferences > Test > Test Execution).

-import Use this parameter to import the project from your local computer to a work­

space and then run the test from the command-line interface.

When you want to run tests that are in a source control system such as Git,

you can clone the project resources from the remote repository to your com­

puter. You must use the -import parameter along with the -workspace para­

meter and use an empty workspace to import test assets.

You can use the -import parameter when you do not want to use your exist­

ing workspace or the workspace that you cloned from a remote repository.

For example,

cmdline -workspace "C:/Users/IBM/rationalsdp/workspace_new"
 -project "proj123"
-suite "test1.testsuite" -import "D:/Performance/Project1

-importzip Use this parameter to import the project as test assets with dependencies

into your workspace.

You can run test assets from the imported zip file, but you must specify the

-importzip parameter along with the -schedule or -suite parameters.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -importzip "C:\User\Desktop\test1.zip"
-suite "test1.testsuite"

-labels Use this parameter to add labels to test results when you run test assets

from CLI.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-publish
 “https://localhost:5443/#project.name=test&teamspace.name=ts1”
 -labels "label1,label2"

You can also use the -labels parameter along with the -publish parameter

to add labels to a test result when you want to publish test results to HCL

OneTest™ Server.

Chapter 8. Test Execution Specialist Guide

Table 6. Optional parameters for CLI (continued)

Parameters Description

You can add multiple labels to a test result separated by a comma. When

you run test assets, then the labels that you added are displayed on the Per­

formance Report in HCL OneTest™ Performance.

The Results page of HCL OneTest™ Server displays the label that you added,

in the specific test asset in the following conditions:

• When you set Publish result after execution as Always or Prompt in

the Preferences of HCL OneTest™ Performance (Windows > Prefer­

ences > Test > HCL OneTest Server).

• When you use the labels parameter along with the publish parame­

ter.

Note: If the value of the -labels parameter contains double quotation

marks (""), for example, "100" users, then CLI does not accept values

for the parameter.

To work around this problem, you must create a command-line con­

fig file, and then run the test by using the -configfile parameter. You

can also use the CommandLine.exe file to run the command and

add labels in a language that might not support Unicode characters

on the Windows® operating system.

You can locate the CommandLine.exe file in the following location:

813

HCL OneTest Performance

814

Table 6. Optional parameters for CLI (continued)

Parameters Description

<installation_directory>\\HCLIMShared\plug­

ins\com.ibm.rational.test.lt.cmdlineexecute<time_­

stamp>

- overridermlabels Use this parameter to perform any of the following actions:

• Enable the Resource Monitoring from Service option for a perfor­

mance schedule if the Resource Monitoring from Service option is

not enabled from the schedule editor in HCL OneTest™ Performance.

• Ignore Resource Monitoring sources that were set in the perfor­

mance schedule and to change for a label matching mode.

• Replace an existing set of Resource Monitoring labels that were set

in the performance schedule and run the schedule with a new set of

Resource Monitoring labels.

You must have added the Resource Monitoring labels to the Resource Mon­

itoring sources on the Resource Monitoring page in your HCL OneTest™

Server project. You can then use those labels to collect data from the source

while running the schedule from CLI.

For example, if you have added a label in HCL OneTest™ Server for a Re­

source Monitoring source as rm1, then you can run the following command

to collect data from the source:

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "/myproj/proj123"
-schedule "sch1" -overridermlabels "rm1"

You can add multiple labels to a schedule separated by a comma to collect

data from multiple sources during the schedule run.

For example:

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "/myproj/proj123"
-schedule "sch1" -overridermlabels "rm1,rm2"

If your label for resource monitoring contains a comma (,) then you must re­

place the single comma with the double comma in the -overridermlabels pa­

rameter.

Chapter 8. Test Execution Specialist Guide

Table 6. Optional parameters for CLI (continued)

Parameters Description

For example, if you have added a label to a Resource Monitoring source as

rm1,test, then you must run the following command to collect data from

source as follows:

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "/myproj/proj123"
-schedule "sch1" -overridermlabels "rm1,,test"

-overwrite Use this parameter to determine whether a result file with the same name is

overwritten or not.

The default value is false. If the value is set to true, the file is overwritten

and retains the same file name.

You must use double quotation marks (“”) for values true or false.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-overwrite "true"

-plugins Use this parameter to provide the complete path to the directory that con­

tains the plugins directory, if HCL OneTest™ Performance is not installed in

the default location.

The default location of the plugins directory is as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\HCLIMShared

\plugins

Linux™ /opt/HCL/HCLIMShared/plugins

Mac /Application/HCL/HCLIMShared/plugins

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "/myproj/proj123" -suite "test1.testsuite"
-eclipsehome "D:\Testtool\HCL\HCLOneTest"
 -plugins "D:\Testtool\HCL\HCLIMShared\plugins"

-publish
Use this parameter to publish test results to HCL OneTest™ Server.

815

HCL OneTest Performance

816

Table 6. Optional parameters for CLI (continued)

Parameters Description

Remember: Before you use the publish parameter, you must provide

the offline user token of HCL OneTest™ Server by using any of the

following methods:

• Set the value of the HCL_ONETEST_OFFLINE_TOKEN envi­

ronment variable to the offline user token of HCL OneTest™

Server by using the command-line interface.

• Provide the offline user token of HCL OneTest™ Server in the

preferences of HCL OneTest™ Performance (Window > Pref­

erences > Test > HCL OneTest Server)

You can use the following arguments along with the -publish parameter:

• no: Use this argument if you do not want to publish test results after

the run.

This argument is useful if the product preferences are set to publish

the results, but you do not want to publish them.

• You can use any of the following arguments to specify the project

name:

◦ serverURL #project.name=projectName&teamspace­

.name=name_of_the _teamspace

◦ serverURL #project.name=projectName&teamspace­

.alias=name_of_the _teamspace_alias

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace"
 -project "proj123" -suite "test1.testsuite"
-publish “https://localhost:5443/#project.name=testproj”

Where:

◦ https://localhost:5443 is the URL of HCL OneTest™ Server.

◦ testproj is the name of the project in HCL OneTest™ Server.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace"
 -project "proj123" -suite "test1.testsuite"

Chapter 8. Test Execution Specialist Guide

Table 6. Optional parameters for CLI (continued)

Parameters Description

-publish
 “https://localhost:5443/#project.name=test&teamspace.name=t
s1”

Notes:

◦ If you have a project with the same name in differ­

ent team spaces, then you must append either the

&teamspace.name=name_of_the _teamspace or

&teamspace.alias=name_of_the_teamspace_alias op­

tions.

◦ If the name of the project or team space contains

a special character, then you must replace it with

%<Hexvalue_of_special_character>.

For example, if the name of the team space is Ini­

tial Team Space, then you must provide it as In­

tial%20Team%20Space.

Where %20 is the Hex value of Space character.

◦ The values provided in the publish parameter always

take precedence over the Results options set in the

product preferences (Window > Preferences > Test >

HCL OneTest Server > Results).

The Reports information section on the Log file displays the names of the

report along with its corresponding URLs in the following conditions:

• When you configured the URL of HCL OneTest™ Server in Prefer­

ences of HCL OneTest™ Performance (Window > Preferences > Test

> HCL OneTest Server).

• When you set Publish result after execution as Always or Prompt in

the Preferences of HCL OneTest™ Performance (Window > Prefer­

ences > Test > HCL OneTest Server > Results).

• When you used publish parameter or publish parameter along with

publishreports parameter.

Remember: If you provide HCL OneTest™ Server and the project

details in the product Preferences (Window > Preferences > Test

817

HCL OneTest Performance

818

Table 6. Optional parameters for CLI (continued)

Parameters Description

> HCL OneTest Server) and if you use the -publish parameter, the

server details in CLI take precedence over the product preferences.

-publish_for Use this parameter to publish the test results based on the completion sta­

tus of the tests:

• ALL - This is the default option. Use this argument to publish test re­

sults for any text execution verdict.

• PASS - Use this argument to publish test results for the tests that

have passed.

• FAIL - Use this argument to publish test results for the tests that

have failed.

• ERROR - Use this argument to publish test results for the tests that

included errors.

• INCONCLUSIVE - Use this argument to publish test results for the in­

conclusive tests.

You must use the -publish_for parameter along with the -publish parameter.

You can add multiple arguments for the -publish_for parameter separated

by a comma.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-publish
 “https://localhost:5443/#project.name=test&teamspace.name=ts1”
 -publish_for "PASS,ERROR"

-publishreports Use this parameter to publish specific test results to HCL OneTest™ Server.

The arguments that you can use with the -publishreports parameter are as

follows:

• STATS

• TESTLOG

You must use the -publishreports parameter along with the -publish para­

meter.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"

Chapter 8. Test Execution Specialist Guide

Table 6. Optional parameters for CLI (continued)

Parameters Description

-publish “https://localhost:5443/#project.name=testproj”
 -publishreports "STATS"

You can prefix the -publishreports arguments with “!” to publish all the re­

ports except the specified one.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-publish “https://localhost:5443/#project.name=testproj”
 -publishreports "!TESTLOG"

Note: When you run service tests, you cannot publish the functional

report directly from the CLI to HCL OneTest™ Server.

You must publish the functional report by using HCL OneTest™ Per­

formance. For more information about generating and publishing the

functional report, see the Related information section.

-quiet Use this parameter when you do not want to display the values and accep­

tance status of the parameters on the command-line interface.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-quiet

-rate Use this parameter to specify a rate that you want to achieve for a workload

in the Rate Runner group.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-rate "Rate Runner Group 1=1/s, 3/m"

Where, Rate Runner Group1 is the name of the rate runner group that has two

stages. The desired rate for the first stage is one iteration per second and

the rate for the second stage is three iterations per minute.

Notes:

819

HCL OneTest Performance

820

Table 6. Optional parameters for CLI (continued)

Parameters Description

• The name of the Rate Runner group must match with the

name in the rate schedule.

• The -rate parameter creates a new copy of the rate schedule

that contains the specified number of rate.

You can specify multiple Rate Runner groups separated by the semicolon (;).

The time units that you can specify for the rate are as follows:

• s (second)

• m (minute)

• h (hour)

• d (day)

-results Use this parameter to specify the name of the results file.

The default name of the result file is the test or schedule name with a time­

stamp appended. You must specify a folder name that is relative to the

project to store the test results.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-results "Results/testresults1"

-stdout Use this parameter to display the information about the test or schedule on

CLI.

After you run the test or schedule from CLI, the following outputs are dis­

played to give you the overall information of the test or schedule:

• --VERDICT: The verdict of the test or schedule.

• --REMOTE_RESULT: The URL of the result published to HCL

OneTest™ Server.

• --REMOTE_RESULT_UI: The URL of the result published to HCL

OneTest™ Server and can be opened in a browser to analyze the re­

sult.

• --LOCAL_RESULT: The path of the result saved locally.

For example,

Chapter 8. Test Execution Specialist Guide

Table 6. Optional parameters for CLI (continued)

Parameters Description

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-publish “https://localhost:5443/#project.name=testproj” -stdout

-swapdatasets Use this parameter to replace the dataset values during a test or schedule

run.

If the test or schedule is associated with the dataset, you can replace the

dataset at run time while initiating the run from CLI.

You must ensure that both original and new datasets are in the same work­

space and have the same column names. You must also include the path to

the dataset when you use the -swapdatasets parameter. You must provide

the values for the -swapdatasets parameter in the following format:

/project_name/ds_path/original_ds.csv:/project_name/ds_­

path/new_ds.csv

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-swapdatsets
 "/proj1023/Datasets/ds1.csv:/proj1023/Datasets/new_ds1.csv"

You can swap multiple datasets that are saved in a different project by

adding multiple paths to the dataset separated by a semicolon (;).

-timerange Use this parameter along with -exportstats and -exportstatshtml to export

test results within one or more time ranges.

The value of the -timerange parameter is the time range that you specify in

the schedule.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-exportstats "C:/Users/stats" -timerange "10 Users"

You must separate time ranges with a comma and use double quotation

marks (“”) when there is space in a time range.

-usercomments
Use this parameter to add text that you want to display in the user com­

ments row of the report.

For example,

821

HCL OneTest Performance

822

Table 6. Optional parameters for CLI (continued)

Parameters Description

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-exportstats "C:/Users/stats" -usercomments="test run with dataset"

Note: If the value of the -usercomments parameter contains double

quotation marks (""), for example, test run with "dataset", then CLI

does not accept values for the parameter.

To work around this problem, you must create a command-line con­

figuration file by using HCL OneTest™ Performance, and then run the

test by using the -configfile parameter. You can also use the Com­

mandLine.exe file to run the command and to add comments in

a language that might not support Unicode characters on the Win­

dows® operating system.

You can locate the CommandLine.exe file in the following location:

<installation_directory>\\HCLIMShared\plug­

ins\com.ibm.rational.test.lt.cmdlineexecute<time_­

stamp>

-users Use this parameter to override the default number of virtual users in the test

or schedule run.

For a schedule, the default is the number of users specified in the schedule

editor and for a test, the default is one user.

The -users parameter creates a new copy of the schedule that contains the

specified number of users.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-users 50

-varfile Use this parameter to specify the complete path to the XML file that con­

tains the variable initialization.

-vmargs Use this parameter to specify the Java maximum heap size for the Java

process that controls the command line playback.

You must use the -vmargs parameter with the -Xmx argument.

Chapter 8. Test Execution Specialist Guide

Table 6. Optional parameters for CLI (continued)

Parameters Description

For example, when you use -vmargs -Xmx4096m, specifies the maximum

heap size as 4Gb.

This method is similar to specifying -Xmx4096m in the eclipse.ini file for

HCL OneTest™ Performance when playing back the test from the user inter­

face.

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project
 "proj123" -suite "test1.testsuite"
-vmargs "-Xmx4096m"

Related information

Creating a command-line config file on page 798

Viewing test logs in Jaeger on page 285

Viewing test logs on page 1001

Generating offline user tokens

Generating functional reports on page 968

Publishing functional reports to the server on page 970

Running a test or schedule from a command line
You can run a test or schedule without opening HCL OneTest™ Performance by using the command-line interface

(CLI).

Before you begin

• You must have read and been familiar with command line parameters. See Command-line parameters on

page 803.

• You must have completed the following tasks:

◦ Recorded the tests in HCL OneTest™ Performance.

◦ Set the Web Reports preferences in HCL OneTest™ Performance to view the reports remotely. See

Accessing reports remotely on page 1003.

◦ Optional: Created a configuration file to use the -configfile parameter. See Creating a command-line

config file on page 798.

823

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html

HCL OneTest Performance

824

◦ Optional: Added password of encrypted datasets to secure storage. See Activating secure storage of

dataset passwords on page 799.

◦ Closed HCL OneTest™ Performance.

About this task

The command-line syntax with the supported parameters is as follows:

cmdline -workspace <workspace_full_path> -project <proj_name or proj_relative_path> -eclipsehome

<eclipse_full_path> -plugins <plugin_full_path> -schedule <sched_name or sched_rel_path> -suite <suite_name

or suite_relative_path> -importzip <full_path_to_zip_file> -varfile <variable_file_full_path> -configfile

<file_full_path> -results <result_file> -overwrite <"true" | "false"> -quiet -users <number_of_users> -vmargs

<JVM_args> -rate <RateRunnerGroupName=iterationNumber1/duration, iterationNumber2/duration> -duration

<Stage1=durationOfStage; Stage2=durationOfStage> -execsummaryreport <id_of_report> -stdout -publish

<serverURL>#project.name=<projectName>&teamspace.name=<name_of_the _teamspace> -publish_for

<ALL,PASS,FAIL,ERROR, INCONCLUSIVE> -labels <labelname1, labelname2> -exportlog <log_full_path> -exportstats

<local_dir_path> -exportstatshtml <local_dir_path> -exportstatsformat <name of the file format> -compare

<"result_path1, result_path2"> -exportstatreportlist <stats_list> -usercomments <"any user comment"> -publishreports

<"STATS, TESTLOG"> -swapdatsets <existing_dataset_file_path:new_dataset_file-path> -timerange <"all, 5 Users, 10

Users"> -history <jaeger,testlog,null> -overridermlabels <"rmlabelname1,rmlabelname2"> -ignoreunhealthytranscations

<"true" | "false"> -execsummary <path_to_local_dir>

1. Open the command prompt.

2. Run the following command to change the directory to the cmdline directory:

cd <cmdline_directory_path>

For example,

cd C:\Program Files\HCL\hclonetest\cmdline

Based on the operating system that you used to install HCL OneTest™ Performance, you can locate the

cmdline directory as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\hclonetest\cmdline

Linux™ /opt/HCL/hclonetest/cmdline

Mac /Application/HCL/hclonetest/cmdline

3. Run the following command to run the test:

cmdline -workspace workspace_full_path -project proj_rel_path -suite suite_name or suite_rel_path

For example,

Chapter 8. Test Execution Specialist Guide

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "/myproj/proj123" -suite
 "test1.testsuite"

OR

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -project "/myproj/proj123" -suite
 "Tests/test1.testsuite"

Note: You can add an additional parameter to the preceding command according to your testing

requirements and then run the test.

Result

The test run starts and the status is displayed on CLI.

Results

You have run the test from CLI.

What to do next

You can analyze the test results from HCL OneTest™ Performance. See Evaluating results in web analytic reports on

page 966.

If you have published test results to HCL OneTest™ Server, then refer to the HCL OneTest™ Server documentation.

Stopping the test run from a command line
After you run the test from the command-line interface (CLI), you can stop the test run to use additional parameters in

your test run.

Before you begin

You must have initiated a test run from CLI. See Running a test or schedule from a command line on page 823.

1. Open the command prompt.

2. Run the following command to change the directory to the cmdline directory:

cd <cmdline_directory_path>

For example,

cd C:\Program Files\HCL\hclonetest\cmdline

Based on the operating system that you used to install HCL OneTest™ Performance, you can locate the

cmdline directory as follows:

Operating system The default path to the directory

Windows® C:\Program Files\HCL\hclonetest\cmdline

Linux™ /opt/HCL/hclonetest/cmdline

Mac /Application/HCL/hclonetest/cmdline

825

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/c_results_overview.html
https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/c_results_overview.html
https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/c_results_overview.html
https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/c_results_overview.html

HCL OneTest Performance

826

3. Run the following command to stop the test run after a while:

cmdline -workspace workspace_full_path -stoprun

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -stoprun

Result

The test run stops after a few seconds of execution of the command and the status is displayed on CLI. The

test log is generated and you can view it from HCL OneTest™ Performance.

Note: If you have used the -exportlog parameter when running the test, the test logs are stored in the

specified location and also in HCL OneTest™ Performance.

4. Run the following command to stop the test run immediately:

cmdline -workspace workspace_full_path -abandonrun

For example,

cmdline -workspace "C:/Users/HCL/hclonetest/workspace" -abandonrun

Result

The test run stops immediately and the status is displayed on CLI. However, the test log is not generated.

Results

You have stopped the test run from CLI.

Related information

Viewing test logs on page 1001

Controlling cache sizes
If you use an infinite loop and the number of cached responses in a test increases exponentially, you can set a limit to

cache for a user group in the schedule.

About this task

When the cache limit is reached, the least-recently accessed cached entry is released to accommodate a new entry.

Also, when a test follows another test in the schedule, you can clear the cache before a test starts.

1. To clear the cache before a test starts, from the Test Navigator, open a test.

2. Click the HTTP Options tab and select the Clear page cache when the test starts check box.

3. To set a limit to the number of cache entries, in the Test Navigator, navigate to a schedule and double-click it

to open it.

4. Click the user group for which you want set the cache limit.

5. Click the Options tab and then click Edit Options.

6. Select the Set cache size limit check box and, in the Maximum cache size field, type a numeric value.

Chapter 8. Test Execution Specialist Guide

This value indicates the number of entries allowed for a user.

7. Click OK and save the schedule.

Increasing memory allocation
The virtual users that access your web server require memory to prepare requests, send requests, and receive

responses. Because the amount of memory is not automatically set on remote computers, you might receive an out-

of-memory error. To correct this situation, increase the memory allocation for that computer.

About this task

If you receive an out-of-memory error when you run a test or schedule, override the default amount of

memory that is allocated for that computer. To do this, set the RPT_VMARGS property, which overrides

RPT_DEFAULT_MEMORY_SIZE. After the first successful execution, HCL OneTest™ Performance automatically sets

value for RPT_DEFAULT_MEMORY_SIZE, which represents the maximum heap that will be specified by HCL OneTest™

Performance in subsequent executions.

Note: Ensure there is at least one successful execution after all locations are created so

RPT_DEFAULT_MEMORY_SIZE exists.

Tip:

If you see out-of-memory issues, it is a good practice to first check the javacore* file. You can also look at

the results and verify that the server is responding correctly because many times errors can lead to excessive

resource consumption. You can also monitor memory usage with Task Manager or other tools at varying

user load levels such as 10, 50, 100, 500 or 1000 users and use that data to make an estimate of the memory

needs per virtual user and then project memory requirements for larger user loads. In some cases the best

solution is to add another agent.

HCL OneTest™ Performance sets heap size for RPT_DEFAULT_MEMORY_SIZE based on the bit-type of the JRE:

• For 32-bit Java Runtime Environment (JREs), HCL OneTest™ Performance sets 70% of the size of physical

memory to RPT_DEFAULT_MEMORY_SIZE. Typically, the maximum limit is set to 1200m.

• For 64-bit JREs, some workloads might perform better with a lesser heap size than 70% of physical memory

up to a maximum of 12000m.

To increase the memory allocation on a remote computer:

1. In the Test Navigator (from your local computer), expand the project until you find the deployment location

that you want to change.

Deployment locations are represented by the icon.

2. Right-click the deployment location, and then click Open.

3. Under Property Groups, click the General Properties link, and then click Add.

827

HCL OneTest Performance

828

4. In the New Property window:

a. In the Property Name field, type RPT_VMARGS.

b. In the Operator field, confirm that the operator is =.

c. In the Property Value field, type -Xmxnnnnm, where nnnn is the amount of memory, in megabytes, and

then click OK.

Example

If you need to set multiple RPT_VMARGS values for a location, place them in the same property entry and

separate them with a space. Do not use multiple property entries to set multiple RPT_VMARGS values for a

location.

Result

The following New Property window sets maximum heap to 1200 megabytes:

Tip: It is a good practice is to monitor memory usage with Task Manager or other tools at varying

user load levels such as 10, 50, 100, 500 or 1000 users and use that data to make an estimate of the

memory needs per virtual user and then project memory requirements for larger user loads. In some

cases the best solution is to add another agent.

What to do next

If you have increased the available memory and you still receive out-of-memory errors, add more remote computers

for your user groups. For information about how to do this, see Running a user group at a remote location on

page 709.

Controlling the test runs from web analytics report
When a schedule is in the running state, you can perform the following actions from the web analytics reports to cater

to your need.

Changing the number of virtual users during a run
If the number of virtual users that was defined initially is incorrect, you can correct the number of users, and apply the

change to one stage or to all of the remaining stages in the schedule.

Chapter 8. Test Execution Specialist Guide

1. From the test editor, click Run Test. The execution report is opened either in the internal or external browser,

and the state of the run is shown as Running.

2. During the run, click Running > Change Users Number.

3. In Change number of users dialog, select one of the following options:

Add users
If a schedule contains only percentage groups, the

virtual users are added by proportion. For exam­

ple, assume that your schedule contains three user

groups, assigned at 20%, 30%, and 50%. If you add 10

virtual users, two added are to the first group, three

are added to the second group, and five are added to

the third group.

If a schedule contains both absolute and percent­

age groups, the absolute groups are assigned first.

For example, assume that your schedule has one

user group that is fixed at 10 users, and only one vir­

tual user is running in that group. You add 100 vir­

tual users. Nine virtual users are added to the ab­

solute group, and the remaining virtual users are ap­

portioned among the percentage groups.

Remove users
Users are removed proportionately from user groups

according to each user group's percentage value.

The time at which users are asked to stop is con­

trolled by the Change rate that you set in the sched­

ule.

Apply to all remaining stages
Click to apply the change to all remaining stages in

the schedule run, and clear to apply the change only

to the current stage.

4. Click Change.

The number of users is changed for the specified stages.

Changing the rate during a run
Typically, you specify the desired rate for the Rate Runner group in the Rate Schedule. However, due to various

reasons, you might want to change the rate when the Rate Schedule is running.

About this task

829

HCL OneTest Performance

830

For example, you apply the load iteratively. Therefore, in the Rate Schedule, you specify a moderate rate. If the run is

progressing steadily and there is scope to apply more load, you can increase the rate. When you change the rate, the

changed rate is applied to the remainder of the current stage. The next stage will automatically select the rate defined

in the schedule editor.

To change the rate during a run:

1. From the Test editor, click Run Rate Schedule. The execution report is opened either in the internal or external

browser, and the state of the run is shown as Running.

2. During the run, click Running > Change Rate.

Result

The Change Rate dialog displays all the Rate Runner groups that are defined in the Rate Schedule.

3. To specify another rate for the Rate Runner group, in Target Rate, specify the rate.

Releasing virtual users from synchronization points
To record the response time of the system under test at different points, you can release virtual users either all

together or in staggered intervals. You can release virtual users from synchronization points during a run.

Before you begin

Add synchronization points to a schedule. See Synchronizing users on page 711

1. From the test editor, click Run Test. The execution report is opened either in the internal or external browser,

and the state of the run is shown as Running.

2. During the run, click Running > Manage Synchronization Points.

3. Select the synchronization points to release, and click Release.

Note: Typically, the virtual user wait time is based on the time that the last user arrives at the

synchronization point. However, if a virtual user arrives after you manually release a synchronization

point, the user wait time is instead based on the time at which the synchronization point was released.

Changing the stage duration during a run
Increase or decrease the duration of the current stage during a schedule run. You can change the duration of a stage

that is set to run for a specified time, but not for a stage that is set to run until the work is complete. You can change

the duration of a stage when the status is Running, but not when the status is Ramping or Settle Time.

Before you begin

1. From the test editor, click Run Test. The execution report is opened either in the internal or external browser,

and the state of the run is shown as Running.

2. During the run, click Running > Change current stage duration.

Chapter 8. Test Execution Specialist Guide

3. In the Change Stage Duration window, type the new stage duration in Run for specified period of time. Type a

value that is longer than the amount of time that has elapsed for the current stage. Use the list to change the

time units.

4. Click Change.

The duration of the current stage changes.

Changing the log level during a run
You can change the log level to determine problems during a run. By default, only warnings and severe errors are

logged. Typically, you change this level only when requested to do so by IBM® Software Support.

About this task

Although the test log provides general information about problems that occur during a run, you might need to

investigate certain problems further by examining a detailed trace of the run. In general, change the problem

determination level only when asked to by technical support. However, under certain conditions, you yourself might

want to change the problem determination level. For example, if problems occur when a run reaches a certain number

of users, you might increase the level to Config, which is the most detailed level that you will generally use.

To change the log level during a run:

1. From the test editor, click Run Test. The execution report launches either in the internal or external browser,

and the state of the run is shown as Running.

2. During the run, click Running > Change Log Level.

3. To change the log level, select any of the following options:

Option Description

All, Finest, Finer, Fine Set these options only if you are requested to do so

by technical support.

Config Logs static configuration messages. Configuration

messages, which include hardware specifications or

system profiles, require no corrective action.

Info Logs informational messages. Informational mes­

sages, which include system state, require no correc­

tive action.

Warning Logs warning messages. This is the default setting.

Warning messages, which might indicate potential

problems, require no corrective action.

Severe Logs critical and unrecoverable errors. Critical and

unrecoverable messages interrupt normal program

execution, and require corrective action.

831

HCL OneTest Performance

832

Option Description

None Turns logging off.

4. Click Change.

Results

When a user group runs on your local computer, the problem determination logs are in the deployment_root

directory in your workspace. When a user group runs at a remote location, which is the typical use case, each remote

location has a deployment directory, which you define and which is listed on the Locations page for that user group.

Note: Common Base Event XML logs from remote locations use Universal Coordinated Time (UTC), also

called Zulu time, which is likely different from your local time. For example, Eastern Standard Time (EST) is 5

hours behind UTC time.

What to do next

To view the problem determination log, open the log file in an XML editor. Select the log whose timestamp matches

that of the problem run. The most recent log has the suffix 00.log.

Stopping test runs
You can stop a test run before it is complete. For example, you might detect serious problems in the run and not want

to wait for it to finish. When stopping the test run, you can choose to save the results and the test log of the run.

About this task

To stop a test run on the local computer, use this command cmdline.bat -stoprun -workspace "c:\myWorkspace".

To stop a test run from a remote computer, you can send the REST API command HTTP POST to http://

hostNameOrIP:7878/executioncontrol/stoptestrun with POST data {\"btnExecFinally\":true, \"btnResultCollection

\":true,\"timeout\":30,\"timeoutScale\":\"sec\"}.

For instance, you can use Curl to send the POST command.

curl "http://hostNameOrIP:7878/executioncontrol/stoptestrun" -d "{\"btnExecFinally\":true, \"btnResultCollection

\":true,\"timeout\":30,\"timeoutScale\":\"sec\"}".

Table 7. POST arguments

Argument Description

btnExecFinally Indicates whether to run the Finally block in the sched­

ule.

btnResultCollection Indicates whether to collect the results for the test.

Chapter 8. Test Execution Specialist Guide

Table 7. POST arguments (continued)

Argument Description

timeoutScale Indicates the units of time such as "milli", "sec", "min",

"hour".

If you do not require test results and logs, abandon the test by clicking Running > Abandon Test Run or by using the

command cmdline.bat -abandonrun -workspace "c:\myWorkspace".

1. During a test run, click Running > Stop Test Run.

2. In the Timeout field, type a number and select a time unit.

If you are running HTTP tests and want the results, consider selecting a duration that is long enough for a

page to return.

3. Optional: To collect the results and the test log until the time the test ran, select Collect test results and

history. Typically, the partially run report is useful for debugging specific issues. If you do not select the check

box, the report is not generated.

4. Optional: To stop the execution of the test in the Finally block, clear Execute Finally block.

5. Click Stop.

The test stops after the timeout.

Debugging HTTP tests
If a test does not behave as expected during playback, you can use the protocol data and test log to assist in

debugging the test.

HTTP debugging overview
If a test is not behaving as expected, you can use the Protocol Data view to debug the test. This view can be useful

after you record a test, after you make changes to an existing test by adding datasets or data correlation, or after you

make changes to the system under test.

The Protocol Data view displays data that was recorded or played back. The Protocol Data view can also display

data in real time as tests and schedules run. To see recorded data, click a test element in the test editor. To see

data played back after running tests, click an element in the test log. The Protocol Data view updates accordingly.

Substituted data is highlighted on the Request, Response Headers and Response Content pages when you view test

log or test editor elements that use data correlation. The Protocol Data view contains these pages:

Request

This page displays all request data sent to a server. This includes the URL of the requested resource,

request headers, cookies, and form data.

Response Headers

This page displays the response status line and header fields that are received from a server.

833

HCL OneTest Performance

834

Response Contents

This page displays the response contents, in text form, that is received from a server.

Browser

This page attempts to display the response contents as a web browser would display the contents.

Because the protocol data is used instead of data from a live web server, playback might be successful

even though the Browser page might not render the contents exactly as a web browser would. Pages

that might not display correctly include those that have resources cached on a web server and those

that use Javascript and framesets extensively.

Event Log

This page displays event summary information for each HTTP page in the test. After a run, when you

select a particular user from the test log, the page displays information about that user.

During a run, the page displays real-time information if real-time protocol data support is enabled. To

enable this support, click Window > Preferences > Test > HTTP Protocol Data View, and then select

Enable real-time protocol data support.

Debugging HTTP Data Correlation Errors
Data correlation errors are very common and sometimes complex to fix. A dedicated Eclipse-based perspective can

guide you to debug data correlation errors.

About this task

Using the perspective, you can fix the following data correlation issues:

• Missing reference for substitutions for the substitution sites. The product tries to locate values greater than

seven characters in length and is alphanumeric.

• Missing substitution site in HTTP headers for values greater than seven character in length and is

alphanumeric. The value to be substituted will be highlighted.

• Invalid regular expression.

The content in the different views of the perspective is connected to each other. So, when you select a request in

the Test view, the log event corresponding to that request is displayed in the Test Log view. The Compare tab in the

Protocol Data view displays the comparison between the selected request in the Test and the Log views. The Event

Log selects the proper page event. The behavior is same if you select an event in the Test Log. The Test, the Event

Log, and the Compare tab will update themselves to match that event. All tabs work in conjunction with each other.

1. In the Test Navigator view, right-click a result that contains data correlation errors and click Debug HTTP Data

Correlation Errors.

Result

The HTTP Test Debug perspective displays the first error.

Chapter 8. Test Execution Specialist Guide

2. Use the Compare tab in the Protocol Data view to compare the requests or responses of the Test and Test

Log.

3. Use the Problems tab to view the recommended fix. Click Fix to fix the error. You can navigate between the

errors by clicking Previous and Next.

Watching a virtual user during a test run
The Browser page in the Protocol Data view displays browser results during an individual HTTP test run. The Browser

page displays each page in real time.

Before you begin

Verify that real-time support is enabled. Click Window > Preferences > Test > HTTP Protocol Data View

1. Verify that Enable real-time protocol data support is selected.

2. Select which page you want the Protocol Data view to display by default. The Browser page renders the visual

data, and the Event Log page displays a table of page titles, response times, verification point failures, and

unexpected response codes. You can switch between the pages when you watch the user.

1. In the Test Navigator, browse to an HTTP test and double-click it.

Result

The test opens.

2. Click Run > Run As > Test.

3. In the Protocol Data view, click the Browser tab.

Result

The HTTP pages are displayed. Because the protocol data is used, the Browser page might not render the

contents exactly as a web browser would render the contents. But even if an HTTP page does not display

correctly, you can still use the information on the Request, Response Headers, Response Content, and Event

Log pages to help you debug the test.

4. Use the playback buttons in the Protocol Data view to control the real-time browser display. The playback

buttons control only the Protocol Data view. They do not pause or stop test execution. If you pause the real-

time browser display and then click Play, the page displayed in the Browser window is the next page loaded by

the playback engine. Use the Back and Forward buttons to control the display of pages that have already been

loaded. If a problem occurs during playback, pause the test and use the Back and Forward buttons to move to

the page where the problem occurred. The Request, Response Headers, and Response Content pages show

the information for the primary request.

Results

The information on each page is updated in real time as you run the test. The Event Log page shows the response

time, verification point failures, unexpected response codes, and messages for each request. All of the other pages in

the Protocol Data view display an Event Log summary bar while tests are running. The Event Log summary bar shows

the number of verification point failures, unexpected response codes, and messages for the current page request.

835

HCL OneTest Performance

836

An unexpected response code is defined as a response code not in the 200 or 300 range. Response codes outside

the 200 and 300 range that were recorded or that are represented in a response code verification point are not

considered unexpected. For example, a response code of 404, "Not Found," is an unexpected response code, unless

there is an associated response code verification point. If a 404 response code occurred while recording and then

during playback the response code is also 404, this is not considered unexpected. Messages include data correlation

failures and custom code messages.

All pages in the Protocol Data view are active and updated while a test is running. Any of the events in the Event Log

summary bar might indicate playback failures that require further investigation. After a test runs, you can also view

the test log to debug the test. To learn more about the test log, see Viewing test logs on page .

Watching a virtual user during a schedule run
During a schedule run, you can select any virtual user and watch that user's real-time browser. Watching the real-time

browser lets you investigate the status of individual virtual users while they are running. You can determine whether a

run is valid despite the occurrence of individual virtual user failures.

About this task

Watching a virtual user during a run is useful in the following situations:

• It enables you to quickly verify that virtual users are receiving the data that you expect. Assume that you want

to verify that virtual users use different dataset data during a schedule run. You can select a virtual user during

the run and see the real-time data for that user. You can then select another virtual user and see that user's

data.

• It confirms whether a schedule run is valid despite the occurrence of failures. Assume that you are running a

schedule that takes several hours to complete. Intermittent failures occur during the run. To find out whether

these failures are significant enough to interrupt the run, you can investigate the activities of virtual users

that are running at each location (agent computer). You can decide whether to allow the schedule to run to

completion.

• It enables you to investigate errors during a run. Assume that you have confirmed that a schedule is running

successfully, despite the errors of a few virtual users. However, you want to find the specific virtual users

with verification point failures and see what each virtual user is doing when the failure occurs. To do so, start

monitoring different virtual users until you find one who is experiencing failures. The Verification Point report

is helpful for narrowing down which user groups are experiencing failures. When the virtual user has been

identified and monitoring has started, use the Event Log page to see the error details for this user.

To watch a virtual user during a schedule run:

1. Run the schedule: Right-click the schedule, and then click Run > Run Schedule.

2. In the Protocol Data view, click (Watch Virtual User icon).

3. In the Select Virtual User to Watch window, select the user group that contains the user.

4. Select the virtual user number in the user group or at a particular location (agent) on which the user group

runs, and click OK.

../topics/topenexechist_perf.html
../topics/topenexechist_perf.html
../topics/topenexechist_perf.html
../topics/topenexechist_perf.html

Chapter 8. Test Execution Specialist Guide

Option Description

Specify a user inside this user group The window lists the ranges of active users in the

group. Specify a user number within the listed

ranges.

This option is useful when you want to watch any

user, or a particular user, in a specific user group.

This might be the case if you have run the schedule

before, examined the test log, and know the number

of the virtual user that you want to see.

For example, a schedule that uses a dataset of user

names might run correctly for the first 10 users but

issue verification point failures for the remaining

users. In this case, you watch user number 11.

Indexed user on location Select this option to see a user running at a specific

location. Enter an index between 1 and the number

of users at that location. This number is mapped to a

virtual user number, which is displayed in the title of

the Event Log tab.

You enter an indexed number rather than a specif­

ic user number because not only are the actual user

numbers spread out between locations (User 1 might

be at Location A, Users 2 and 3 at Location B, and so

on) but also a user's location can vary from run to run

(User 3 might run on Location A during one run and

Location B during the next run).

5. In the Protocol Data view, click the Browser tab.

Only pages loaded while watching the virtual user are displayed; pages that have been loaded before live

rendering began are not available. However, the data that you see is also available in the test log after the run

completes. This data is always available, regardless of the test log preferences that you set in the schedule.

6. Click an icon for the virtual user.

Icon Description

 (Pause) (Play) (Back) (Forward) Navigation actions, which let you move among

pages.

 (Stop Watching) Stop monitoring the current user. Clicking this icon

does not stop the user from running.

837

HCL OneTest Performance

838

Icon Description

 (Watch Virtual User) Change from one user to another.

You can even add virtual users during the run and watch the added users. For more information, see Changing

the number of virtual users during a run on page 828.

Replaying a virtual user after a run completes
After you create a schedule, run it with a small number of users and watch their activity to verify that the schedule is

behaving as expected. You can compare the visual data that is rendered as well as the events that are logged for each

user.

1. Open the schedule, click the Test Log tab, and set each Log Level to All.

This setting makes sure that the virtual user that you select will have complete test log data.

Example

2. Verify that the schedule contains a small number of virtual users.

a. Open the schedule, click the User Load tab and set a small number of users.

Setting a small number of users prevents the log from becoming unwieldy, which can occur when the

log level is All.

b. If you are running a fixed number of users, select each user group and set the numbers so that the

total is equal to that in the User Load tab.

3. Save the schedule and click Run to run the schedule with the limited number of users.

4. After the schedule completes, open the test log: Right-click the schedule run, and select Display test log.

5. In the test log, click the Events tab, expand the test log to display the virtual users, and select a virtual user to

watch.

Chapter 8. Test Execution Specialist Guide

6. In the Protocol Data view, click Replay ().

The virtual user's pages, which were loaded during the run, are redisplayed. Each page pauses the number

of seconds that you set in the Replay Delay preference (Window > Preferences > Test > HTTP Protocol Data

View).

7. To stop replaying, click Stop Replay ().

Viewing the playback summary of a virtual user
The Event Log page in the Protocol Data view provides a summary of what happened during an HTTP test run. A

complete summary is always available for a test. The information available for a schedule depends on its logging

level.

About this task

The amount of information that you see in the Event Log depends on the amount of information that is collected by

the test log. When you run a test, all logging is automatically enabled, therefore the Event Log contains complete

details. When you run a schedule, however, you select a Log Level setting, and the amount of detail that the Event Log

contains depends on this setting. For more information, see Setting the data that the test log collects on page 774.

If your schedule run is not large, select the setting All for all types of events. For large schedule runs, do not use the

All setting, because of the time and space required to transfer large amounts of log detail to your computer after

a run is completed. Instead, define a special schedule for debugging tests with the log levels set to All. Limit this

schedule to a single test (or a small number of tests) and to a small number of user groups or loop iterations. After

you are satisfied that a test is performing correctly, you can move it to a schedule that emulates a realistic workload.

To view the Event Log information:

1. In the Test Navigator, open a schedule or test.

2. Run the schedule or test: Click Run > Run As, and select Performance Test or Performance Schedule.

3. In the Protocol Data view, click the Event Log tab.

◦ If you are running a test, the Event Log page is immediately populated.

◦ If you are running a schedule, wait until the run is complete. Right-click on the report and select

Display test log. Select a virtual user in the test log. The Event Log page shows the summary of events

for that user.

Result

The first column has an arrow to indicate the page that is currently displayed in the other Protocol Data view

windows: Request, Response Headers, Response Content, and Browser.

The second column shows the status of the page:

Symbol Meaning

Green check All requests for the page are successful and that

there are no warnings.

839

HCL OneTest Performance

840

Symbol Meaning

Red X The page contains requests with failed verdicts or un­

expected response codes. Typically, failed verdicts

are verification point failures. Unexpected response

codes are codes outside the 200 and 300 range that

were not recorded as such or that are not represent­

ed in associated verification points.

Yellow warning symbol The page contains messages but no failure verdicts

or unexpected response codes.

4. Double-click an entry in the Event Log to open the Event Details window. The Event Details window shows a

list of events for the page that is highlighted in the Event Log. The Name and Parent columns show the name

and parent request for each event. The Text field shows details for each event.

Result

Note: The Go To menu at the top of the Event Details window lets you jump to the corresponding

event in the test or the test log. This is useful for obtaining more contextual information about the

error shown in the table.

5. Leave the Event Details window open, and click other pages in the Event Log, or use the Forward and Back

buttons to navigate to other pages in the Event Log.

Chapter 8. Test Execution Specialist Guide

Result

The Event Details window is updated to show the events for the page that is selected in the Event Log.

What to do next

The information in the Event Details window supplements the information in the test log. To see more information

about a particular event, view the test log after the test finishes running. With the test log, you can see an event in

context. The test log also provides links to the recorded test.

Inspecting HTTP test logs in the Protocol Data view
To verify that a test is performing as you intend, use the Protocol Data view, which displays the HTML details that

were generated during a schedule run. If problems occur in a test run, you can also compare the data retrieved during

the run with the recorded data.

Before you begin

Set the detail level. The amount of detail that you can see in the Protocol Data view depends on the Test Log settings

in the schedule; see Setting the data that the test log collects on page 774. If you plan to use the Protocol Data view

and your schedule run is not large, select the setting All for all types of events. For large schedule runs, do not use the

All setting, because of the time and space required to transfer large amounts of log detail to your computer after a

run is completed. You might create a special schedule for Protocol Data view runs with the log levels set to All. Limit

this schedule to a single test (or a small number of tests) and to a small number of user groups or loop iterations.

After you are satisfied that a test is performing correctly, you can move it to a schedule that emulates a realistic

workload.

1. In the Test Navigator, right-click the results that you want to inspect, and click Display Test Log. The results

have the same name as the test or schedule with a time stamp appended.

2. In the editing area, click the Protocol Data tab to open the view.

Tip: If you cannot locate the Protocol Data tab, click Window > Show View > Protocol Data.

3. In the Protocol Data view, click the tab for the type of contents or view that you want to display: Request,

Response Headers, Response Contents, or Browser, or Event Log.

Substituted data is highlighted on the Request, Response Headers and Response Content pages when you

view test log or test editor elements that use data correlation.

4. In the Events hierarchy area of the test log, click the line that contains the detail that you want to view.

Result

The detail is displayed in the Protocol Data view.

Note: User groups, virtual users, and some HTTP requests are processed in parallel. The test

log reflects the order of execution, rather than the recording order or the order of user groups in

schedules. Therefore, the order of page requests in the test might be different from the order in the

841

HCL OneTest Performance

842

test log, and the order of user groups in the test log might be different from the order in the schedule.

However, the order of pages in a test and the order of tests inside a user group are the same in the

test log as in the corresponding test and schedule.

What to do next

If you have problems during playback, you can compare the data that you recorded with the data retrieved during the

run. For information on displaying the recorded data, see Viewing a test in the Protocol Data view on page 480.

Managing HTTP information in the Protocol Data view
Several actions can be performed on the text displayed in the Protocol Data view. You can save the text from the

Protocol Data view pages to a text file for use in other applications. You can search for text in the protocol data. You

can compare the data retrieved during a run with the recorded data from an HTTP test. Typically, you compare a

request or response from the test log to its corresponding data in the recorded test. You can also compare requests

or responses from different virtual users in one test log.

To export HTTP data from the Protocol Data view to a text file:

1. In the Test Navigator, right-click the results that you want to export, and click Display Test Log. The results

have the same name as the test or schedule with a timestamp appended.

2. In the editing area, click the Protocol Data tab to open the view.

3. Click the button that corresponds to the data that you want to export: Request, Request Headers, or Response

Content.

You cannot export data from the Browser page.

4. Optional:

To export only a portion of the text, select the text, and click the appropriate option from the menu:

5. Select one of the following options from the toolbar:

Chapter 8. Test Execution Specialist Guide

Option Description

Save to protocol data

Saves the entire text on the page to a text file within

or outside of your workspace.

Copy to clipboard

Copies the entire text on the page to the clipboard.

Compare to clipboard

Compares the entire text on the page to the contents

of the clipboard. To compare the playback data with

the recorded data, view the protocol data in the test

log and select Copy to clipboard. Then, use the ele­

ment link in the details section of the test log to navi­

gate directly to the associated recorded element, and

select Compare to clipboard.

Find

Searches the data in that test log page. You cannot

replace data in the test log.

Result

The text is saved in the default (locale-specific) encoding that is set on your computer. Keep this default locale

setting unless your text contains non-Latin characters.

6. Optional: Click the menu on the toolbar to save the file in Unicode.

Debugging Citrix tests
The Citrix dashboard is an optional panel that displays detailed information and control commands for each virtual

user during the run of a schedule. This is useful for debugging your tests and allows you to pause, interact, resume, or

stop the execution of individual virtual user sessions.

Enabling and disabling the Citrix monitoring panel
With the optional Citrix monitoring panel, you can monitor detailed information during the run of a schedule and

debug your tests. To use the Citrix monitoring panel, you must enable it in the schedule.

Before you begin

843

HCL OneTest Performance

844

The Citrix monitoring panel is available only during the run of a schedule. Enabling the option requires that you create

a location for it in the project.

The Citrix monitoring panel uses resources; therefore use the monitoring panel only for debugging and test

development. For actual performance testing, disable the panel.

To enable the Citrix monitoring panel in a schedule:

1. Open a schedule that contains a user group with at least one Citrix test.

2. Select the user group, and on the Schedule Element Details pane, click the Options tab, and then click Edit

Options.

Result

The Protocol-specific Options window opens.

3. If several types of tests are available in the user group, click the Citrix Options tab.

4. Select Enable monitoring panel.

5. Optional: Select Enable log file generation if you want to keep a log file of the debug session.

After the run, you can locate the log file in the file system, in the deployment_root directory of the

workspace directory.

6. Click OK, and save the schedule.

Results

During the next run of the schedule, the Citrix session window displays the monitoring panel, with which you can

debug and control the progress of each virtual tester.

Related reference

Citrix monitoring panel reference on page 1399

Related information

Debugging tests with the Citrix monitoring panel on page 844

Debugging tests with the Citrix monitoring panel
When enabled, the Citrix monitoring panel provides the ability to pause your tests during a run and to provide manual

input. It also provides a comparison view to compare expected window events with the actual window events

received during the test. This capability can be useful when you are debugging your tests.

Before you begin

To display the Citrix monitoring panel during VU Schedule runs, first enable the panel. See Enabling and disabling the

Citrix monitoring panel on page 843 for more information.

The Citrix monitoring panel uses resources; therefore, use the panel only for debugging and test development. For

actual performance testing, disable the panel so that the results are accurate.

Chapter 8. Test Execution Specialist Guide

1. With the monitoring panel option enabled, run the VU Schedule.

A window opens with the virtual users running Citrix clients on multiple pages. Click a tab to display the

corresponding virtual user.

2. Click the Monitoring tab to display the monitoring panel.

The monitoring panel displays the following information:

Monitoring Panel

This panel displays information about the execution of each virtual user.

Pool Name

Displays the name of the virtual user pool. There is one pool per location and user

group.

Active Virtual Users

Displays the number of virtual users currently active. This value is updated

permanently during the run.

User Action Rate

Displays the number of Citrix user key or mouse actions that were simulated

during the last 5 second interval.

Total Elapsed Time

Displays the total time elapsed since the start of the schedule run.

Current® Action

Displays the last user action executed in the test.

Timeouts

Displays the number of synchronization timeouts for the virtual user. The color

represents the status of the timeout:

◦ Green: ok.

◦ Yellow: a timeout occurred on a conditional synchronization.

◦ Red: a timeout occurred on a mandatory synchronization.

Elapsed Time

Displays the time elapsed since the start of the virtual user run.

Status

Displays the execution status of the virtual user.

3. Select a virtual user and click one of the following buttons to interact with the execution of the test.

Go To

Click to display the Citrix session of the selected virtual user.

845

HCL OneTest Performance

846

Pause or Play

Click to pause or resume the execution of the selected virtual user. You can also pause the

execution by setting breakpoints in the test.

Step

When the test is on pause, click to execute each user input action in the test, step by step. To

pause test execution, you can either click the Pause button or set breakpoints in the test. Click

Play to resume the test.

Interact

When the test is on pause, click to allow manual actions in the virtual user session. Use

this feature if a test fails to synchronize or gets stuck in an unexpected state. To pause test

execution, you can either click the Pause button or set breakpoints in the test. Click Play again to

resume the test execution at the point where it was paused.

Stop

Click to stop the execution of the selected virtual user. When all virtual users are stopped, the

schedule ends.

4. When you have finished interacting with the Citrix session, click Play to resume the execution.

Related reference

Citrix monitoring panel reference on page 1399

Related information

Enabling and disabling the Citrix monitoring panel on page 843

Setting Citrix breakpoints
When the Citrix monitoring panel is enabled, you can define breakpoints in the test to pause the running of a user-

input action. This capability is useful when you are debugging a Citrix test.

Before you begin

For the breakpoints to have any effect, the test must be running in a schedule with the Citrix monitoring panel

enabled. See Enabling and disabling the Citrix monitoring panel on page 843 for more information.

Breakpoints can be defined on these user-input test elements: mouse actions, key actions, text inputs, and logoff

elements. When a breakpoint is encountered, the test pauses before the user input element is run.

1. Open a Citrix test in the test editor and select a user input element.

2. In the Test Element Details area, select Stop test execution on this element when the monitoring panel is

enabled.

Alternatively, you can right-click the user input element, and select Toggle Breakpoint.

3. Add the test to a schedule and run the schedule with the monitoring dashboard enabled.

Chapter 8. Test Execution Specialist Guide

Result

During the run, the virtual user pauses at the breakpoint.

4. When the test is paused, click Interact to perform manual actions inside the Citrix session or Step to run the

test step by step.

5. When you have finished, click Play to resume the test run.

If there are multiple breakpoints in the test, the run resumes until the next breakpoint is encountered.

Extending test execution with custom code
You can extend how you run your tests by writing custom Java™ code and calling the code from the test. You can also

specify that results from the tests that are affected by your custom code be included in reports.

Creating custom Java™ code
Custom code uses references in the test as input and returns modified values to the test. Use the ICustomCode2

interface to create custom code and the ITestExecutionServices interface to extend test execution. These interfaces

are contained in the com.ibm.rational.test.lt.kernel.services package.

About this task

Note: When you use the ITestExecutionServices interface in your custom code to report test results, the

results for the custom code are displayed in the test log. If you log custom verification point verdicts, these

are reflected in the overall schedule verdict.

Custom code input values can be located in references or field references. You can also pass a text string as an

argument to custom code. References that are used as input to custom code must be included in the same test

as the custom code. In the test, the reference must precede the code that it affects. Verify that the test contains

the references that are required for customized inputs to your code. For details about creating references and field

references, see Creating a Reference or a Field Reference on page 633.

If your custom code uses external JAR files, you might need to change the Java™ build path. In some cases, you can

avoid changing the build path manually by running the test before adding your custom code to it. The first time a test

runs, classes and libraries that are required for compilation are added to the build path. For example, you can import

Test and Performance Tools Platform (TPTP) classes that are required to create custom events in the test log if the

test, to which you have added your custom code, has run previously. However, if the test has never been run, import

errors occur because the classes are not named in the build path for the project until the test has run.

If your code uses external resources, for example, an SQL database or a product that manages customer

relationships, you must configure the custom code to work on every computer on which your test runs.

Custom code is saved in the src folder of the project that contains the test that calls the code. By default, custom

code is located in a package named test in the src folder.

847

HCL OneTest Performance

848

You can reuse a custom code package for tests that are located in multiple projects. The projects must be in one

workspace. To reuse custom code across projects, use the project name before the custom code package. For

example, .

The following example shows the standard Navigator view of two custom code classes. (The Test Navigator does not

display Java™ source files.)

When you add the ReplaceCC.java and VerifyYUserID.java custom code classes to the test and return a

value to the test, Substitute lists these two classes.

The test package also contains the generated Java™ code for tests in the project.

You can put custom code in a different package (for example, custom). Separate custom code from generated code,

especially if you use a source-control system.

To add custom code:

1. Open the test, and select a test element.

2. Click Add or Insert, and select Custom Code.

Add appends the custom code to the bottom of the selected test element. Insert adds the custom code above

the selected test element.

Note: After you add or insert custom code, the Problems view displays an error stating that the new

custom code element has no Java™ file. This error message remains until you click View Code or

Generate Code, to remind you that the custom code test element is not yet associated with any Java™

code.

3. Inspect the Class name field, and complete one of these steps:

◦ If the code to call already exists, change the class name to match its name. Click View Code to open

the code in the Java™ editor.

◦ If the code does not exist, change the class name to describe the purpose of the code. Click Generate

Code to generate a template class for logging results and to open it in the Java™ editor. If a class with

this name exists, you are warned that it will be overwritten.

Chapter 8. Test Execution Specialist Guide

4. In the Arguments field, click Add.

5. In the Custom Code window, select all inputs that your code requires.

The Custom Code window lists all values in the test that can be used as inputs to your code (references or

field references in the test that precede the code).

6. Click OK.

Result

The window closes, the selected references are added to the Arguments field.

7. To add text strings as inputs to your custom code, click Text, and then type the text string to use.

8. In the test, after your custom code, locate a value that your code returns to the test.

9. Highlight the value.

10. Right-click the highlighted value, click Substitute, and select the class name of your custom code.

Result

The custom code classes that you have added are listed. After you have made your selection, the value to be

returned to the test is highlighted in orange, and the Used by table is updated with this information.

What to do next

Custom code is not displayed in the Test Navigator view. To view custom code, open the Package Explorer view and

use the Java™ tools to identify the custom code that you added.

Test execution services interfaces and classes
You use the test execution services interfaces and classes to customize how you run tests. These interfaces and

classes are located in the com.ibm.rational.test.lt.kernel package. Each interface and class is described briefly in this

topic and in detail in the Javadoc information.

The custom code does not run on the mobile device, but from the generated Java code that is available in the test

workbench. So, if you initiate the test run from the mobile device and the test script includes custom code, the

custom code is not executed. To execute the custom code that is available in a mobile test script, you must initiate

the run from test workbench. If you want to integrate custom code between two mobile instructions, you must split

the test script. See Splitting a test on page 469.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Test execution services interfaces

Interface Description

ICustom­

Code2

Defines customized Java™ code for test execution services. Use this interface to create all custom code.

ITestEx­

ecution­

Services

Provides information for adding custom test execution features to tests. Replaces the IKLog interface.

All the methods that were available in IKLog are contained in ITestExecutionServices, along with several

newly exposed objects and interfaces. This interface is the primary interface for execution services. ITes­

tExecutionServices contains the following interfaces:

849

HCL OneTest Performance

850

Interface Description

• IDataArea

• IARM

• IDataSetController

• ILoopControl

• IPDLogManager

• IStatisticsManager2

• ITestLogManager

• ITime

• ITransaction

• String

IDataArea Defines methods for storing and accessing objects in data areas. A data area is a container that holds

objects. The elements of a data area are similar to program variables and are scoped to the owning con­

tainer. To use objects specific to a protocol, you should use objects provided by that protocol that are

stored in the protocol-specific data area.

IARM Provides information about defining ARM (Application Response Measurement) specifications. You use

this interface if your virtual users are being sampled for ARM processing.

ILoop­

Control

Provides control over loops in a test or schedule. For example, you can use this interface to break loops

at specific points in a test. The loop that is affected is the nearest containing loop found in either the test

or the schedule.

IPDLog­

Manager

Provides logging information such as problem severity, location levels, and error messages.

IStatistic­

sManag­

er

Provides access to performance counters in the ICustomCode2 interface (used for defining custom

code). Performance counters are stored in a hierarchy of counters. Periodically, all the counter values

in the hierarchy are reported to the testing workbench and collected into test run results, where they are

available for use in reports and graphs. Each counter in the hierarchy has a type (defined in class Stat­

Type). The operations that are available on a counter depend on the counter's type.

ITestLog­

Manager

Logs messages and verification points to the test log. Use this interface for handling error conditions,

anomalies in expected data or other abstract conditions that need to be reported to users, or for compar­

isons or verifications whose outcome is reported to the test log. ITestLogManager can also convey infor­

mational or status messages after the completion of a test.

Chapter 8. Test Execution Specialist Guide

Interface Description

ITime Defines basic time services, such as the current system time in milliseconds (adjusted so that all sys­

tems are synchronized with the schedule controller), the time the test begins, and the elapsed time from

the beginning of the test.

ITransac­

tion

Provides support for transactions. A collection of named transactions is maintained for each virtual user.

Transactions created in custom code can be started and stopped wherever custom code can be used.

These transactions can span several tests. Performance counters are kept for custom code transactions

and appear in reports. An example of how you could use ITransaction is to create transactions for one

virtual user but not another, to help verify responses from tests.

IEngineIn­

fo

Provides information about the testing execution engine; for example, the number of virtual users run­

ning in this engine, the number of virtual users that have completed, the local directory in which test as­

sets are deployed, and the host name of the computer on which the engine runs.

ITestInfo Provides information about the test that is running; for example, the test name and information about the

current problem determination log level for this test.

IVirtual­

UserInfo

Provides information about virtual users; for example, the virtual user's name, problem determination log

level, TestLog level, globally unique ID, and user group name.

IScalar Provides methods for simple integer performance counters. It is used for counters of SCALAR and STATIC

types. Use this interface to decrement and increment counters.

IStat Defines observational performance counters. It defines the method for submitting a data point to perfor­

mance counters of type RATE, AVERAGE, and RANGE.

IStatis­

tics

Retrieves the performance counter tree associated with the current statistics processor. Stops the deliv­

ery of performance counters. Changes the priority of the statistics delivery thread.

IStatTree Provides methods that can retrieve child counters, create the XML fragments that define counters, and

set the description field of counters.

IText Contains text-based performance counters. Performance counters that do not fit any of the other

counter types can be created as type TEXT. TEXT counters are not assigned definitions, but they are col­

lected in the test results.

Test execution services classes

Class Description

Data­

Area­

Lock­

Ex­

cep­

tion

Throws an exception whenever an attempt is made to modify a locked DataArea key.

851

HCL OneTest Performance

852

Class Description

Out­

OfS­

cope­

Ex­

cep­

tion

Indicates that an object created by ITestExecutionServices has been referenced outside of its intended

scope.

Trans­

ac­

tion­

Ex­

cep­

tion

Throws an exception when a transaction is misused. The following conditions lead to a TransactionException

exception: attempting to start a transaction that has already been started, attempting to stop a transaction

that has not been started, and getting the start time or the elapsed time of a transaction that has not been

started. Any operation (except abort()) on a transaction that has been aborted will throw a TransactionExcep­

tion exception.

Stat­

Type

Provides a list of valid performance counter types. The performance counter types are: AVERAGE, iAVERAGE,

iRANGE, iRATE, iSCALAR, iSTATIC, iSTRUCTURE, iTEXT, RANGE, RATE, SCALAR, STATIC, STRUCTURE, and TEXT.

Reducing the performance impact of custom code
If custom code runs inside a page, it can affect that page's response time.

HTTP pages are containers of HTTP requests. On a given HTTP page, requests run in parallel across all of the

connections between the agent computer and the system under test.

Page response time is the interval between page start and page end, which are defined as follows: Page start is the

first timestamp associated with the client-server interaction. This interaction is either the first byte sent or the first

connect of the first HTTP request. Page end is the last timestamp associated with the client-server interaction. This

interaction is the last byte received of the last HTTP request to complete. Because of parallelism, the last HTTP

request to complete might not be the last one listed for the page.

Typically, you should not insert custom code inside a page. While custom code that runs for only a few milliseconds

should have little effect on page response time, the best practice is to place custom code outside a page. Custom

code placed outside a page has no effect on page response time, and its execution time can overlap with think time

delays.

Do not use custom code for data correlation if you can instead use the data correlation features built into the product.

The built-in data correlation code takes advantage of requests running in parallel, whereas custom code actions do

not begin until all earlier actions are completed.

You might need to place custom code inside a page to correlate a string from the response of a request inside that

page to another request inside the same page. Even in this case, if you split the page into two pages, you can use the

built-in data correlation features instead of custom code.

Chapter 8. Test Execution Specialist Guide

If you still want to run tests with custom code inside HTTP pages, use the Page Element report to evaluate

performance. The Page Element report shows the response time and throughput for individual HTTP requests.

Custom code does not affect the response time measurement of individual HTTP requests.

Related information

Performance testing tips on page

Custom code examples
Custom code enables you to perform such tasks as managing loops, retrieving virtual user information, running

external programs from tests, and customizing data correlation.

Controlling loops
This example demonstrates extending test execution by using custom code to control loops. It provides sample code

that shows how you can manipulate the behavior of loops within a test to better analyze and verify test results.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

This example uses a recording of a stock purchase transaction using the Trade application. The concepts shown here

can be used in tests of other applications.

The test begins with a recording of a stock purchase transaction, using dataset substitution for the login IDs. The

pages are wrapped in a five-iteration loop, as shown in the following figure:

853

../topics/c_perftips.html
../topics/c_perftips.html
../topics/c_perftips.html
../topics/c_perftips.html

HCL OneTest Performance

854

Notice that among the various pages of the test, three items of custom code exist (indicated by the green circles with

"C"s in them). This example explores these items of custom code.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

The first piece of custom code, InitializeBuyTest, is mentioned here:

package customcode;

import java.util.Random;

import com.ibm.rational.test.lt.kernel.IDataArea;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.IVirtualUserInfo;

/**
 * @author unknown
 */
public class InitializeBuyTest implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public InitializeBuyTest() {

Chapter 8. Test Execution Specialist Guide

 }

 /**
 * For description of ICustomCode2 and ITestExecutionServices interfaces,
 * see the Javadoc.. */
 public String exec(ITestExecutionServices tes, String[] args) {
 // Get the test's data area and set a flag indicating that nothing
 // has failed yet. This flag will be used later to break out
 // of the schedule loop as soon as a failure is encountered.
 IDataArea dataArea = tes.findDataArea(IDataArea.TEST);
 dataArea.put("failedYet", "false");

 // Get the virtual users's data area
 IDataArea vda = tes.findDataArea(IDataArea.VIRTUALUSER);

 // Randomly select a stock to purchase from the set of s:0 to s:499.
 IVirtualUserInfo vuInfo = (IVirtualUserInfo) vda.get(IVirtualUserInfo.KEY);
 Random rand = vuInfo.getRandom();
 String stock = "s:" + Integer.toString(rand.nextInt(499));

 // Persist the name of the stock in the virtual user's data area.
 vda.put("myStock", stock);

 return stock;
 }

This custom code is located in the method exec().

First, the data area for the test is acquired to store a flag value, in this case a string of text, to be used later to stop the

test loop when an error is discovered. Data stored in this way can be persisted across tests.

Then a randomly generated stock string is created. The value is stored as the variable stock, and is passed back as

the return value for the method. This return value is used as a substitute in a request later, as shown in the following

figure:

The highlighted item uses a substitution (s%3A716), which is the value returned by the InitializeBuyTest custom code

item. We are using custom code to drive the direction of our test.

855

HCL OneTest Performance

856

The next lines of code in InitializeBuyTest use the Virtual User data area to store the name of the stock for later

reference. Again, data stored in this way can persist across tests.

The second piece of custom code is called CheckStock. Its contents are as follows (listing only the exec() method this

time):

public String exec(ITestExecutionServices tes, String[] args) {

 // Get the actual and requested stock purchased.
 String actualStock = args[0].replaceAll("", "");
 actualStock = actualStock.substring(0, actualStock.indexOf("<"));
 String requestedStock = args[1];

 // Set the log level to ALL.
 IDataArea dataArea = tes.findDataArea(IDataArea.TEST);
 ITestInfo testInfo = (ITestInfo)dataArea.get(ITestInfo.KEY);
 testInfo.setTestLogLevel(ITestLogManager.ALL);

 // If the log level is set to ALL, report the actual and requested stock
 // purchased.
 ITestLogManager testLogManager = tes.getTestLogManager();
 if (testLogManager.wouldReport(ITestLogManager.ALL)) {
 testLogManager.reportMessage("Actual stock purchased: "
 + actualStock + ". Requested stock: " + requestedStock
 + ".");
 }

 // If the actual and requested stock don't match, submit a FAIL verdict.
 if (testLogManager.wouldReport(ITestLogManager.ALL)) {
 if (!actualStock.equalsIgnoreCase(requestedStock)) {
 testLogManager.reportVerdict(
 "Actual and requested purchase stock do not match.",
 VerdictEvent.VERDICT_FAIL);

 // Use the test's data area to record the fact that an error has
 // occurred.
 dataArea.put("failedYet", "true");
 }
 }
 return null;
 }

This code begins by extracting two arguments that have been passed to the code. A part of the response in the

original recording is highlighted and used as a reference, as shown in the following figure.

Chapter 8. Test Execution Specialist Guide

Some string manipulation is needed to acquire the text of interest; in this case, the name of the stock that was

actually purchased. This newly created reference is then passed into CheckStock as an argument, as shown in the

following figure:

Note that the return value of InitializeBuyTest is passed in as an argument as well.

The CheckStock custom code item uses these values to verify that the randomly chosen stock generated by

InitializeBuyTest is actually purchased during the execution of the test.

CheckStock then sets the test log level, reports the actual and requested stock purchase, and raises a FAIL verdict if

they do not match. CheckStock also stores a true value associated with the tag failedYet in the test's data area.

The third piece of custom code (exec() method only) is mentioned here:

public String exec(ITestExecutionServices tes, String[] args) {

 // Get the test log manager.
 ITestLogManager testLogManager = tes.getTestLogManager();

 // Get the test's data area and get a flag indicating to
 // see if anything has failed yet. If so, stop the loop.
 IDataArea dataArea = tes.findDataArea(IDataArea.TEST);
 String failedYet = (String) dataArea.get("failedYet");

 // Break out of the loop if an error has been encountered.

857

HCL OneTest Performance

858

 if (failedYet.equalsIgnoreCase("true")) {
 tes.getLoopControl().breakLoop();

 if (testLogManager.wouldReport(ITestLogManager.ALL)) {
 testLogManager.reportMessage("Loop stopped.");
 }
 }

 return null;
 }

This code uses the test's data area to determine the user-defined value associated with the tag failedYet. If

failedYet is true, StopLoopCheck breaks out of the test loop.

Retrieving the IP address of a virtual user
This example shows how to retrieve the local IP address of a virtual user. Retrieving IP addresses is particularly

useful when virtual users are using IP aliases.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

The following custom code retrieves the IP address that was assigned to a virtual user:

import java.net.InetAddress;
import com.ibm.rational.test.lt.kernel.IDataArea;
import com.ibm.rational.test.lt.kernel.services.ITestLogManager;
import com.ibm.rational.test.lt.kernel.services.IVirtualUserInfo;

public String exec(ITestExecutionServices tes, String[] args) {
 IVirtualUserInfo vui = (IVirtualUserInfo)
 tes.findDataArea(IDataArea.VIRTUALUSER).get(IVirtualUserInfo.KEY);
 ITestLogManager tlm = tes.getTestLogManager();

 if (vui != null) {
 String localAddr = null;
 InetAddress ipAddr = vui.getIPAddress();
 if (ipAddr != null)
 localAddr = ipAddr.toString();
 tlm.reportMessage("IPAlias address is " + (localAddr != null ? localAddr : "not set"));
 return localAddr;
 }
else
 return ("Virtual User Info not found");
}

Printing input arguments to a file
The PrintArgs class prints its input arguments to the file C:\arguments.out. This class could be used, for example, to

print a response returned by the server.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Chapter 8. Test Execution Specialist Guide

Exemple

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.io.*;

/**
 * The PrintArgs class prints its input arguments to the file
 * C:\arguments.out. This example could be used to print a response
 * returned by the server.
 */

/**
 * @author IBM Custom Code Samples
 */

public class PrintArgs implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public PrintArgs() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 try {
 FileWriter outFile = new FileWriter("C:\\arguments.out");
 for (int i = 0; i < args.length; i++)
 outFile.write("Argument " + i + " is: " + args[i] + "\n");
 outFile.close();
 } catch (IOException e) {
 tes.getTestLogManager().reportMessage(
 "Unable to write to C:\\arguments.out");
 }
 return null;
 }
}

Counting the number of times that code is executed
The CountAllIterations class counts the number of times code is executed by all virtual users. The

CountUserIterations class counts the number of times code is executed by an individual virtual user.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Exemple

The CountAllIterations class counts the number of times it is executed by all virtual users running in a particular JVM

and returns this count as a string.

859

HCL OneTest Performance

860

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * The CountAllIterations class counts the number of times it is executed
 * by all virtual users running in a particular JVM and returns this count
 * as a string. If all virtual users on an agent are running in the same
 * JVM (as would typically be the case), this class will count the number of
 * times it is run on the agent.
 */

/**
 * @author IBM Custom Code Samples
 */

public class CountAllIterations implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {
 private static int numJVMLoops = 0;

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public CountAllIterations() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 return Integer.toString(++numJVMLoops);
 }
}

Exemple

The CountUserIterations class counts the number of times code is executed by an individual virtual user.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.IDataArea;

/**
 * The CountUserIterations class counts the number of times it is executed
 * by an individual virtual user and returns this count as a string.
 */

/**
 * @author IBM Custom Code Samples
 */

public class CountUserIterations implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public CountUserIterations() {
 }

Chapter 8. Test Execution Specialist Guide

 public String exec(ITestExecutionServices tes, String[] args) {
 IDataArea userDataArea = tes.findDataArea(IDataArea.VIRTUALUSER);
 final String KEY = "NumberIterationsPerUser";

 Number numPerUser = (Number)userDataArea.get(KEY);
 if (numPerUser == null) {
 numPerUser = new Number();
 userDataArea.put(KEY, numPerUser);
 }

 numPerUser.value++;
 return Integer.toString(numPerUser.value);
 }

 private class Number {
 public int value = 0;
 }
}

Setting and clearing cookies for a virtual user
The SetCookieFixedValue class sets a Cookie for a virtual user, and the ClearCookies class clears all cookies for a

virtual user.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Exemple

The SetCookieFixedValue class sets a Cookie, defined in the newCookie variable, for a virtual user just as if the server

had returned a Set-Cookie.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.execution.http.cookie.IHTTPVirtualUserInfo;
import com.ibm.rational.test.lt.kernel.IDataArea;

import java.text.ParseException;

/**
 * The SetCookieFixedValue class sets a Cookie, defined in the newCookie
 * variable, for a virtual user just as if the server had returned a Set-Cookie.
 */

/**
 * @author IBM Custom Code Samples
 */

public class SetCookieFixedValue implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */

861

HCL OneTest Performance

862

 public SetCookieFixedValue() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 String newCookie = "MyCookie=CookieValue;path=/;domain=.ibm.com";
 IDataArea dataArea = tes.findDataArea(IDataArea.VIRTUALUSER);
 IHTTPVirtualUserInfo httpInfo =
 (IHTTPVirtualUserInfo)dataArea.get(IHTTPVirtualUserInfo.KEY);

 try {
 httpInfo.getCookieCache().setCookie(newCookie);
 } catch (ParseException e) {
 tes.getTestLogManager().reportMessage("Unable to parse Cookie " +
 newCookie);
 }

 return null;
 }
}

The ClearCookies class clears all Cookies for a virtual user. For information on how cookies are treated in tests and

schedules, see How loops affect the state of virtual users on page 468.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.execution.http.util.CookieCacheUtil;

/**
 * The ClearCookies class clears all Cookies for a virtual user.
 */

/**
 * @author IBM Custom Code Samples
 */

public class ClearCookies implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public ClearCookies() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 CookieCacheUtil.clearCookieCache(tes);
 return null;
 }
}

Determining where a test is running
The ComputerSpecific class determines where a test is running

Chapter 8. Test Execution Specialist Guide

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Exemple

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.net.InetAddress;
import java.net.UnknownHostException;

/**
 * The ComputerSpecific class determined the hostname on which the test is
 * running, prints the hostname and IP address as a message in the test log,
 * and returns different strings based on the hostname.
 */

/**
 * @author IBM Custom Code Samples
 */

public class ComputerSpecific implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public ComputerSpecific() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 String hostName = "Unknown";
 String hostAddress = "Unknown";

 try {
 hostName = InetAddress.getLocalHost().getHostName();
 hostAddress = InetAddress.getLocalHost().getHostAddress();
 } catch (UnknownHostException e) {
 tes.getTestLogManager().reportMessage(
 "Not able to obtain host information");
 return null;
 }
 tes.getTestLogManager().reportMessage("The hostname is " + hostName +
 "; IP address is " + hostAddress);
 if (hostName.equals("host-1234"))
 return "Special";
 else
 return "Normal";
 }
}

Determining where a test is running
The ComputerSpecific class determines where a test is running

863

HCL OneTest Performance

864

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Exemple

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.net.InetAddress;
import java.net.UnknownHostException;

/**
 * The ComputerSpecific class determined the hostname on which the test is
 * running, prints the hostname and IP address as a message in the test log,
 * and returns different strings based on the hostname.
 */

/**
 * @author IBM Custom Code Samples
 */

public class ComputerSpecific implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public ComputerSpecific() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 String hostName = "Unknown";
 String hostAddress = "Unknown";

 try {
 hostName = InetAddress.getLocalHost().getHostName();
 hostAddress = InetAddress.getLocalHost().getHostAddress();
 } catch (UnknownHostException e) {
 tes.getTestLogManager().reportMessage(
 "Not able to obtain host information");
 return null;
 }
 tes.getTestLogManager().reportMessage("The hostname is " + hostName +
 "; IP address is " + hostAddress);
 if (hostName.equals("host-1234"))
 return "Special";
 else
 return "Normal";
 }
}

Chapter 8. Test Execution Specialist Guide

Extracting a string or token from its input argument
The ParseResponse class extracts a string from its input argument. The ExtractToken class extracts a particular

token (string) from its input argument. Both classes can be useful for handling certain types of dynamic data

correlation.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Exemple

The ParseResponse class extracts a string from its input argument, using a regular expression for pattern matching.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.util.regex.*;

/**
 * The ParseResponse class demonstrates using Custom Code to extract a
 * string from its input argument using a regular expression for pattern
 * matching.
 *
 * In this sample, the args[0] input string is assumed to be the full
response from a previous request. This response contains the day's
headlines in a format such as:
 *
 * In the News<small class=m>
 * </small></h2>
 * <div class=ct>
 * • Cooler weather moving into eastern
U.S. *
• Digital camera shipments
up
 *
 * Given the above response, the extracted string would be:
 * Cooler weather moving into eastern U.S.
 */

/**
 * @author IBM Custom Code Samples
 */

public class ParseResponse implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public ParseResponse() {}

 public String exec(ITestExecutionServices tes, String[] args) {
 String HeadlineStr = "No Headline Available";
 String RegExpStr = ".*In the News[^;]*;[^;]*;[^;]*;]*)>([^<]*)<"; Pattern pattern =
Pattern.compile(RegExpStr, Pattern.DOTALL); Matcher matcher =
pattern.matcher(args[0]);
 if (matcher.lookingAt())

865

HCL OneTest Performance

866

 HeadlineStr = matcher.group(2);
 else
 tes.getTestLogManager().reportMessage("Input does not match
pattern.");
 return HeadlineStr;
 }

The ExtractToken class extracts a particular string from its input argument.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * The ExtractToken class demonstrates using Custom Code to extract a particular
 * token (string) from its input argument. This can be useful for handling
 * certain types of dynamic data correlation.
 *
 * In this sample, the args[0] input string is assumed to be comma-delimited
 * and the token of interest is the next-to-last token. For example, if
 * args[0] is:
 * javascript:parent.selectItem('1010','[Negative]1010','1010','','IBM',
 * '30181','Rational','1','null','1','1','6fd8e261','RPT')
 * the class will return the string 6fd8e261.
 */

/**
 * @author IBM Custom Code Samples
 */

public class ExtractToken implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 public ExtractToken() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 String ArgStr;
 String NextToLastStr;
 String[] Tokens = args[0].split(",");

 if (Tokens.length > 2) {
 ArgStr = Tokens[Tokens.length - 2]; // Extract next-to-last token

 // Remove enclosing ''
 NextToLastStr = ArgStr.substring(1, ArgStr.length() - 1);
 } else {
 tes.getTestLogManager().reportMessage("Could not extract value");
 NextToLastStr = null;
 }
 return NextToLastStr;
 }
}

Retrieving the maximum JVM heap size
The JVM_Info class retrieves the maximum heap size of the JVM.

Chapter 8. Test Execution Specialist Guide

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Exemple

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.net.*;

/**
 * The JVM_Info class retrieves the maximum heap size of the JVM.
 * It writes a message in the test log with the hostname where the
 * JVM is running and the JVM's maximum heap size in megabytes.
 */

/**
 * @author IBM Custom Code Samples
 */

public class JVM_Info implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 public JVM_Info() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 Runtime rt = Runtime.getRuntime();
 long maxMB = rt.maxMemory()/(1024*1024); // maxMemory() size is in bytes
 String hostName = "Unknown";

 try {
 hostName = InetAddress.getLocalHost().getHostName();
 } catch (UnknownHostException e1) {
 tes.getTestLogManager().reportMessage("Can't get hostname");
 return null;
 }

 tes.getTestLogManager().reportMessage("JVM maximum heap size for host "
 + hostName + " is " + maxMB + " MB");
 return null;
 }
}

Running an external program from a test
The ExecTest class runs a program, defined in the execName variable, on the system where the test is running.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Exemple

package customcode;

867

HCL OneTest Performance

868

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.ITestLogManager;
import org.eclipse.hyades.test.common.event.VerdictEvent;

import java.io.IOException;

/**
 * The ExecTest class runs a program, defined in the execName variable,
 * on the system where the test is running.
 * The test verdict is set to PASS if the program return code is 0.
 * The test verdict is set to FAIL if the program doesn't execute or
 * if the program return code is non-zero
 * In this sample, the program is perl.exe.
 */

/**
 * @author IBM Custom Code Samples
 */

public class ExecTest implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public ExecTest() {
 }

 public String exec(ITestExecutionServices tes, String[] args) {
 ITestLogManager logger = tes.getTestLogManager();
 int rtnval = 1;
 Process p = null;
 String execName = "C:/Windows/System32/perl.exe C:/Perl/true.pl";

 Runtime rt = Runtime.getRuntime();
 // Execute test
 try {
 p = rt.exec(execName);
 } catch (IOException e) {
 logger.reportMessage("Unable to run = " + execName);
 logger.reportVerdict("Execution of " + execName + " failed",
 VerdictEvent.VERDICT_FAIL);
 return null;
 }

 // Wait for the test to complete
 try {
 rtnval = p.waitFor();
 logger.reportMessage("Process return value is " +
 String.valueOf(rtnval));
 } catch (InterruptedException e1) {
 logger.reportMessage("Unable to wait for " + execName);
 logger.reportVerdict("WaitFor on " + execName + " failed",
 VerdictEvent.VERDICT_FAIL);
 return null;
 }

Chapter 8. Test Execution Specialist Guide

 // Check the test return code and set the test verdict appropriately
 if (rtnval != 0)
 {
 logger.reportVerdict("Execution failed", VerdictEvent.VERDICT_FAIL);
 } else {
 logger.reportVerdict("Execution passed", VerdictEvent.VERDICT_PASS);
 }

 return null;
 }
}

Adding custom counters to reports
When you want to monitor the specific requirement, you can add custom counters to performance report by using the

custom code. After running tests, the results from the custom counters are automatically aggregated in the same way

that the default performance testing counters.

Starting from 10.1.0, you can view and monitor the counter information generated by the custom code on a graph

when the custom code starts in the test run.

After running tests, you can view the custom counter in the report. You can also view the custom counter information

on a different page by creating a custom report. For more information about customizing the report, see related links.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

You can add the following custom code in your test to create a custom counter in a report.

package test;

import org.eclipse.hyades.test.common.event.VerdictEvent;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.stats.CountAggregationLevel;
import com.ibm.rational.test.lt.kernel.services.stats.CounterUnits;
import com.ibm.rational.test.lt.kernel.services.stats.ICounterFolder;
import com.ibm.rational.test.lt.kernel.services.stats.ICounterRegistry;
import com.ibm.rational.test.lt.kernel.services.stats.IStatisticsManager2;
import com.ibm.rational.test.lt.kernel.services.stats.IValueCounter;
import com.ibm.rational.test.lt.kernel.services.stats.ValueAggregationLevel;

import database.DatabaseAccess;
import database.TransactionResult;

public class DatabaseStats implements com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 private static boolean registerDone;

 /**
 * This method declares the counters that will be produced during execution.
 * Declaring counters is optional, but it allows to customize some of their
 * attributes, such as the label and unit, and what level of statistical information
 * will be available in reports.

869

HCL OneTest Performance

870

 */
 private static synchronized void registerCounters(ICounterRegistry registry) {
 if (registerDone) return;
 registry.path("Database", "Transaction", "Attempts")
 .count()
 .aggregationLevel(CountAggregationLevel.RATE_RANGE)
 .label("Started Transactions")
 .unit("transactions")
 .register();

 registry.path("Database", "Transaction", "Commits")
 .verificationPoint()
 .label("Transaction Commits VP")
 .register();

 registry.path("Database", "Transaction", "Response Time", "Network")
 .value()
 .aggregationLevel(ValueAggregationLevel.RANGE)
 .unit(CounterUnits.MILLISECONDS)
 .register();

 registry.path("Database", "Transaction", "Response Time", "Commit")
 .value()
 .aggregationLevel(ValueAggregationLevel.DISTRIBUTION)
 .unit(CounterUnits.MILLISECONDS)
 .register();

 registry.path("Database", "Error")
 .text()
 .label("Database Error Message")
 .register();
 registerDone = true;
 }

 private DatabaseAccess database = DatabaseAccess.INSTANCE;

 /**
 * This custom code adds a record in database. It produces a couple of counters,
 * such as the database transaction attempts, successes/failures, and response time.
 */
 public String exec(ITestExecutionServices tes, String[] args) {
 String product = args.length > 0 ? args[0] : "Default";
 IStatisticsManager2 mgr = tes.getStatisticsManager2();
 registerCounters(mgr.registry());

 database.startTransaction();
 mgr.getCountCounter("Database", "Transaction", "Attempts").increment();

 database.executeQuery("INSERT INTO TABLE Purchases VALUES('" + product + "', 1000)");
 TransactionResult result = database.commit();

 mgr.getVerificationPointCounter("Database", "Transaction", "Commits")
 .increment(result.isSuccess() ? VerdictEvent.VERDICT_PASS : VerdictEvent.VERDICT_FAIL);
 if (!result.isSuccess()) {
 mgr.getTextCounter("Database", "Error").addMeasurement(result.getErrorMessage());
 }

Chapter 8. Test Execution Specialist Guide

 ICounterFolder times = mgr.getFolder("Database", "Transaction", "Response Time");
 times.getValueCounter("Network").addMeasurement(result.getNetworkTime());
 times.getValueCounter("Commit").addMeasurement(result.getCommitTime());

 IValueCounter value = tes.getStatisticsManager2().getValueCounter("MyStats", "Value");
 value.addMeasurement(System.nanoTime() % 2000);

 return null;
 }

}

Related information

Creating custom Java code on page 847

Creating custom reports on page 975

Using transactions and statistics
You can use custom code to start transactions, gather additional statistics during a transaction, and stop a

transaction.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

The following code shows how to start a transaction. Transactions that are generated by test execution services

automatically create and manage statistics.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.ITransaction;

/**
 * @author IBM Custom Code Samples
 */
public class BeginTransaction implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public BeginTransaction() {
 }

 /**
 * For Javadoc information on the ICustomCode2 and ITestExecutionServices interfaces,
 * see the 'Test execution services interfaces and classes' help topic.
 */
 public String exec(ITestExecutionServices tes, String[] args) {
 // the name of the transaction could have been passed in via data correlation mechanism.
 ITransaction foo = tes.getTransaction("foo");
 foo.start();

871

HCL OneTest Performance

872

 return null;
 }
}

The following code shows how to gather additional statistics during a transaction.

package customcode;

import com.ibm.rational.test.lt.kernel.ITime;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.statistics.IScalar;
import com.ibm.rational.test.lt.kernel.statistics.IStat;
import com.ibm.rational.test.lt.kernel.statistics.IStatTree;
import com.ibm.rational.test.lt.kernel.statistics.impl.StatType;

/**
 * @author IBM Custom Code Samples
 */
public class BodyTransaction implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public BodyTransaction() {
 }

 /**
 * For Javadoc information on the ICustomCode2 and ITestExecutionServices interfaces,
 * see the 'Test execution services interfaces and classes' help topic.
 */
 public String exec(ITestExecutionServices tes, String[] args) {
 IStatTree tranStat;
 IStatTree timeStat;
 IStatTree countStat;

 IStat timeDataStat = null; // counter for the time RANGE
 IScalar countDataStat = null; // counter for the count SCALAR

 ITime timer = tes.getTime();

 IStatTree rootStat = tes.getStatisticsManager().getStatTree();
 if (rootStat != null) {
 // these counters set up the hierarchy
 tranStat = rootStat.getStat("Transactions", StatType.STRUCTURE);
 timeStat = tranStat.getStat("Body Time", StatType.STRUCTURE);
 countStat = tranStat.getStat("Bocy Count", StatType.STRUCTURE);

 // the name of the counters could have been passed in via data correlation mechanism
 timeDataStat = (IStat) timeStat.getStat("foo", StatType.RANGE);
 countDataStat = (IScalar) countStat.getStat("foo", StatType.SCALAR);
 }

 // get the start time
 long startTime = timer.timeInTest();

 // do the work

Chapter 8. Test Execution Specialist Guide

 // whatever that work might be

 // get the end time
 long endTime = timer.timeInTest();

 // update timeDataStat with the elapsed time
 if (timeDataStat != null)
 timeDataStat.submitDataPoint(endTime - startTime);

 // update the countDataStat
 if (countDataStat != null)
 countDataStat.increment();

 return null;
 }

}

The following code shows how to stop a transaction.

package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.ITransaction;

/**
 * @author IBM Custom Code Samples
 */
public class EndTransaction implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public EndTransaction() {
 }

 /**
 * For Javadoc information on the ICustomCode2 and ITestExecutionServices interfaces,
 * see the 'Test execution services interfaces and classes' help topic.
 */
 public String exec(ITestExecutionServices tes, String[] args) {
 // the name of the transaction could have been passed in via data correlation mechanism.
 ITransaction foo = tes.getTransaction("foo");
 foo.stop();
 return null;
 }

}

Reporting custom verification point failures
You can use custom code to report a custom verification point failure.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

873

HCL OneTest Performance

874

The following code shows how to report a custom verification point failure.

package customcode;

import org.eclipse.hyades.test.common.event.VerdictEvent;
import org.eclipse.hyades.test.common.runner.model.util.Verdict;

import com.ibm.rational.test.lt.execution.core.IVerificationPoint;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * @author IBM Custom Code Samples
 */
public class Class implements
 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 /**
 * Instances of this will be created using the no-arg constructor.
 */
 public Class() {
 }

 /**
 * For javadoc of ICustomCode2 and ITestExecutionServices interfaces, select 'Help Contents' in the
 * Help menu and select 'Extending HCL OneTest™ Performance functionality' -> 'Extending test execution
 with custom code'
 */
 public String exec(ITestExecutionServices tes, String[] args) {
 tes.getTestLogManager().reportVerificationPoint("CustomVP", VerdictEvent.VERDICT_FAIL);
 return null;
 }

}

Debugging custom code
This example demonstrates debugging custom code by adding a breakpoint. It provides sample code to add a

breakpoint. This way of debugging custom code is applicable only for a schedule.

1. Start HCL OneTest™ Performance and create a performance test project MyProject.

2. Create an HTTP test, MyTest, by recording a visit to http://<hostname>:7080/.

Note: Before accessing the URL, ensure that HCL OneTest™ Performance is running. The URL returns

an HTTP 404 error, which is expected.

Result

Chapter 8. Test Execution Specialist Guide

3. Expand the first request and click the response element.

4. In the Test Element Details section, right-click in the Content field and click Create Field Reference.

5. Type the reference name and click OK.

6. Click the first page, and then click Add > Custom Code.

7. In the Arguments section of Test Element Details, click Add.

8. Expand the data source for the search results page, select the reference name that you created in step 5, and

click Select.

9. Click Generate Code.

Result

A new tab with the generated code is displayed.

10. Insert the following the code into the exec() method:

ITestLogManager history = tes.getTestLogManager();
if (args.length > 0) {
 if (args[0].indexOf("Invester Relations") != -1) {
 history.reportMessage("First page failed. Bail loop!");
 tes.getLoopControl().continueLoop();
 }
}

Important:

◦ Fix the double quotation marks, if any, so they are straight and the compiler no longer gives

warning.

◦ To resolve complier warnings related to importing a class, press Ctrl + Shift + O.

The code will look like this:

875

HCL OneTest Performance

876

11. To set a breakpoint, click anywhere on the args[0].indexOf line. Move the pointer to the left-most portion

of the text editor window and double-click with the pointer horizontally on the same line. A blue button is

displayed in this left-most portion of the window indicating the breakpoint is set.

12. Save the custom code and then the test.

13. Create a new schedule, Schtest.

a. In Schtest, set the number of users to run to 1.

b. Click User Group 1 and click Add > Test. Select the MyTest test and click OK.

c. Click User Group 1 and click the Run this group on the following locations button.

d. Click Add > Add New.

e. In the New Location window, type the following information:

i. In Host name, type localhost.

ii. In Name, type debuglocation.

iii. In Deployment directory, type C:\mydeploy.

iv. Click Finish.

f. Save the schedule.

14. In the Test Navigator, right-click debuglocation and click Open.

15. Click the General Properties tab and click Add.

16. In the Property name field, type RPT_VMARGS and in the Property value field, add the following values each

separated by a space.

-Xdebug
-Xnoagent

Chapter 8. Test Execution Specialist Guide

-Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=8000

17. Save the location.

18. Attach the debugger to the schedule execution process.

a. Run the schedule.

Because the schedule is using debuglocation, it will pause at the beginning to let you attach the

debugger to the execute process.

b. Click Window > Open Perspective > Other > Debug.

c. Click Run > Debug Configurations.

d. In the Debug Configurations window, right-click Remote Java Application and click New.

e. Click Debug.

A list of running threads are displayed in the Debug window and the schedule execution pauses at the

debug breakpoint.

f. If you are doing it for the first time, you might need to provide the source location to see the custom

Java code. You do this by taking the following steps:

i. Click Edit Source Lookup Path and click Add.

ii. Click Workspace Folder > OK.

877

HCL OneTest Performance

878

iii. Now, expand MyProject, select the src folder, and click OK. The schedule run stops at the

specified breakpoint.

Accessing the actual schedule name from the custom code
When there are any special characters in the name of the schedule, you can write the actual name of the schedule in

the test log by using the appropriate interface in the custom code.

Exemple

The following sample custom code shows how to write the name of the schedule in the test log:

package customcode;

import com.ibm.rational.test.lt.kernel.engine.impl.Engine;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**

@author Custom Code Samples
*/
public class GetActualScheduleName implements com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

Chapter 8. Test Execution Specialist Guide

/**

Instances of this will be created using the no-arg constructor.
*/
 public GetActualScheduleName() {
 }
/**

For javadoc of ICustomCode2 and ITestExecutionServices interfaces, select 'Help Contents' in the
Help menu and select 'Extending HCL OneTest Performance functionality' -> 'Extending test execution with
 custom code'
*/
 public String exec(ITestExecutionServices tes, String[] args) {
 String schName = Engine.getInstance().getSchedule().getScheduleName();
 tes.getTestLogManager().reportMessage("Schedule Name is "+schName);
 return null; }
}

Reading and writing data from a dataset
When a test is associated with a dataset, you can extend the test either by reading or writing the dataset values from

the custom code.

The data that you write into the dataset is saved only when you set Open mode to Shared (for all test executions) in

the Edit Dataset window. In other open modes, the modified data is used only for the test run.

The following sample custom code reads and writes the data from the dataset:

package datasets;

import java.awt.list;

/**
 * @author HCL Custom Code Samples
 */

public class myds implements com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 public myds() {
 }
public String exec(ITestExecutionServices tes, String[] args) {
// the name of the dataset is the same as what is shown in the test. The dataset must be added to the
 test in order
// to get a controller for it.
 IDataSetController control = tes.getDataSetController("/testproj/myds.csv");
 try {
 // once you have the controller you can get a row
 DataSetRow row = control.getNextRow();
 // returns a string representation of the row
 row.getEntireRow();
 // alternatively you can get individual values by the column name
 row.getValue("Column1");

 // you can also write a new row to the dataset
 // -1 means append to the end

879

HCL OneTest Performance

880

 // alternatively you can specify a row number and whether to overwrite that row or to insert a
 new row at the spot
 control.writeRow(-1, Arrays.asList("a", "b", "c"), false);
 } catch (Exception e) {
 tes.getTestLogManager().alwaysReportMessage(e.toString());
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return null;
 // or whatever you want to return here
 }

Getting the properties of a dataset
When a test asset is associated with a dataset, you can get the properties of a dataset through a custom code. You

can also insert a new row into the dataset.

Exemple

The properties that you can get through a custom code are as follows:

• Total number of rows

• Total number of columns

• Name of the columns

• The value that is set for the Open mode option

• The value that is set for the Access mode option

After the test run is complete, you can view the properties of the dataset in test logs. See Viewing test logs on

page 1001.

The following sample custom code provides the properties of the dataset in test logs:

package datasets;

import java.awt.list;

/**
 * @author IBM Custom Code Samples
 */

public class myds implements com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

 public myds() {
 }
 public String exec(ITestExecutionServices tes, String[] args) {
 // the name of the dataset is the same as what is shown in the test.
 //The dataset must be added to the test in order to get a controller for it.
 IDataSetController control = tes.getDataSetController("/testproj/myds.csv");
 try
 {

Chapter 8. Test Execution Specialist Guide

 tes.getTestLogManager().alwaysReportMessage(" Total Rows in DS
 "+(Integer.toString(control.getTotalRows())));
 control.getAccessMode();
 tes.getTestLogManager().reportMessage(" DS Access Mode is "+(control.getAccessMode()));
 tes.getTestLogManager().reportMessage("DS Open Mode is "+(control.getOpenMode()));
 tes.getTestLogManager().alwaysReportMessage("Column headers in DS
 "+control.getColumnHeaders().toString());
 control.writeRow(-1, Arrays.asList("a","b","c"), false);
 tes.getTestLogManager().alwaysReportMessage("Total Rows after adding new row in DS
 "+Integer.toString(control.getTotalRows()));
 }

 catch (Exception e)
 {
 tes.getTestLogManager().alwaysReportMessage(e.toString());
// TODO Auto-generated catch block
e.printStackTrace();
}

Migrating custom code from previous versions
You can run scripts that contain custom code from previous releases and edit tests to make new calls to old or new

custom code classes.

About this task

You can perform the following tasks without any additional steps:

• Run a script that contains custom code that was created in a previous release.

• Edit a test to make a new call to an old custom code class.

• Add new custom code to a test that contains old custom code.

To edit a class in existing custom code so that it can call new TestExecutionServices methods, type cast the IKlog

argument in the old custom code to the ITestExecutionServices interface.

When you migrate the custom code from the previous versions, you must use getStatisticsManager2() as

getStatisticsManager() API is deprecated from 10.1.0.

Extending HCL OneTest™ Performance to support other protocols
The HCL OneTest™ Performance Extensibility Software Development Kit (SDK) enables you to create extensions to

support testing new protocols without modifying the core product code. You can create an extension that provides

functionality for testing other protocols in addition to the HTTP protocol support that is standard in HCL OneTest™

Performance.

Before you begin

HCL OneTest™ Performance provides the capability to emulate multiple users applying load on a system under test.

To test performance, you record a test and subsequently replicate it, and then play it back against the system being

tested. Refer to the HCL OneTest™ Performance product information center for more details.

881

HCL OneTest Performance

882

About this task

HCL OneTest™ Performance supports the HTTP protocol. The goal of the Extensibility SDK is to provide a framework

that supports the development of various protocols which can be plugged into HCL OneTest™ Performance.

To develop support for testing protocols in HCL OneTest™ Performance, you must be familiar with the following

areas:

• The protocol that you intend to support

• The Eclipse platform (The Eclipse documentation provides relevant information in the "JDT Programmer's

Guide" topic.)

• The Test and Performance Tools Platform (TPTP).

For examples of HCL OneTest™ Performance extensions, see the following plug-ins:

• com.ibm.rational.test.lt.sdksamples.core.socket

• com.ibm.rational.test.lt.sdksamples.recorder.socket

• com.ibm.rational.test.lt.sdksamples.models.behavior.socket

• com.ibm.rational.test.lt.sdksamples.codegen.socket

• com.ibm.rational.test.lt.sdksamples.protocol.socket

• com.ibm.rational.test.lt.sdksamples.testgen.socket

• com.ibm.rational.test.lt.sdksamples.editor.socket

• com.ibm.rational.test.lt.sdksamples.results.socket

• com.ibm.rational.test.lt.sdksamples.datacorrelation.testgen.socket

• com.ibm.rational.test.lt.sdksamples.datacorrelation.execution.socket

Protocol extension structure
Before organizing your extension, note the restrictions and guidelines provided in this topic.

Restrictions

The following restrictions apply to plug-ins:

• The execution portion of the plug-in must be deployed to an agent. You cannot assume that the Software

Development Workbench is available.

• The execution portion of the plug-in code cannot depend on any workbench code.

• The execution portion of the code cannot depend on the workspace because none is available on the agent.

For best results, minimize the amount of code that is deployed to the agent for execution.

Guidelines for naming plug-ins

Most base HCL OneTest™ Performance plug-ins follow this naming convention:

<prefix>.<component>[.subcomponent].<protocol>

Chapter 8. Test Execution Specialist Guide

where:

prefix: The prefix com.ibm.rational.test.lt is used for all load-test-specific HCL OneTest™ Performance plug-

ins.

component: One of the extension components:testgen, datacorrelation, testeditor, codegen, execution, or

models.

subcomponent: Some plug-ins contain subcomponents (for example, execution.ui contains the UI portion

of execution), or they might have separate code based on their use in a different component (for example,

datacorrelation.testgen and datacorrelation.execution).

protocol: For example, http, or sap. (Some plug-ins use core for the base plug-in.)

Using these conventions, the extension can have the following plug-ins:

• com.ibm.rational.test.lt.recorder.protocol

• com.ibm.rational.test.lt.testgen.protocol

• com.ibm.rational.test.lt.models.protocol

• com.ibm.rational.test.lt.testeditor.protocol

• com.ibm.rational.test.lt.sdksamples.datacorrelation.testgen.protocol

• com.ibm.rational.test.lt.sdksamples.datacorrelation.execution.protocol

• com.ibm.rational.test.lt.codegen.protocol

• com.ibm.rational.test.lt.execution.protocol

• com.ibm.rational.test.lt.execution.results.protocol

Alternatively, you can divide the code into two plug-ins, one for the workbench and one for execution. This has the

advantage of deploying fewer plug-ins. For an example, refer to the Siebel extension to Performance Tester.

Using this method, you would have the following two plug-ins:

• com.ibm.rational.test.lt.protocol

• com.ibm.rational.test.lt.protocol.execution

Within these plug-ins, you can either arrange the components in one of two ways:

• As separate source folders

• As separate packages within a single source folder

Extending the test recorder
To generate a test, the data exchanged by an application and another entity such as a server must be recorded. The

recorded data is then processed to generate a test.

Data is recorded in a recording session. In a recording session, clients are launched in parallel with recorders that

capture the data that the clients and the servers (or other external entities) exchange. All data that is captured during

a recording session is stored in a file.

883

HCL OneTest Performance

884

You can contribute to the recording framework in several ways:

• By defining a new kind of captured data. Captured data is implemented as recorder packets. You can define

a new type of recorder packet in which to store relevant information for a specific kind of captured data. The

product comes with a set of recorder packet types. The packet types include proxy packets, socket packets,

HTTP packets, SAP packets, and Citrix packets.

• By developing a new recorder to capture a new kind of data or to use a different recording technique. The

product comes with a set of recorders. The bundled recorders include the HTTP proxy recorder, the SOCKS

proxy recorder, the socket recorder, the SAP Recorder, and the Citrix recorder.

• By developing a new client whose data will be recorded. A client is not necessarily an application, but rather

the ability to start an application. The product comes with a set of clients. The clients include: Application,

Manual, Microsoft™ Internet Explorer, Mozilla Firefox, Apple Safari, Opera, Google Chrome, Generic Service

Client, SAP client, Citrix client, and TN3270 client.

• By defining a new recorder-client binding. A recorder-client binding declares that a recorder is able to capture

the data that a client sends or receives. A recorder-client binding can also define a client decorator, which

configures a client so that the client can be recorded by the recorder. For example, the product comes with

a decorator that can modify Internet Explorer settings so that the browser sends its traffic through a proxy

recorder.

After the recorder framework has been defined, the user interface (UI) can be extended so that the new recording

components can be used. The following elements are extensible:

• Packet types, recorders, and clients. You can assign specific icons to these elements.

• Wizards. You can define wizards for configuring a specific client, a specific recorder, several recorders

together, or a client and several recorders together.

The recording framework has three main UI contributions:

• The New Recording Session wizard. With this wizard, you can select the client to use, and then select the

recording technique (in other words, the recorder), and finally set the configuration details for the client

and the recorder. Extensions can contribute to this wizard. For more information, see Defining wizards for

recorders and clients on page 890.

• The Recording Control view. This view shows the active recording session and the recorders and clients that

are involved. This view shows a summary of captured data, and messages that the recorders and clients have

issued. Extensions can contribute to labels and icons that are displayed in this view. Any user message that a

recorder or a client sends is also displayed in this view.

• The Recording Session Editor, which opens when you double-click a recording session (.recsession) file. The

editor shows the same information as the recording control view, but includes more details about the captured

data. Extensions can contribute actions, labels, and icons to this editor.

Chapter 8. Test Execution Specialist Guide

Defining a new type of captured data
The data captured by a recorder must be stored in a file and consumed by a test generator to produce a test.

Captured data must be defined so that it can be stored by the recorder and consumed by the test generator.

To define a new type of recorded data, complete these tasks:

• Declare a new type of recorder packet in the plugin.xml file, using the

com.ibm.rational.test.lt.recorder.core.recorderPacket extension point.

• Define one or more implementation classes, in the same plug-in that implement the interface:

com.ibm.rational.test.lt.recorder.core.packet.IRecorderPacket.

These factors apply to IRecorderPacket class implementations:

• You can define as many fields as required to store your data.

• Because these classes are instantiated by a recorder, they must expose a way to construct themselves.

• Because a test generator uses these classes, the classes must expose ways to retrieve information for the

test generator. In other words, they must expose getter methods.

• You must make the classes serializable. Take this into account when designing the classes. The classes must

not have any references to data that you do not want to include in the stored information. Fields that include

references to data that you do not want stored must be declared using the transient keyword. If you plan to

have evolutions to these classes, make sure that these evolutions are compatible with earlier versions.

Recorder packets have these common features:

• They have a type. This must be a type ID that is declared in an extension to the

com.ibm.rational.test.lt.recorder.core.recorderPacket extension point. The implementation class must be

in the same plug-in where the type ID is declared.

• They have a start time and end time. This is important for sorting captured packets, as recorders typically

do not send the packets at the exact same time as they are captured. Many packets have the same time for

start and end events, because they are atomically captured. Packets do not have to have different start and

end times. Packet end times must, however, be higher or equal to the start time. All timestamps must be

expressed in units that the framework provides. The units must be of the highest accuracy that the system

permits.

For best results, follow these practices for implementing recorder packets:

• If you have more than one type of data, define an interface that all implementation classes implement.

• Define an interface for each concrete implementation class, which exposes only read-only features of the

class. The test generator requires access only to the interfaces, while the recorder requires access to the

classes.

• Do not define redundant or computable fields. Because the classes are serialized, a single additional field

might make the recording file much larger if many packets are stored. Declare a redundant or computable field

using the transient keyword.

885

HCL OneTest Performance

886

Defining a new recorder
To capture a new kind of data or an existing kind of data with a new recording technique, define a new recorder.

The only required task for a recorder is to capture data. The recorder does not start or configure a client. If you need

to start a client or configure a client so that the client can be recorded by a recorder, see Defining a new client on

page 887 and Defining how a recorder can record a client on page 888.

To define a new recorder:

• Declare a new recorder type in the plugin.xml file. Use the

com.ibm.rational.test.lt.recorder.core.recorder extension point.

• Determine whether the recorder can be run locally, within the workbench, or if it must run remotely in a

separate Java™ virtual machine (JVM).

• Define a delegate, which is the implementation class of the recorder. The delegate starts and stops the

recorder, and captures data.

• If the recorder is remote, define a remote launcher implementation that provides details about the JVM that

runs the delegate.

• Optionally, define a prerequisite validator that performs basic verification that the recorder can be run on the

current computer.

• Declare which types of recorder packets are emitted by the recorder.

Follow these requirements for implementing the IRecorderDelegate interface:

• This interface starts and stops the recorder and provides notification about events such as "recorder started,"

"recorder stopped," and "packet captured." You must provide an implementation of this interface. Optionally,

a recorder can support being paused and resumed. If the recorder does not support pause and resume

operations, ensure that the implementations of the methods are empty.

• Most methods are asynchronous. In other words, the framework does not require that the operation be

completed when the method returns. For this reason, a recorder delegate must notify the framework when an

operation is complete.

• A recorder can have a configuration. The configuration is built either by using a XML file with the .recconfig

extension or by using a wizard. For an example of an XML file, open an existing recording session file, and

then click File > Save recording configuration as. The configuration is stored in a RecorderConfiguration

object, which is a map of strings to various types of objects. A recorder delegate reads its configuration in its

initialize() method.

• A recorder delegate is given a context in its initialize() method. This context enables the recorder to send

notifications of events, record log messages, and send captured packets.

• Typically, you extend the BaseRecorderDelegate class rather than directly implement IRecorderDelegate

interface. The base abstract class provides a basic behavior for most methods, so that you can override only

those needed.

• A recorder must use the getContext().packetCaptured() method to notify the framework when it has captured

data.

Chapter 8. Test Execution Specialist Guide

• When a recorder constructs a packet, the packet must be filled with a recorder ID. The recorder ID is attributed

by the framework and can be retrieved using the getContext().getComponentUniqueId() method.

• When a recorder constructs a packet, the packet must be filled with time information. The time information

must be expressed in a unit that the framework defines. The current time, expressed in the framework units,

can be retrieved using the getContext().currentTime() method.

• A recorder delegate can send messages to the user by invoking the sendUserMessage() method or

the getContext().sendMessage(new UserMessage(...)) method if the delegate does not extend the

BaseRecorderDelegate class.

• A recorder delegate can be enabled to communicate with outside entities by setting or retrieving dynamic

properties or by receiving messages. A recorder delegate is useful only if you develop a specific UI for the

recorder or if you define a client decorator for the recorder.

Defining a new client
To produce data, a recording session must start at least one client. Several clients come with the product. To

automate starting a specific application, you can define a new client.

The only task for the client is to start an application and to notify the recording framework about client life cycle

events. To configure a client so that it can be recorded by a recorder, see Defining how a recorder can record a client

on page 888.

Sometimes there is no client to launch because the client already exists or because the client is a system that has its

own life cycle. In this case, you can use the Manual client that comes with the product. The ID of the Manual client is

com.ibm.rational.test.lt.recorder.core.manualClient.

To define a new type of client, complete these tasks:

• Declare a new client type in the plugin.xml file by using the

com.ibm.rational.test.lt.recorder.core.client extension point.

• Determine whether the client can be run locally within the workbench, remotely in a separate JVM, or in the

same JVM as the recorder to which it is bound.

• Define a delegate, which is the implementation class of the client. The delegate starts and stops the client and

notifies the framework when the client is started or closed.

• If the client is remote, define a remote launcher implementation that provides details about the JVM that runs

the delegate.

• Optionally, define a prerequisite validator that performs basic verification that the client can be run on the

current computer.

To implement the IClientDelegate interface:

887

HCL OneTest Performance

888

• You must provide an implementation of this interface. This interface starts and stops the client and sends

notifications of events such as "client started" and "client stopped."

• The start() and stop() methods are asynchronous. In other words, the operation does not need to be complete

when these methods return. For this reason, a client delegate must notify the framework when an operation is

complete.

• The stop() operation is invoked only when the user clicks Stop in the user interface. In many cases, the user

gestures in the application itself to close the application. The delegate must monitor the application and notify

the framework when the application is closed.

• A client can have a configuration. The configuration is built either by using an XML file, which is a file

with the .recconfig extension or by using a wizard. For an example of an XML file, open an existing

recording session file, and then click File > Save recording configuration as. The configuration is stored in a

ClientConfiguration object, which is a map of strings to various types of objects. A client delegate reads this

configuration in its initialize() method.

• A client delegate is given a context in its initialize() method. This context enables the recorder to send

notifications of events and record log messages.

• Typically, you extend the BaseClientDelegate class rather than directly implement the IClientDelegate class.

The base abstract class provides a basic behavior for most methods. You can override specifically those that

you must override.

• A client delegate can send messages to the user by calling the sendUserMessage() method, or by calling

the getContext().sendMessage(new UserMessage(...)) method if the delegate does not extend the

BaseClientDelegate class.

• A client delegate can be enabled to communicate with outside entities by setting or retrieving dynamic

properties, or by receiving messages. The client delegate is useful only if you develop a specific UI for the

client or if you define a client decorator for the client.

If your client launches a specific process, you can extend the

com.ibm.rational.test.lt.recorder.core.clients.ProcessBuilderClientDelegate class. In this case, you need to extend

only the initialize() method, and then invoke setter methods to set up the command line, arguments, environment

variables, and working directory.

Defining how a recorder can record a client
All recorders cannot record all clients. The framework must be notified that a recorder can record a client. In many

cases, the recorder must configure a client before recording, and then undo these configuration actions when the

client is closed. In these cases, you can declare a client decorator. A client decorator is a class that configures a client

so that it can be recorded by a recorder.

To declare that a recorder can record a client:

Chapter 8. Test Execution Specialist Guide

• Declare a new recorder-client binding in the plugin.xml file by using the

com.ibm.rational.test.lt.recorder.core.recorderClientBinding extension point.

• Specify the IDs of the recorder and the client that are compatible.

• Optionally, declare a client decorator. A client decorator is a class that modifies a client so that it can be

recorded by the recorder.

To implement a client decorator, define an implementation of the

com.ibm.rational.test.lt.recorder.core.extensibility.IClientDecorator class.

The implementation has two main methods: decorate() and undecorate(). The decorate() method is called when the

recorder starts running, but before the client is launched. The undecorate() method is called after the client is closed,

but before the recorder is stopped.

The decorator can interact with the recorder delegate and the client delegate by setting or getting properties from

them. The methods for doing so are available in the decorator context. The client and the recorder must support the

properties.

Typically, you extend the BaseClientDecorator class rather than directly implementing the IClientDecorator class. The

base abstract class provides a basic behavior for most methods. With that class, you can override specifically those

methods that you must override.

Running recorders and clients without a UI
To test recorders, clients, and decorators during the development process, you can run those elements before any UI

components are ready to start the recorders, clients, and decorators.

You can start a recording session that includes the recorders or clients that you have developed by using a recording

session configuration file. This file specifies which recorders and clients to start and the options for the recorders and

clients to use.

The following file is an example of such a configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<__PT_EXTERNAL__:session xmlns:__PT_EXTERNAL__="__PT_EXTERNAL__">
 <rec:myRecorder <-- recorder configuration -->
 xmlns:rec="recorder:org.xyz.myplugin"
 option1="value1"
 option2="value2"
 id="myRecorder1"/>
 <cli:myClient <-- client configuration -->
 xmlns:cli="client:org.xyz.myplugin"
 optionA="valueA"
 id="myClient1"/>
 <__PT_EXTERNAL__:binding client="myClient1" recorder="myRecorder1"/>
</__PT_EXTERNAL__:session>

In the preceding example, replace org.xyz.myplugin with the name of the plug-in that defines the recorder and the

client. Replace myRecorder with the recorder ID and myClient with the client ID. The option1 and option2 attributes can

889

HCL OneTest Performance

890

be replaced by attributes that the recorder supports. You can replace the optionA attribute with an attribute that the

client supports. You must save the file with the .recconfig extension.

In the configuration file, a session node can contain as many recorder configurations and client configurations

as required. All the recorders and clients that are referred to are launched together and the options from the

configuration file are passed to them. All recorders and clients must have id attributes so the recorder and clients can

be referred to in a binding node. Examples of recording session configuration files can be generated by opening an

existing recording session and clicking File > Save Recording Configuration As.

To start a recording session from a recording configuration file, right-click the file, and then select Start Recording

Session.

Defining wizards for recorders and clients
You can define wizards for recorders and clients.

The New Recording Session wizard runs in the following sequence:

1. The recording session file is selected.

2. The client is selected.

3. The recording method is selected.

4. The client wizard pages are displayed.

5. The recorder wizard pages are displayed.

Steps 4 and 5 can be combined in into a single step. Steps 4 and 5 are extension contributions.

Declare a wizard for each client and each recorder that you define. A client or a recorder that has no declared wizard

is not available in the user interface and can be started only with a recording configuration file or programmatically.

When the New Recording Session wizard is complete, the wizard produces a recording session configuration that

contains a client configuration and one or more recorder configurations. The recording session configuration is used

to start a recording session and to instantiate the corresponding recorders and clients.

Several types of wizards can be defined, depending on how you have defined recorders and clients:

• If you have defined only a recorder and you plan to use a client that comes with the product, define a recorder

wizard.

• If you have defined one or more types of clients and one or more types of recorders, and you want to combine

clients and recorders in several ways, define a wizard for each client and a wizard for each recorder.

• If you have defined one recorder type and one client type to be used together, consider defining a unique

wizard that configures both of them.

Additional information about the New Recording Session wizard:

Chapter 8. Test Execution Specialist Guide

• The recording method selection step is displayed only if there is more than one recording method available for

the client that is selected in step 2.

• Wizards that configure both recorders and clients take precedence over separate wizards for clients and

recorders.

To define a client wizard:

• Declare a new client wizard in the plugin.xml file by using the

com.ibm.rational.test.lt.recorder.ui.clientWizard extension point.

• Specify the client ID that the client wizard configures.

• Optionally, provide an implementation class. If you do not provide a class, the wizard has no configuration

page. If you provide a class, it must extend the com.ibm.rational.test.lt.recorder.ui.wizards.NewClientWizard

class.

About the NewClientWizard class implementations:

• This class extends the JFace class wizard, so the class must extend typical methods such as addPages().

• The class is passed an empty client configuration, typed with the client ID selected by the user in step 2.

• The class sets the client configuration options, which are available using the getClientConfiguration() method.

This configuration is typically done in the doPerformFinish() method.

To define a recorder wizard:

• Declare a new recorder wizard in the plugin.xml file by using the

com.ibm.rational.test.lt.recorder.ui.recorderClientWizard extension point and the recordersWizard

element.

• Specify one or more recorder IDs that the recorder wizard configures.

If the recorder wizard declares configurations for more than one recorder, examine the

performsRecorderSelection attribute. This attribute specifies whether the wizard enables the user to choose

which recorders to use or if the framework chooses which recorder to use. Depending on the conditions,

the attribute then calls the wizard with the recorder ID that the user selected. In the first case, the recording

method selection step is always displayed, whereas in the latter case, the recording method selection step

can be skipped. In the first case, the wizard can enable several recorders, whereas in the latter case, only one

recorder is enabled. Choose the first option if you need to enable more than one recorder in one recording

session.

• Provide an implementation class. This is optional only if you have associated the wizard with

exactly one recorder or if the performsRecorderSelection attribute is false. If you do not

provide a class, the wizard has no configuration page. If you provide a class, it must extend the

com.ibm.rational.test.lt.recorder.ui.wizards.NewRecordersWizard class.

About NewRecordersWizard implementations:

891

HCL OneTest Performance

892

• This class extends the JFace class Wizard, so it must extend typical methods such as addPages().

• If the performsRecorderSelection value is true, the class is passed null to its initialize() method and it

must invoke the setRecorderConfigurations() method from its doPerformFinish() method, with the recorder

configurations for each recorder that must be included in the recording session.

• If the performsRecorderSelection value is false, the class is passed an empty recorder configuration,

typed with the recorder ID selected in step 3, to its initialize() method and it must fill the empty recorder

configuration with recorder options in its doPerformFinish() method.

To define a wizard that configures a client and one or more recorders altogether:

• Declare a new recorder and client wizard in the plugin.xml file by using the

com.ibm.rational.test.lt.recorder.ui.recorderClientWizard extension point and the combinedWizard

element.

• Specify the client ID that this wizard configures.

• Specify one or more recorder IDs that this wizard configures.

• If this wizard declares configurations for more than one recorder, examine the performsRecorderSelection

attribute. This attribute specifies whether the wizard lets the user choose which recorders to use or if the

framework chooses which recorder to use, and then invokes the wizard with the recorder ID selected by the

user. In the first case, the recording method selection step is always displayed, whereas in the latter case, the

recording method selection step can be skipped. In the first case, the wizard can enable several recorders,

whereas in the latter case, only one recorder is enabled. Choose the first option if you need to enable more

than one recorder in one recording session.

• Provide an implementation class. This is optional only if you have associated the wizard with

exactly one recorder or if the performsRecorderSelection attribute is false. If you do not

provide a class, the wizard has no configuration page. If you provide a class, it must extend the

com.ibm.rational.test.lt.recorder.ui.wizards.NewRecorderClientWizard class.

About NewRecorderClientWizard class implementations:

• This class extends the JFace class Wizard, so it must extend typical methods such as addPages().

• If performsRecorderSelection is true, the class is passed a null recorder configuration to its initialize()

method and it must invoke the setRecorderConfigurations() method from its doPerformFinish() method, with

the recorder configurations for each recorder that must be included in the recording session.

• If performsRecorderSelection is false, the class is passed an empty recorder configuration, typed with the

recorder ID selected in step 3, to its initialize() method and it must fill the empty recorder configuration with

recorder options in its doPerformFinish() method.

• The class is passed a client configuration, typed with the client ID selected in step 2, to its initialize() method.

It must fill the client configuration with client options in its doPerformFinish() method.

Migrating recorder implementations from previous versions
The new recording framework includes significant improvements over the generic recorder framework (GRF) that was

delivered in previous versions. The new framework introduces more flexibility for combining clients and recorders.

Chapter 8. Test Execution Specialist Guide

With the framework, you can start multiple recorders and clients in one session, consolidating the recorded data in

one file. In addition, the framework does not use the TPTP Agent Controller, and thus does not require recorders and

clients to be run in a separate Java™ Virtual Machine. Finally, the new framework provides improved performance and

better scalability in terms of the amount of recordable data and the impact on memory usage.

The API has been completely redefined to produce these improvements. Migrating existing recorder implementations

to the new framework requires significant effort. The following tables summarize the changes to classes and

methods in the new recording framework.

Previous class New recording frame­

work, version 8.2 and later

Comments

com.ibm.rational.test.lt.trace.Pay­

loadMsg

com.ibm.rational.test.lt.recorder­

.core.packet.IRecorderPacket com.ib­

m.rational.test.lt.recorder.core.pack­

et.connection.IConnectionPacket

Use Java™ serialization for serializa­

tion in this product version. If pack­

ets support connections, extend the

IConnectionPacket interface and its

subinterfaces. This extension en­

ables filtering capabilities at test-gen­

eration time.

org.eclipse.hyades.execution­

.recorder.remote.RecorderAgent

com.ibm.rational.test.lt.recorder­

.core.extensibility.BaseRecorderDele­

gate

The run() method has been replaced

with the start() method. The threads

that this method can start are no

longer monitored by the framework.

The setIsReady(true) method has

been replaced with the sendStart­

ed(enabled) method. The handle­

Command(STOP) method has been

replaced with the stop() method.

The class calls the sendStopped()

method when the recorder has

stopped. (This event was previously

implicitly notified by the termination

of the thread returned by the run()

method.) This class is no longer re­

quired to run in a separate JVM.

org.eclipse.hyades.execution­

.recorder.remote.RecorderEnviron­

mentAdapter org.eclipse.tptp.test­

.provisional.recorder.framework­

.AbstractRecorderExecOptions­

Provider org.eclipse.hyades.execu­

com.ibm.rational.test.lt.recorder­

.core.deploy.IRemoteLauncher

This class is required only if the

recorder delegate must run in a sep­

arate JVM. With this version, you

can add classpath entries and sys­

tem properties to the launched JVM.

There is no requirement for file de­

ployment because the JVM is al­

893

HCL OneTest Performance

894

Previous class New recording frame­

work, version 8.2 and later

Comments

tion.recorder.remote.RecorderExe­

cutableObjectAdapter

ways run on the local computer.

Recording on remote computers

was never enabled in previous re­

leases. The AbstractRecorderExe­

cOptionsProvider.getAgentClass­

Path() and RecorderExecutableObjec­

tAdapter.getAgentClassPath() class­

es are replaced by the delegate class

declaration in the extension point.

org.eclipse.tptp.test.provisional­

.recorder.messages.AbstractRecor­

derMessageProvider

None The IRecorderPacket auto-serializa­

tion class and the framework handle

message serialization in this version.

Implementing this class is no longer

required.

org.eclipse.tptp.test.provisional­

.recorder.ui.wizards.DefaultRecWiz­

ardProvider

com.ibm.rational.test.lt.recorder.ui­

.wizards.NewRecorderWizard com.ib­

m.rational.test.lt.recorder.ui.wizards­

.NewRecorderClientWizard

org.eclipse.tptp.test.provisional­

.recorder.framework.RecorderClient­

HelperAdapter

None The framework automatically han­

dles the step that this class complet­

ed in earlier versions.

Previous extension point New recording frame­

work, version 8.2 and later

Comments

org.eclipse.hyades.test.core­

.Recorder#Recorder.protocol

com.ibm.rational.test.lt.recorder­

.core.recorder#recorder.outputPack­

et

org.eclipse.hyades.test.core­

.Recorder#Recorder.id

com.ibm.rational.test.lt.recorder­

.core.recorder#id

org.eclipse.hyades.test.core­

.Recorder#Recorder.name

com.ibm.rational.test.lt.recorder­

.core.recorder#name

org.eclipse.hyades.test.core­

.Recorder#Recorder.recorderAgent

com.ibm.rational.test.lt.recorder­

.core.recorder#recorder.delegate

org.eclipse.hyades.test.core­

.Recorder#Recorder.recorderClient­

Helper

None The framework automatically han­

dles the step that this class handled

in earlier versions.

Chapter 8. Test Execution Specialist Guide

Previous extension point New recording frame­

work, version 8.2 and later

Comments

org.eclipse.hyades.test.core­

.Recorder#Recorder.recorderMes­

sageHandlers

None The IRecorderPacket auto-serializa­

tion class and the framework handle

message serialization in this version.

Implementing this class is no longer

required.

org.eclipse.hyades.test.core­

.Recorder#Recorder.wizardPage­

Provider

com.ibm.rational.test.lt.recorder.ui­

.recorderClientWizard#recordersWiz­

ard.class

org.eclipse.hyades.test.core­

.Recorder#Recorder.execOptions­

Provider

com.ibm.rational.test.lt.recorder­

.core.recorder#recorder.remote­

Launcher

See the previous comment about

the AbstractRecorderExecOptions­

Provider class.

org.eclipse.hyades.test.core­

.Recorder#Recorder.requiresInterme­

diateFile

None This option is no longer supported.

Recording sessions are always kept

after recording.

org.eclipse.hyades.test.core­

.Recorder#Recorder.fileExtension

None This option is no longer supported.

The recording format and extension

are now always controlled by the

framework in a .recsession file.

org.eclipse.hyades.test.core­

.Recorder#Recorder.icon

com.ibm.rational.test.lt.recorder.ui­

.recordingUiImage#recorderImage.i­

con

org.eclipse.hyades.test.core­

.Recorder#Recorder.description

com.ibm.rational.test.lt.recorder.ui­

.recorderClientWizard#recordersWiz­

ard.description

Extending the test generation framework
Test generation consists of processing the recorded data and producing a test.

The recording-session file that is produced during recording provides the input for the test generation operation.

Before writing a test generator, you must identify the type of data that the generator uses.

Recording and test generation are typically chained when you use the New Test From Recording wizard, but this

relationship is not always established. The user can choose to produce only a recording, using the New Recording

Session wizard, and can also choose to generate a test from an existing recording.

Test generation happens in the following stages and phases:

895

HCL OneTest Performance

896

• The conversion stage is a preliminary step, during which the original packets can be filtered, sorted,

aggregated, or converted to a different, typically higher-level, protocol. Extensions can contribute additional

converters. For more information, see Defining a new packet converter on page 897.

• The test generation stage consists of using the recorder packets that are sent from the converter stage, and

then distributing the recorder packets to the appropriate test generator. The test generator then produces

the corresponding model elements in the test model. Extensions can contribute new test generators for

processing a new type of recorded data or producing a new type of test element. For more information, see

Defining a new test generator on page 896.

• The data processing phase happens after a raw test has been completely generated. During this phase data

correlation and data transformation are performed.

• The test splitting phase is an optional step that runs if split points were inserted during the recording. The

complete test is split into several tests.

The test generation framework also defines two wizards:

• The Generate Test wizard opens either when the user gestures to generate a test from an existing recording

or automatically after a recording is complete. If user input is not required, the Generate Test wizard is not

displayed, and test generation automatically follows the recording. Extensions can contribute to this wizard.

For more information, see Defining a test generator wizard on page 900.

• The New Test From Recording wizard is the highest-level wizard and combines the New Recording Session

wizard and the Generate Test wizard. For more details about the recording aspects of this wizard, see

Defining wizards for recorders and clients on page 890. For more details about the test generation aspects

of this wizard, see Defining a test generator wizard on page 900.

Defining a new test generator
A test generator uses recorder packets and produces test-model elements that the test generator adds to the test

model.

Before defining a test generator, you must identify the type of data that the generator can use and the type of

model elements that the generator produces. The input data for a test generator can either be the raw data that

the recorders produced, or data that has been altered during the conversion stage. The output elements of a test

generator are typed by feature, which usually corresponds to a specific protocol.

To define a new test generator:

• Declare a new test generator type in the plugin.xml file, using the

com.ibm.rational.test.lt.testgen.core3.testGenerator extension point.

• Assign the test generator a unique ID and a name.

• Declare which packet types the test generator can use.

• Declare the required properties of the packet stream that is sent to the test generator. The framework includes

the necessary converters in the conversion stage so these properties are verified when the packets reach

Chapter 8. Test Execution Specialist Guide

the test generator. For information on defining properties by using converters, see Defining a new packet

converter on page 897.

• Define an implementation class that implements the

com.ibm.rational.test.lt.testgen.core.testgen.ITestGenerator interface.

The product includes a built-in converter that produces an ordered stream of packets that is based on start time

stamps of the packets. Typically, recorders produce packets that are sorted by their end time stamps. Most test

generators require that input packets be ordered by their start time stamps, so the packet stream must include the

sorted property in the required properties.

Consider these facts about ITestGenerator implementations:

• Typically, you extend the com.ibm.rational.test.lt.testgen.core.testgen.BaseTestGenerator class, which

provides a basic implementation and only requires overriding the necessary methods.

• The initialize() method is where any options from the test generator configuration are read using the

getContext().getConfiguration() method.

• The process() method is the most important. The framework calls this method for each input packet. This

method creates model elements and adds the elements to the output test. Model elements must be added to

the test using methods from the ITestStack object that is returned by the getContext().getStack() method.

• The framework calls the complete() method after all packets have been sent to the test generator. The

complete() method can be used for performing any post-processing operations.

• Use the getContext().logMessage() method to report any messages from the test generator to the user,

including error messages. If the message pertains to an unrecoverable error, the framework stops the test

generation process.

Note: A test generator must not delay in adding elements to a test. Test generators must add elements to the

test as soon as they are created. A test generator can still add data to an element after the element has been

added to a test. If there are delays in adding elements to a test, generated elements might not be correctly

ordered. For example, if another test generator also generates elements in a mixed protocol environment, or

if the recording contains annotations, then the generated elements might not be in the correct order. If you

still need to perform processing that would delay the insertion of an element into to the test (for example,

accumulating data in order to build a higher-level object), write a converter that does the processing and

insert this converter before the test generator starts.

Defining a new packet converter
A packet converter transforms a stream of recorder packets. Use packet converters for adapting the raw data that

recorders capture into a suitable format for the test generators to use.

A converter typically follows one of these patterns:

897

HCL OneTest Performance

898

• A filtering converter removes input packets that do not meet a specific criterion. This converter does not

modify packets, nor does the converter introduce new packets in the output stream. The product comes with

a generic converter, with the com.ibm.rational.test.lt.testgen.core3.filter ID. You can add parameters to this

converter with conditions.

• An annotator converter does not remove or modify packets in the input stream, but rather introduces

additional packets in the output stream. These packets are annotation packets that convey additional

information that are inferred from the other packets. For instance, a converter might look for session,

connection, or page boundaries in a packet stream, and then add a boundary packet whenever a boundary is

detected in the input stream. This assists the test generator in identifying boundaries without the need to look

ahead in the packet stream.

• A reordering converter does not add, change, or remove packets from the input stream, but it outputs them in

a different order. A typical example is the packet sorter that comes with the product, which outputs packets

sorted by their start time stamp. The sorter ID is com.ibm.rational.test.lt.testgen.core3.packetSorter.

• An aggregator converter has different input and output packet types. It aggregates multiple input packets

into one output packet. The converter usually translates a lower-level protocol into a higher-level protocol. For

example, the product comes with a converter that transforms raw data in a byte stream that is exchanged

between a client and an HTTP server into aggregated HTTP packets (request/response pairs).

To define a new converter, you must complete these procedures:

• Declare a new packet converter type in the plugin.xml file, using the

com.ibm.rational.test.lt.testgen.core3. packetConverter extension point.

• Assign the packet converter a unique ID and a name.

• Declare the required properties of the packet input stream that the converter receives. The framework

includes the required converters in the conversion stage, so these properties are verified when the packets

reach the converter. For instance, if the converter requires the input packets to be ordered according to their

start time stamps, specify the sorted parameter.

• Declare which properties this converter adds to the output stream or removes from the output stream, as

compared to the properties of the input stream. For example, a converter might disrupt the ordered property

of the input stream; in this case, the sorted parameter must be included in removedProperties class.

• If the converter has different input and output packet types and can be considered as a packet type converter,

declare that it contributes to packet type conversions and specify the types of input and output packets that

the converter produces.

• Define an implementation class that implements the

com.ibm.rational.test.lt.testgen.core.conversion.IPacketConverter interface.

Consider these facts about IPacketConverter implementations:

• Typically, you extend the com.ibm.rational.test.lt.testgen.core.conversion.BasePacketConverter class, which

provides a basic implementation and only requires overriding the specific methods.

• A packet converter is an IPacketReferenceOutputStream interface that writes to another

IPacketReferenceOutputStream interface. In other words, a packet converter has a writePacket() method,

Chapter 8. Test Execution Specialist Guide

which is invoked by the framework for each input packet it processes. The packet converter is responsible for

invoking the getContext().getOutputStream().writePacket() method whenever it needs to send a packet to its

output.

• A packet converter can have options. The options are available by using the getContext().getConfiguration()

method, which is typically called in the initialize() method.

• A packet converter can send additional packets to its output in the complete() method. This method is called

when there are no more input packets to use.

• Use the getContext().logMessage() method to report messages from the test generator to the user, including

error messages. If the message pertains to an unrecoverable error, the framework stops the test generation

process.

For scalability reasons, converters manipulate IRecorderPacketReference objects instead of IRecorderPacket objects.

Follow these procedures to get the best results when you write packet converter code:

• An IRecorderPacket interfacecan be obtained from a reference that uses the

IRecorderPacketReference.getRecorderPacket() method.

• A converter that must echo the same packet to its output as the one received must write the same reference

instance that the converter has received.

• When a converter instantiates a new recorder packet, the converter can wrap the packet into a new reference

by using the getContext().createPacketReference() method so that the packet can be sent as output.

• Just as recorders can produce packet attachments, converters can do so as well. To create a new attachment,

use the getContext().createPacketAttachment() method.

• If the converter must hold a packet a long time before the packet is sent as output, the converter can

unload the packet and keep only a reference to the packet. To do so, call the unload() method on the packet

reference.

• Converters are provided with a facility for efficiently accumulating a large number

of packets and atomically discarding them, or flushing them, to the output. See the

com.ibm.rational.test.lt.testgen.core.store.IPacketReferenceStore class for more information. A packet store

can be created using the getContext().createPacketStore() method.

Generating tests without a UI
To test converters and test generators during the development process, you can run them before any UI component is

ready for launching them.

You can start test generation that includes the converters and test generators that you have developed by writing a

test generation configuration file. This file specifies which converters and test generators to use and options for each.

This file is an example of such a configuration file:

<__PT_EXTERNAL__:testGeneration xmlns:__PT_EXTERNAL__="__PT_EXTERNAL__"
 recsession="/Project/MyRecording.recsession"
 autoDataCorrelation="true"
 autoDataCorrelationNames="true"
 output="/Project/MyTest.testsuite">
 <cnv:packetSorter xmlns:cnv="converter:com.ibm.rational.test.lt.testgen.core3"/>

899

HCL OneTest Performance

900

 <cnv:myConverter xmlns:cnv="converter:org.xyz.myplugin"/>
 <gen:myTestGenerator xmlns:gen="generator:org.xyz.myplugin"/>
</__PT_EXTERNAL__:testGeneration>

In the preceding example, replace org.xyz.myplugin with the name of the plug-in that defines the converter and the

test generator. Replace myConverter with the converter ID, and myTestGenerator with the test generator ID. Save the

file with the .testgenconfig extension.

In the configuration file, a testGeneration node can contain as many converter configurations and test generator

configurations as required. All the referenced converters and test generators are included in the test generation

process, with the options from the configuration file passed to them.

To launch test generation from a test generation configuration file, right-click the file, and then select Generate Test.

Defining a test-generation wizard
The Generate Test wizard contains four sections to guide you in defining a test generator.

The Generate Test wizard contains these sections:

1. Test generator selection.

2. Test files selection.

3. Data correlation options.

4. Test generator wizard.

The first page is displayed only if more than one test generator is applicable for the input recording session. The

second page is displayed only if the user has not already chosen the test file before the recording.

You must declare a wizard for each test generator that you have defined. A test generator that has no declared wizard

is not available in the user interface and can be launched only using a test generation configuration file, which is a file

with the .testgenconfig extension, or programmatically.

When completed, this wizard produces a test-generation configuration that contains a set of converter and test

generator configurations. This configuration is applied by the test generation framework to instantiate the appropriate

converters and test generators and to send the packet stream from the recording session to the converters and test

generators.

Test-generator wizards can add pages to the Generate Test wizard by specifying an implementation class in the test

generator wizard declaration in the plugin.xml file.

To define a test generator wizard:

• Declare a new test generator wizard in the plugin.xml file by using the

com.ibm.rational.test.lt.testgen.ui.testgenWizard extension point.

• Specify the test generator ID that the wizard configures.

Chapter 8. Test Execution Specialist Guide

• Provide a label and icon that represents the type of test to be generated by the test generator.

• Optionally, provide an implementation class. If you do not provide a class, the

wizard has no configuration page. If you provide a class, it must extend the

com.ibm.rational.test.lt.testgen.ui.wizards.NewTestGeneratorWizard class.

Consider these facts about NewTestGeneratorWizard implementations:

• This class extends the JFace class wizard, so it must extend typical methods such as the addPages() method.

• The class is passed an empty test-generator configuration, typed with the test generator ID selected by the

user in step 1.

• The class is responsible for setting the test generator configuration options, which are available by using the

getTestGeneratorConfiguration() method. This method is typically used in the doPerformFinish() method.

• The wizard can get contextual information by using getContext() method.

Migrating test generator implementations from previous versions
The new test generation framework builds on the improvements that were made in the recording framework. These

improvements include the ability to record several protocols at the same time, which in turn supports generating

a single test with mixed protocols. The test generation framework also includes improvements in efficiency and

scalability.

The test generation API has been completely redefined. You must refactor existing extension code to use the

new framework. The following tables summarize the changes to classes and methods in the new test generation

framework.

Previous class Current® class Comments

com.ibm.rational.test.lt.testgen­

.core2. IC2ProtocolHandler

com.ibm.rational.test.lt.testgen.core­

.testgen. BaseTestGenerator

The class no longer has to determine

whether it supports a packet type.

The framework sends to the test gen­

erator only packets that are declared

to be supported by the test gener­

ator in the plugin.xml file. Previ­

ously, protocol handlers loaded mes­

sages, then processed them in the

process() method. In the new frame­

work, packets are passed one-by-

one to the process() method. The

process() method generates mod­

el elements without delay. The com­

plete() method is available for any

post processing.

901

HCL OneTest Performance

902

Previous extension point Current® extension point Comments

com.ibm.rational.test.lt.testgen­

.core2.protocolHandler

com.ibm.rational.test.lt.testgen­

.core3. testGenerator

Contributing annotations
An annotation is an action that a user performs during a recording session. Annotations are used to document or

structure the test generated from the recording.

These annotation types come with the product:

• Insert comment

• Insert screen capture

• Start transaction

• Stop transaction

• Insert Synchronization Point

• Insert Split Point

• Set page name

Extensions can define additional annotation types. To contribute an annotation type:

• Define the new annotation type and its properties.

• Contribute an annotation toolbar with an action that enables inserting the annotation.

• Process the annotation in a test generator.

Defining a new annotation type
Each annotation type has its own semantics and supports a set of properties.

To define a new annotation type, complete these procedures:

• Declare a new annotation type in the plugin.xml file by using the

com.ibm.rational.test.lt.recorder.core.recorderAnnotation extension point and the annotationType

element.

• Assign the type a unique ID. Typically the ID is in this form: pluginName.type.

• Assign a user-readable name to the type. The name is visible in the recording session editor.

For best results, complete these optional steps:

• Define an interface that contains a string constant with the annotation type ID defined earlier.

• In this interface, include a string constant for each property name that the annotation

type supports. Specify the meaning and the type of the property in the constant Javadoc

information. Property types can be those that are supported by setters and getters of the

com.ibm.rational.test.lt.recorder.core.property.AbstractConfiguration class.

Chapter 8. Test Execution Specialist Guide

Also, define a label provider for the annotation type. A label provider returns a dynamic label that is based on the

annotation properties and an image. The label and the icon are visible in the recording session editor. To define a

label provider, complete these procedures:

• Declare a new annotation label provider in the plugin.xml file by using the

com.ibm.rational.test.lt.recorder.ui.annotationContribution extension point and the

annotationLabelProvider element.

• Specify the annotation type that the label provider supports.

• Define an implementation class of the label provider. The implementation class must implement

the JFace ILabelProvider interface. Any object passed to this interface is always an instance of the

com.ibm.rational.test.lt.recorder.core.annotations.RecorderAnnotation class.

Contributing new actions to the annotation toolbar
Typically, you produce an annotation by adding an action to the annotation toolbar. This action is represented as a

toolbar button.

To contribute a new action to the annotation toolbar, complete these procedures:

• Declare a new annotation action in the plugin.xml file by using the

com.ibm.rational.test.lt.recorder.ui.annotationContribution extension point and the annotationAction

element.

• Assign a unique ID to the annotation action.

• Decide whether this action is visible by default or not. Actions that are visible by default are available in all

recording sessions unless made unavailable by a client or recorder. Actions that are not visible by default are

available only if a recorder or client requires the action.

• Define an implementation class for this action. The implementation class must extend the

com.ibm.rational.test.lt.recorder.ui.actions.AbstractAnnotationAction abstract class.

Consider these facts about AbstractAnnotationAction implementations:

• This class extends the JFace Action class.

• In the constructor, set the name, tooltip text, and image descriptor of the action.

• Implement the run() method. This method can interact with the user. For example, this method can prompt the

user for a text field. If there is any interaction with the user, the time in milliseconds spent interacting with the

user must be measured.

• To create an annotation, create an instance of the

com.ibm.rational.test.lt.recorder.core.annotations.RecorderAnnotation class, and then pass the annotation

type as an argument. Set the annotation properties using the setter methods provided in this class.

• After the annotation has been built, forward the annotation by sending an AnnotationMessage message

to the annotation recorder. This is typically a call of this form: annotationRecorder.sendMessage(new

AnnotationMessage(annotation, interactionTime));

903

HCL OneTest Performance

904

Generating a test-model element from a new annotation type
After annotations have been inserted into a recording session, the annotations must be processed by a test generator

to translate them into a test-model element. To process annotations with a test generator, define a dedicated test

generator or modify an existing test generator that you have developed.

To enable a test generator to process a new annotation type:

• Add the com.ibm.rational.test.lt.recorder.core.recorderAnnotation packet type to the list of supported

packets of the test generator in the plugin.xml file. Set the isRequired attribute to false.

• In the process() method of the test generator, add code based on this template:

 if (packet instanceof IRecorderAnnotationPacket) {
 IRecorderAnnotationPacket p = (IRecorderAnnotationPacket) packet;
 RecorderAnnotation annotation = getContext().resolveAnnotation(p);
 if (annotation == null) return true;
 if (MY_ANNOTATION_TYPE.equals(annotation.getType())) {
 // Add code to process the annotation
 return true;
 }
 }

Advanced annotation concepts
In some rare cases, annotations can be produced by recorders or clients.

Sending annotations from a recorder or a client

Annotations can be created by recorders and clients. To create annotations, the recorder delegate or the client

delegate uses the AnnotationMessage class. The call typically is in this form:

getContext().dispatchMessage(new AnnotationMessage(annotation, interactionTime));

Modifying the available annotation actions for a specific recorder or client

If an annotation action is available by default, you can choose to hide it when a specific recorder or client is active

during the recording session. If an annotation is hidden by default, you can make it available when a specific recorder

or client is active during the session.

To modify the annotation actions for specific recorders or clients, use the

com.ibm.rational.test.lt.recorder.ui.annotationContribution extension point and the annotationActionFilter

element.

Managing a state for a annotation types

By default, annotations can be inserted at any time during recording. There might be cases where permitting

users to insert an annotation is inappropriate. For example, in a test with “Start Transaction” and “End Transaction”

annotations, “End Transaction” might be available only if a transaction has already been started.

Chapter 8. Test Execution Specialist Guide

To manage the state of annotation types, define an annotation state handler. An annotation

state handler manages one or more annotation types and can individually enable or disable

annotation insertions. For more information about annotation state handlers, refer to the

com.ibm.rational.test.lt.recorder.core.recorderAnnotation extension point, the annotationStateHandler element,

and the com.ibm.rational.test.lt.recorder.core.extensibility.AnnotationStateHandler class.

The state handler for a specific annotation type can be retrieved from an annotation action class by using this code:

stateHandler = (IMyAnnotationStateHandler) getAnnotationStateHandler(myAnnotationType);

Extending the load test behavior model
The load test behavior model (LTBM) is a model of the behavior of a performance test in HCL OneTest™ Performance.

About this task

The load test behavior model (LTBM) was developed using Rational® Software Architect and Eclipse Modeling

Framework (EMF) to model the behavior of a performance test. The LTBM also consists of code generated from

this model using EMF. The LTBM is extended from the common behavior model (CBM). The schedule behavior

model (SBM) that is the underlying model to the Schedule Editor in HCL OneTest™ Performance is the other model

that extends the CBM. The CBM is itself built on top of the Test and Performance Tools Platform (TPTP) common

behavior model (TCBM). The LTBM plug-in ID is com.ibm.rational.test.lt.models.behavior.

For a sample of an extension to the LTBM, see the plug-in

com.ibm.rational.test.lt.sdksamples.models.behavior.socket.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Updates to the load test behavior model
There are new features in the model and there are changes to the following two plug-ins, which the protocol behavior

model plug-in depends on.

There are changes to the two plug-ins that the protocol behavior model plug-in depends on:

• com.ibm.rational.test.common.models.behavior

• com.ibm.rational.test.lt.models.behavior

com.ibm.rational.test.common.models.behavior.CBAssetMigration

To open a performance test in version 7.0 that was created in version 6.1.2, the test suite loader must identify model

elements that have been modified in 7.0 and adapt to the changes. The suite loader accomplishes identification and

adaptation by recognizing elements that implement the CBAssetMigration interface. If a model element has been

modified in a given release, starting with that release, that particular model element must implement this interface.

The two methods from this interface that need to be implemented are as follows:

905

HCL OneTest Performance

906

• Public Boolean needMigration(CBVersion version): determines whether migration is needed

• Public void migrate(CBVersion version): performs any required migration

The version that is passed into this method is the version of the test. LTTestUtil.getCurrentVersion() always returns

the current version of the test suite that can be created with the installed version of the product. The methods in the

BehaviorUtil class enable you to compare any two version objects.

com.ibm.rational.test.common.models.behavior.CBElementHost

A model element can implement this interface provided that it is a container and that it has children in the model.

Some examples of core model elements that implement this interface are CBLoop, LTTransaction, and LTTest.

com.ibm.rational.test.lt.models.behavior.common.LTAnnotation
com.ibm.rational.test.lt.models.behavior.common.impl.LTAnnotationImpl

If a protocol model element is required to hold data that is not text, or that is large, the data being held could affect

performance if it persists within the test suite model. To prevent performance issues, these types of data are stored

in a file called annotation, which is in the test suite, but outside of the model. To use this feature, the attribute that

holds the data must be created with type LTAnnotation. Use the APIs provided in this interface to access the data.

com.ibm.rational.test.lt.models.behavior.common.LTArmEnabled

A model element can implement this interface if this interface is required to log Application Resource Monitoring

(ARM) data. ARM must be supported by the protocol being tested for this feature to work end-to-end.

Extensibility using RSA/EMF modeling

The model can now be extended by using IBM® Rational® Software Architect Eclipse Modeling Framework (EMF). A

base starter model is provided along with the Load Test Behavior Model (LTBM) plug-in. You can start with this model

and add the protocol extension model elements to the base model. When generating EMF code, choose the model

element that is unique to the protocol model.

Extension points for LTBM
You must register your protocol model elements with the load test behavior model (LTBM) core through extension

points regardless of the way that you chose to model your protocol.

Registering a model element
The extension point for registering a model element enables the protocol extension to specify a factory class, a class

providing test options, and the type of the model element handled by the protocol extension.

The extension point for registering a model element allows the protocol extension to specify:

Chapter 8. Test Execution Specialist Guide

• A factory class that contains instructions to create a model element of a given type. The factory class must

implement the ElementFactory interface from the load test behavior model (LTBM).

• A class that provides test level options to the test for the protocol. This class should extend the OptionImpl

class from the LTBM.

• A type of model element that is handled by this protocol extension. The element of this type should extend

the CBBlockImpl class in the LTBM. The type defaults to the fully qualified name of the model element class.

If there are duplicate element types, the element loaded later is ignored and a message is logged in the error

log.

Exemple

Sample

<extension
point="com.ibm.rational.test.lt.models.behavior.protocol">

<protocol
 id="com.ibm.rational.test.lt.example.protocol"
factory="com.ibm.rational.test.lt.example.protocol.ProtocolElementFactory"
option=" com.ibm.rational.test.lt.example.protocol.ProtocolOptions">

<element type="com.ibm.rational.test.lt.example.protocol.XModelElement"/>
<element type="com.ibm.rational.test.lt.example.protocol.YModelElement"/>

</protocol>
</extension>

Required attributes in a model class
A model element can contain attributes of different types, both primitive and complex.

A model element typically consists of one or more of the following types:

At­

tribute

type Description

Prim­

itive,

except

byte

or

byte

arrays

• Call the appropriate setProperty() method to set the property of the element. Various overrides exist

for all primitive types except byte.

907

HCL OneTest Performance

908

At­

tribute

type Description

Byte

ar­

ray or

large

strings

• To store binary data, the attribute must be of LTAnnotation type or one that extends it. This class

has setBytes() and getBytes() methods to store and retrieve binary information. After the getBytes()

or setBytes() is called, the data is maintained in memory until the test is saved.

Note: If this action is not wanted–and it is not in cases where the data set can be large, you

can flush the data to a file by individually calling the flush() method on the LTAnnotation.

Make sure that you call this method immediately after a set or get is called.

Com­

plex • Call setProperty(CBActionElement,CBActionElement) to which you can pass the old and the new

value of the attribute. All model elements extend from the CBActionElement class. The old value is

passed so that it can be removed from the model and the new value is passed, so it can be set. If

you do not have a value, then pass null. For example, if the value is changing from val1 to val2, then

call the setProperty(val1,val2) method. If you are setting the value for the first time, call the setProp­

erty(null,val1) method. If you want to clear the value, call setProperty(val1,null).

• This is similar to the other setProperty() methods for the primitive type, with the added restriction

that this needs the old value too.

• When the model gets loaded, the addReference() method will be called and this method needs to be

overwritten to interpret and properly assign the attribute to the object. Call the appropriate setXXX()

method to set that attribute with the value passed in.

List
• The attribute should be of type EList. To access the list, if the element is a container, then it can im­

plement the LTElementHost interface and will need to implement the getElements() method. This

method must return the EList. To load the list when the children of this model element are being

loaded, the addReference() method is called for each child and the element must put the child in the

right list.

Refer­

ence

to an­

other

mod­

el ele­

ment

• Define an attribute of the type of the element you reference. This will provide the simple getters and

setters to this attribute. These getters or setters will not call getProperty or setProperty, but they will

simply get or set the attribute value.

• Define another attribute that will act as a proxy for this element. This element is your own class that

extends ProxyElement from the LTBM.

Chapter 8. Test Execution Specialist Guide

At­

tribute

type Description

• When creating the reference, call the setHref() method of the ProxyElement with the ID (getId()) of

the element that is being referenced.

• To get the element that is being referenced, use the href from the ProxyElement (getHref()) to locate

the element in the test. You can also use the BehaviorUtil.findElement() method (the test containing

this element, the ID of the element being searched) to get the element.

Registration examples
The examples in this topic show you how to register strings for content verification and built-in data sources.

Registering strings for content verification

The following example shows how to register strings for content verification:

<extension
point="com.ibm.rational.test.lt.models.behavior.contentVPData">

<category
label="Example protocol strings"
id=" examples.protocol.strings ">

<property
type="boolean"
name="Does value exist"
value="true"
id="com.ibm.rational.test.lt.exmaple.protocol.valueExist"/>

<content
label="Joe"
id="example.protocol.strings.1"/>

<content
label="Jane"
id="example.protocol.strings.2"/>

</category>

</extension>

Exemple

Registering built-in data sources

A protocol extension can provide its own list of built-in data sources. A data source is used to mine data and hold it

for later consumption. This is done using the following extension point.

909

HCL OneTest Performance

910

The following example shows how to register built-in data sources:

<extension
point="com.ibm.rational.test.lt.models.behavior.builtInDataSource">
<dataSource typeId="protocol.buitindatasource"
className="com.ibm.rational.test.lt.example.protocol.BIDataSource">

<property name="database"/>
<property name="table"/>
<property name="column"/>

</dataSource>

</extension>

In the above example, a protocol extension can extract a value from a particular column in a table in a database.

Creating protocol constructs
The first step in creating protocol constructs is to identify the behavior of the protocol, how the ends, client and server,

communicate through this protocol, or if there is an order in which things happen.

About this task

For example, in HTTP, the browser sends a request to the web server by using a connection to send the request and

receives a response from the web server. This process suggests that at least the following model elements need to

be present:

• An HTTP Request model element

• A Server Connection model element

• An HTTP Response model element

After you have the basic behavior defined, you can add additional features to the model elements.

Modeling the behavior of a protocol extension
To create a model element for your protocol, you must extend the

com.ibm.rational.test.lt.models.behavior.impl.CBBlockImpl class. Extending this class enables you to use all the

basic functionality that is provided by this model element, including persistence into the test files and APIs to set or

get properties of a model element.

About this task

There are other model elements in the load test behavior model (LTBM) that are extended from the CBBlockImpl class

and that provide various functionality. You could also extend those elements for your protocol. The LTBM provides

common constructs (com.ibm.rational.test.lt.models.behavior.common) that can be reused by protocol extensions.

These constructs are included in various packages in the LTBM. See the Javadoc information and the API topic for

more details.

Chapter 8. Test Execution Specialist Guide

To create a protocol model element that is not related to any of the common constructs provided by the LTBM, extend

the CBBlockImpl class. If the model element for your protocol is a specific type of an LTBM model element, extend

the implementation class for that element. For example, if a protocol extension provides a special type of a CBLoop

construct, it would extend the CBLoopImpl class and add additional attributes to that element.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

1. Optionally, create an interface that defines the methods for the class, including the setters and getters for the

attributes added by this element.

2. Create a new class that extends the CBBlockImpl interface, and if you created an interface in step one,

implement the interface.

3. In the constructor of the model element, call the method setType(type), where type is a unique type string

denoting the model element as registered using the com.ibm.rational.test.lt.models.behavior.protocol

extension point.

4. Implement the getters and setters of attributes for this model element class.

Note: The setter must set the value attributes of the primitive data types into the underlying model

using one of the overloaded setProperty() methods based on the type of attribute.

5. To set attributes of complex types, override the addReference() method.

Results

While the test is loading, the getter (at least initially) gets the value of the attribute from the underlying model by using

one of the overloaded getProperty() methods, based on the type of the property for primitive attributes.

You can define the model element to store the value of the attributes in local attributes. However, the guideline is that

the getter should get it first from the underlying model and the setter should store it in the underlying model.

Extending the classes in LTBM
You can create a new Load Test Behavior Model (LTBM) element.

Follow these steps to create a new model element:

1. Optionally create an interface that defines the methods for the class, including the setters and getters.

2. Create a new class that extends CBBlockImpl interface and that optionally implements the interface defined in

the above step.

3. Implement the getters and setters of attributes for this model element class.

a. The setter must set the value attributes of the primitive data types into the underlying model using one

of the overloaded setProperty() methods.

4. Override the addReference() method to set attributes of complex types.

911

HCL OneTest Performance

912

5. The getter, at least initially, gets the value of the attribute from the underlying model using one of the

overloaded getProperty() methods based on the type of the property for primitive attributes.

6. The model element can additionally decide to store the value of the attributes in local attributes. However,

the underlying principle to be followed is that the get should get it first from the underlying model and the set

should store it into the underlying model.

Public APIs for LTBM
The load test behavior model (LTBM) contains multiple packages. Each package contains the interfaces that define

the LTBM. In addition, each package has a corresponding implementation package that contains the implementation

classes for these interfaces.

The extensions will either use or extend the implemented classes from LTBM while having access only to the

methods defined in the corresponding interfaces. The following packages are part of LTBM:

• com.ibm.rational.test.lt.models.behavior.lttest

• com.ibm.rational.test.lt.models.behavior.common

• com.ibm.rational.test.lt.models.behavior.data

• com.ibm.rational.test.lt.models.behavior.vps.impl

The implementation classes are contained in the corresponding implementation packages, such as

com.ibm.rational.test.lt.models.behavior.lttest.impl, com.ibm.rational.test.lt.models.behavior.common.impl,

com.ibm.rational.test.lt.models.behavior.data.impl and com.ibm.rational.test.lt.models.behavior.vps.impl.

Each of these packages also contains factory classes that enable you to create a model element from that package.

For best results, use the factory classes to create model elements. For example, to create a loop, use this method:

LTTestFactory.eINSTANCE.createCBLoop()

The LTBM provides common constructs that can be reused by protocol extensions. These constructs are included in

various packages in the LTBM. The Javadoc information explains each available interface in more detail.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

com.ibm.rational.test.lt.models.behavior.lttest package
This package holds the interfaces related to the performance test object and its attributes.

The LTTest interface is the root container for all model elements. The LTTest interface also consists of model

elements that are used to refer to outside assets, such as datasets, features, and external resources. An extension is

not expected to implement or extend an LTTest interface.

An LTTest interface consists of the following items:

• An instance of LTResources that contains features and other globally scoped items.

• A list of common and protocol based options.

Chapter 8. Test Execution Specialist Guide

• A list of datasets being used in this test, if any.

• A list of properties specific to this test.

• A list of model elements that might contain other model elements.

The following diagram shows the com.ibm.rational.test.lt.models.behavior.lttest package structure:

com.ibm.rational.test.lt.models.behavior.common package
This package contains common interfaces that the extending model elements can implement to add these features

to them.

The com.ibm.rational.test.lt.models.behavior.common package also contains common constructs such as the IF

construct. The package also contains other commonly used constructs such as LTNameValuePair, in which you can

store a list of name or value pairs.

The following diagram shows the relationship between the model elements in the

com.ibm.rational.test.lt.models.behavior.common package:

913

HCL OneTest Performance

914

The following diagram shows the inheritance of model elements in this package:

com.ibm.rational.test.lt.models.behavior.data package
This package contains classes related to data correlation and custom code.

Chapter 8. Test Execution Specialist Guide

Data correlation consists of two parts. One part is the source for the data and the other is the consumer of the data.

The base class for all data sources is called DataSource and the one for consumer is Substituter.

A model element in the protocol extension that can contain data sources must be marked as a data source host by

implementing the DataSourceHost interface. A model element that can contain consumers of data sources must be

marked as a consumer host by implementing the DataSourceConsumer interface.

The following diagram shows the relationship between the data source and the consumer:

Data sources

The data sources are model elements that designate data extraction and storage for consumption by other model

elements. The following types of data sources are provided by the load test behavior model (LTBM):

• DatapoolHarvester - to denote columns of data extracted from a dataset.

• CorrelationHarvester - to denote a string of data to be used later on in a test.

• BuiltInDataSources - built-in functions that provide derived information (eg. Current® time).

• Arbitrary - enables users to write custom code to be inserted into a test.

915

HCL OneTest Performance

916

For details about these classes, see the Javadoc information.

A protocol extension can provide its own set of built-in data sources using the extension point described in the

"Extension points" topic.

The following diagram shows the relationship between these classes:

Substituters

The basic consumer type provided is a Substituter. The following diagram shows the Substituter structure:

Chapter 8. Test Execution Specialist Guide

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

com.ibm.rational.test.lt.models.behavior.vps package
This package provides classes related to verification points.

The com.ibm.rational.test.lt.models.behavior.vps package contains the VerificationPoint interface and its

corresponding implementation. This package provides the generic verification point VPContent. It is used to detect

the presence (or indicate the absence) of one or more defined test strings that correlate with strings, or parts of

strings, that the application generates while under test. You can define the strings that the verification point should

look for.

Extending data correlation
Data correlation is the process of extracting data that is returned from a server, and then sending it back to the server

in a subsequent request.

917

HCL OneTest Performance

918

About this task

There are two main parts to data correlation. One part occurs during test generation and script editing, and the other

part occurs during script execution.

The test generation part of data correlation is the most significant part. There is automatic data correlation that is

performed during test generation, and there is manual correlation that can be performed during script editing. There

are several different things that can be done as part of manual correlation: you can substitute values into a site from a

data pool, a built-in data source, or a reference that is already created.

For more details about test generation extensibility, see the "Extending the test generator" topic. For details about the

Script class, see the "Extending code generation" topic.

For examples of data correlation extensions, see these plug-ins:

com.ibm.rational.test.lt.sdksamples.datacorrelation.testgen.socket

com.ibm.rational.test.lt.sdksamples.datacorrelation.execution.socket

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Implementing data correlation for test generation
To implement data correlation for test generation, become familiar with these

classes: com.ibm.rational.test.lt.datacorrelation.testgen.proto.IProtoElementAdapter,

com.ibm.rational.test.lt.datacorrelation.testgen.DataCorrelator, and

com.ibm.rational.test.lt.datacorrelation.testgen.IDCStringLocator.

To implement data correlation for test generation and script editing, your model

elements must extend com.ibm.rational.test.lt.models.behavior.data.DataSource and

com.ibm.rational.test.lt.models.behavior.data.Substituter so that you can associate data sources and

substituters with your model elements. Also, when you extend those classes, make sure you implement the code to

make Substituters and DataSources persist in your model. For more information, refer to the model documentation.

You need to create your own data correlation plug-in to extend the extension point DCTestgenProto,

which is defined in the plug-in com.ibm.rational.test.lt.datacorrelation.testgen. To extend the

extension point, your code must implement the interface IProtoElementAdapter which is defined in

com.ibm.rational.test.lt.datacorrelation.testgen.proto. Then, when you extend the DCTestgenProto extension

point, use the following items:

• ID - This is the unique ID of your extension.

• Name - The name that is meaningful for you.

• Point - com.ibm.rational.test.lt.datacorrelation.testgen.DCTestgenProto extension point

.

The other element details are:

Chapter 8. Test Execution Specialist Guide

• class - This is the full name of the class (including plug-in name) that implements IProtoElementAdapter.

• protoType - The type of model element that this plug-in handles, for example, in HTTP, the model element that

is handled is com.ibm.rational.test.lt.models.behavior.http.HTTPRequest.

• generic - This is a boolean that can be true or false. If it is true, this means that if there are other plug-ins that

handle the same protoType, this plug-in will be called last.

• uniqueID - This ID is unique among all data correlators.

After you have extended the data correlation extension point, the main data correlation engine will call your code with

all the elements of the model type that you defined.

There are two parts to data correlation at testgen time. The first part is automatic data correlation which

happens at testgen time. This will happen through a call to DataCorrelator.CorrelateAll(). When this method

is called automatically by testgen, it will in turn call two main methods in your plugin. Those methods are

IProtoAdapter.findSubs() and IProtoAdapter.findReference(). The findSubs() method should return a list of

substituters that are found for the current element that is passed into your method, and null if there were no

substituters found. The findReference() method should try to find a reference for the substituter passed into it. You

start looking for references at the element before the substituter and keep working backwards in the testsuite until

you find a suitable reference. If no reference is found, return null. CorrelateAll is used to find all correlations that you

can so that the user does not have to manually find them at test editing time.

The other parts of the IProtoAdapter class are called at test editing time when a user wants to create a substitution

site, a reference, or make a correlation between a substitution site and a reference. If you are creating your own

type of Substituters or DataSources, your makeDataSource() and makeSub() methods will be used for that.

You will be passed the DCStringLocator class with all the information about offsets and text that you need.

Use this DCStringLocator to determine what substituter or data source you want to create and then call back

into IDataCorrelator. Correlations, substituters, and data sources are created in the model for you. Read the

documentation on the IDataCorrelator class to learn which methods are right for your purposes.

Implementing data correlation for execution
To implement data correlation during execution, set up your class that extends the

com.ibm.rational.test.lt.kernel.action.KAction class to trigger a call into the data correlation engine.

Before you begin

Before you implement data correlation, become familiar with the following classes:

• com.ibm.rational.test.lt.datacorrelation.execution.harvest.IDataHarvester

• com.ibm.rational.test.lt.datacorrelation.execution.sub.IDataSub

• IDataCorrelationVar

• com.ibm.rational.test.lt.datacorrelation.execution.proto.IProtoActionAdapter

See the Javadoc information for class and method descriptions.

About this task

919

HCL OneTest Performance

920

The IKAction interface defines the basic functionality that all kernel actions must implement. The IKAction interface

is the base interface for all kernel actions. The actions can represent loops, conditions, or other code constructs.

To implement data correlation during execution , codegen writes your harvesters and substituters into

containers. To implement data correlation at execution time, codegen will need to write your harvesters and

substituters into containers. This is done by calling LTTestTranslator.translateHarvesterContainer() and

LTTestTranslator.translateSubstituterContainer() at codegen time when you are translating your action. Both of

these methods live in the com.ibm.rational.test.lt.codegen.core plugin. These containers will need to be added to

your action and stored with your action. These containers must be added to and stored with your action. When your

actions are being executed, they must call these substituter and datasource containers. The substituter container is

called at the beginning of your action, before you send data, and the data source container is called at the end of your

action, after you have received the data.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

To implement the execution portion of data correlation:

1. You must extend an extension point in codegen.core to get your execution IProtoActionAdapter regisetered for

playback:

a. Extend the extension point DataCorrelationProtoAdapter in the com.ibm.rational.test.lt.codegen.core

package. To do the extension, use your plug-in that is the extension to the

com.ibm.rational.test.lt.datacorrelation.execution plug-in that implements the IProtoActionAdapter

interface.

b. Tell the com.ibm.rational.test.lt.datacorrelation.execution plug-in what types of IKActions to handle

and the name of your plug-in.

c. When this is complete, you should see something similar to the following added near the top of your

generated .java code:

Example

pa.addPA("com.ibm.rational.test.lt.sdksamples.datacorrelation.execution.socket.SocketActionAdapter",

"com.ibm.rational.test.lt.sdksamples.protocol.socket.io.SocketSend"); The first string should be

the name of your class that implements the IProtoActionAdapter, and the second string should be the

name of the KAction that your IProtoActionAdapter class should be called for. Be very careful on the

spelling, it has to be exactly right.

2. To implement the datacorrelation.execution plug-in extension, your plug-in must implement

the com.ibm.rational.test.lt.datacorrelation.execution.IProtoActionAdapter interface. The main

com.ibm.rational.test.lt.datacorrelation.execution plug-in uses the interface to call your plug-in and to get the

information for the implementation.

Chapter 8. Test Execution Specialist Guide

Note: This is also the plug-in that extends the DataCorrelationProtoAdapter class in the codegen

extension point.

3. To start the substitution process, in the IDataSub.substituteData() method, use the action and hash map as

parameters.

a. The action that is currently active will call the

com.ibm.rational.test.lt.datacorrelation.execution.sub.IDataSub.substituteData() method. The

substitution container executes all substitution rules and put the new string values (read from data

correlation variables) into the hashMap. The first value of the hashMap is the propertyType, and the

second value is the entire new string for that propertyType. So, when the substitution is done, it fixes

the entire string for you.

b. The substitute container returns the control to the IKAction interface.

c. The IKAction interface reads the string values from the hash map and sends them to the appropriate

places.

4. To start data harvesting, the action that is currently active calls the IDataHarvester.harvestData() method. The

action passes itself to the container.

a. The data harvester calls the plug-in that has extended the data correlation execution plug-in to get the

string values that the harvest rules must be applied to.

b. The data harvester container places the harvested values into data correlation variables. These data

correlation variables are then used in later substitute executions.

Extending the test editor
The performance testing software provides application programming interface (API) classes for extending the test

and performance tools platform (TPTP) to write new editors and protocol extensions.

About this task

The editors in performance testing are extensions of the defined editor framework in TPTP. The editors are loaded by

TPTP based on the file type, for example schedule, test, or data pool.

The performance testing editor is built of several layers: the common framework, the editor, and the protocol layers.

• The common framework layer consists mainly of abstract classes and interfaces, and some utility libraries.

The common framework is initialized by TPTP editor architecture.

• The editor layer extends classes from the common framework layer to provide specific implementations for

their models.

• The protocol layers can be basic and dependent. The basic layers do not depend on other protocols such

as HTTP. The dependent layers are built on top of other protocols, for example Siebel on top of HTTP. The

protocol layers are implemented on top of the single editor layer.

921

HCL OneTest Performance

922

When the editor needs to be opened in a model file, TPTP determines which editor is

capable of handling this particular model and loads, and initializes the specific extension.

The common framework layer provides its implementation of the handler class, the

com.ibm.rational.common.test.editor.framework.extensions.CommonEditorExtension class. The editor layer creates

an instance of the com.ibm.rational.common.test.editor.framework.TestEditor class that must be extended by the

editor layer. After the TestEditor object is created, the user interface (UI) widgets and components are created to

display the model data.

The TestEditor class provides the bridge between TPTP (through the CommonEditorExtension), the model (through the

CBTest member variable), Eclipse, and the concrete protocol code. When the editor is closed by the user or reloaded,

the first instance of the TestEditor class is destroyed and a new one is created.

The editors support only data that comes out of the corresponding models. The editor layer of the performance

testing editor is called the Load Test class. The Load Test class extends the TestEditor class by creating concrete

LoadTestEditor and CommonEditorExtension classes through the LoadTestEditorExtension extension point.

For the recorder extension sample, see the plug-in com.ibm.rational.test.lt.sdksamples.editor.socket.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Migrating test editor extensibility
Changes in the performance testing editor base framework package are provided in this release to support more

standardized ways of handling model element attributes.

Details area contents and layout (attribute field support)

You can now manage the layout and contents of the Details area in the test editor (schedule and test editors)

that developers had to manage in earlier versions. In this version, you can manipulate the contents by using the

abstraction called AttributeField. This construct hides much of the required behavior from developers, and enables

a great deal of extensibility. Updates to AttributeField can coexist with the user interfaces of existing editors or

protocol extensions, provided that some minor adjustments are made. Classes derived from AttributeField must

be used whenever an attribute from a model element is displayed. Do not use the AttributeField for any other

information presented to the user in the Details area. Instead, use regular Eclipse widgets.

Behavior

The getXXXvalue(), setXXXValue(), and getFieldName() classes and APIs provide a way to link model data with their

user-interface representation, and at the same time hide related low-level maintenance work from the developer.

These classes are abstract. When a developer chooses one of them to display their model data, only a small

number of methods need to be implemented to define the default behavior of the attribute field. If more customized

behavior is needed, other methods are available for overriding. Refer to the Javadoc HTML documentation for more

information.

Chapter 8. Test Execution Specialist Guide

The smallest set of methods that a developer must implement are as follows:

• getXXXValue(): Retrieves and returns a value from model element. XXX signifies a type of an attribute. For

example, when extending IntegerAttributeField, the name of the method is getIntegerValue().

• setXXXValue(): Sends a value obtained from the UI to the model element. The meaning of XXX is the same as

above.

• getFieldName(): Returns the name of the field. Names make a field addressable for navigation.

Note: Before version 7.0, field names were optional; in this version they are mandatory.

Classes

The following table is a hierarchy of the AttributeField related classes that are available to editor and protocol

developers. The list includes descriptions about which classes to use in specific situations.

Note: These classes have limited functionality because they must support classes and APIs from versions

earlier than 7.0.

AttributeField class Description

OptionsComboField This class is used to display a set of options to a user.

Options are presented in a combination box. When ex­

tending this class, you must provide an index of the op­

tion currently selected in the model element. When a user

chooses a different value from the combination box, the

new index is passed to the derived class, in order to up­

date the model. The class developer needs to understand

the meaning of the index in the context of the model.

OptionsRadioField The same provision that applies to OptionsComboField ap­

plies to OptionsRadioField. The following exception, how­

ever, applies: options are displayed as a set of radio but­

tons in a group. A user must select one of the radio but­

tons to indicate the index of the selected option.

BooleanAttributeField This class is used when the model element attribute is

a Boolean value. The value is displayed as a check box.

The developer must provide a Boolean value from a mod­

el element and accept a new Boolean value from the user

interface to update the model element.

IntegerAttributeField This class is used when the model element attribute

holds an integer value. The field can represent an inte­

923

HCL OneTest Performance

924

AttributeField class Description

ger value in several ways. The following control types are

available for representation:

• StyledText

• Spinner

• Slider

• Scale

Note: This class is subject to change in the fu­

ture.

TextAttributeField Use this field when there is text data in the model ele­

ment.

FilteredTextAttibuteField This class extends the behavior of TextAttributeField

by enabling condition checking and displaying alterna­

tive text (message) to the user. For example, the develop­

er might want to filter binary data, or filter text that is too

long for convenient display.

DataCorrelatingTextAttrField Use this class when the text data can be either substitut­

ed, data correlated, used as a reference, or configured in

any combination of these.

Porting code from layoutProvider

The following is a short guide to porting existing code, typically found in the layoutProvider class, to the new

function.

Previous implementation:

class MyLayoutProvider extends ExtlayoutProvider
{
 layoutControls(CBActionElement element)
 {
 super.layoutControls(element); // call super first.
 createWidgets(); // create all the UI for display
 refreshWidgets(); // call refreshLayout to populate UI
 return true; // return true is success.
 }

 createWidgets()
 {
 new StyledText();
 new Button();
 }

Chapter 8. Test Execution Specialist Guide

 refreshControls(CBActionElement element)
 {
 super.refreshControls(element); // call super first
 // grab data from model element and apply it to UI widgets
 applyModelDataToWidgets();
 return true; // return true if success.
 }

 /* because the ExtLayoutProvider is SelectionListener,
 this method is called when Buttons, ComboBoxes and
 such are modified. */
 widgetSelected(SelectionEvent event)
 {
 // find the widget, get its value and apply it to model
 applyUiDataToModelElement();
 // call super to update the editor.
 super.widgetSelected();
 }

 /* because the ExtLayoutProvider is ModifyListener,
 this method is called when StyledText is modified. */
 modifyText(ModifyEvent event)
 {
 // find relevant StyledText control and apply
 // its value to the model element.
 applyTextUiDataToModelElement();
 super.modifyText();
 }

}

Current® implementation:

class MyLayoutProvider extends ExtlayoutProvider
{
 // class declared as internal.
 class MyTextField extends TextFieldAttribute
 {
 String getTextValue(){
 return ((MyModelElement)getSelection()).getTextAttr();
 }
 setTextValue(String newVal){
 ((MyModelElement)getSelection()).setTextAttr(newVal);
 }
 String getFieldName(){
 return MY_FIELD_NAME; // defined elsewhere
 }
 };

 MyTextField m_fldText;
 MyDataCorrelationField m_DcField; // declared outside.

 layoutControls(CBActionElement element)
 {
 createWidgetsAndFields(); // create all the UI for display
 updateNonFieldWidgets(); // update non-model widgets
 // always call super at the end.
 return super.layoutControls(element);

925

HCL OneTest Performance

926

 }

 createWidgetsAndFields()
 {
 // create UI widgets for displaying non-model info
 …
 // create Fields
 m_fldText = new MyTextField(this);
 m_fldText.createLabel(…);
 m_fldText.createControl(….);

 // create more UI widgets for displaying non-model info

 m_DcField = new MyDataCorrelationField(this);
 m_DcField.createLabel(…);
 m_DcField.createControl(….);

 }

 refreshControls(CBActionElement element)
 {
 // update NON-UI widgets only.
 applyModelDataToWidgets();
 //always call super at the end.
 return super.refreshControls(element);
}

 /*You do not have to have this method unless you want
 to update NON-model widgets/data. */
 widgetSelected(SelectionEvent event)
 {
 // find the widget and do whatever you need, but
 // do not update the model.
 applyUiDataTo_NON_ModelElement();
 // DO NOT call super to update the editor.
 }

 /* You do not need to have this method unless you
 want to update non-model widgets/data. */
 modifyText(ModifyEvent event)
 {
 // find the widget and do whatever you need, but do not
 // update the model.
 applyTextUiDataToModelElement();
 // DO NOT call super to update the editor.

 }

}

Test editor structure
The editor in HCL OneTest™ Performance is built of several layers; the common framework, the editor and the

protocol layer.

Chapter 8. Test Execution Specialist Guide

The common layer defines the interfaces and extension-points, provides the API classes and interfaces. It also

provides the hooks into the Eclipse user interface (UI) menus, actions, markers. The common framework layer

is initialized by the TPTP editor architecture. Because test editors are in fact extensions loaded and initialized

by the TPTP platform via org.eclipse.hyades.ui.editorExtensions extension point, one of the common editor

framework’s responsibilities is to provide hooks and application programming interfaces (APIs) for concrete editors

implementations to communicate with TPTP. The common editor framework defines the classes that must be

extended for a more specific behavior to be used by the extended editor implementations. This extension is realized

by the TestEditor class that is extended by the Load Test Editor plugin and called LoadTestEditor.

The editor layer extends classes from the common framework layer to provide specific implementations for their

models. The protocol layers can be basic and dependent. The basic protocols do not depend on other protocols, such

as HTTP. The dependent protocols are built on top of other protocols, for example Siebel on top of HTTP. The protocol

layers are implemented on top of the single editor layer. The protocol layers provide handlers for protocol-specific

objects.

When the editor needs to be opened on a model file, Hyades determines which editor is capable of handling this

particular model and loads and initializes specific extension. The common layer provides its implementation of the

handler class, the CommonEditorExtension class. The common editor layer creates an instance of the TestEditor

class that must be extended by the editor layer. After the TestEditor object is created, the user interface (UI) widgets

and components are created to display the model data.

The TestEditor provides the bridge between TPTP, the model, Eclipse, and the concrete protocol code. The

CommonEditorExtension class is used. When the editor is closed by the user or reloaded, the first instance of the

TestEditor is destroyed and a new one is created.

The layers described above are split into separate plugins. Each plugin defines some extension points which are

used by the higher-level plugins as well as by the defining plugins themselves. Additionally, there are some Java™

interfaces that must be used when writing classes.

The plugins are:

• com.ibm.rational.test.common.editor.framework

• com.ibm.rational.test.lt.testeditor

• com.ibm.rational.test.lt.http.editor

• com.ibm.rational.test.lt.http.siebel

Common editor framework
Extend performance test editing in the common editor framework. It contains the classes to extend for specific

behaviors that will be used by the extended editor implementations.

Because performance testing editors are extensions loaded and initialized by the TPTP platform through the

org.eclipse.hyades.ui.editorExtensions extension point, one of the common editor framework functions

is to provide hooks and application programming interfaces (APIs) for concrete editor implementations to

communicate with TPTP. The common editor framework defines the classes to be used by higher editor

927

HCL OneTest Performance

928

implementations. One of the most widely used classes is the TestEditor class, which is extended by the

com.ibm.rational.test.lt.testeditor.main.LoadTestEditor plug-in.

The layoutProvider, labelProvider, contentProvider and actionHandler extension points have been deprecated and

are superseded by the modelObjectDescriptor extension point that combines and enhances them. The following table

lists the active extension points that you can use to extend the common editor framework:

Exten­

sion

point Description

modelOb­

jectDe­

scriptor

Specifies the type of the object, the test editor, and the general name and icon for the object.

testOp­

tions

Used to contribute user interface (UI) elements for displaying the protocol options in the Details area of

the root element in the tree, Performance Test or Schedule.

editor­

AddonEn­

abler

Used to write contributions to existing user interface (UI). It can have enabled and displayed state. Works

with the AddonReader class.

search­

Type­

Provider

Contributes a search category to the performance testing Search window. The category consists of object

type and, optionally, search parameters.

search­

TypeOp­

tions­

Contibu­

tor

Contributes extra search parameters to some other search type category.

pref­

erence­

PageCon­

tributor

Provides a way to create extensible preference pages as well as to contribute UI to other preference

pages. For preference pages, use the Eclipse extension point and extend the class com.ibm.rational.com­

mon.test.editor.framework.kernel.EditorPreferenecePage. For page contributions, use this extension

point and extend the com.ibm.rational.common.test.editor.framework.kernel.TestPreferenceContributor

class.

The modelObjectDescriptor extension point
The modelObjectDescriptor extension point combines and enhances the deprecated contentProvider, labelProvider,

layoutProvider, and actionHandler extension points.

The modelObjectDescriptor extension point has four attributes. The attributes specify the type of the object, the type

of the test editor where the object is used, and the general name and icon for the object. The name should not have

any formatting characters in it. The name with the icon is used primarily for reporting purposes.

Chapter 8. Test Execution Specialist Guide

At­

tribute Description

type Represents the type of the model object, returned by the CBActionElement.getType() method.

mod­

el_­

type

The type of the model or test. The same value returned by your CBTest.getType() method. For performance

testing, protocol extensions use com.ibm.rational.test.lt.lttest.

icon The image that represents your object.

label The name of your object.

The modelObjectDescriptor extension point has four child definitions, as described in the following table:

Child Attributes description

label­

Provider. See

com.ibm.ra­

tional.com­

mon.test.ed­

itor.frame­

work.exten­

sions. ExtLa­

belProvider

class.

• treeLabel — The text to be displayed in the tree in the Main section of the editor. This text can

be static or contain formatting. It is up to the implementing class to format and return proper

textual representation of an element.

• statusLine — The text to be displayed on the status line when the object is selected in the

Main section tree of the editor. If omitted, the value of the treeLabel attribute will be used for

this purpose.

• tooltip — The text to be displayed in the tooltip (when appropriate). If omitted, the value of the

treeLabel will be used for this purpose.

• menuText — The text to be displayed in a pop-up menu, such as Add or Insert. If omitted, the

value of the modelObjectDescriptor label will be used for this purpose.

• description — The longer description of the model element. If omitted, the value of the model­

ObjectDescriptor label will be used for this purpose.

• icon — The image that represents the model element. May be same or different as the one

specified in the modelObjectDescriptor icon.

• class — The instance of this class will be created when an object is set up to be referenced in

the editor. There is a default base class to be used for this purpose, called ExtLabelProvider.

It provides methods that return information, specified in the extension. All of its methods can

be overridden by the extending class to provide appropriate formatting.

layout­

Provider. See

com.ibm.ra­

tional.com­

mon.test­

.editor­

• class — The instance of this class will be created when the object details are displayed in the

editor’s Details section. A model element must have a layoutProvider class if this object is

displayed in the Main section tree. There is a default base class to be used for this purpose,

called ExtLayoutProvider. It provides methods for constructing, formatting, and refreshing

Details section for the model element. The methods layoutControls and refreshControls

929

HCL OneTest Performance

930

Child Attributes description

.framework­

.extensions­

. ExtLayout­

Provider

class.

must be overridden by the extending class. The com.ibm.rational.common.test.editor.frame­

work.extensions.ExtLayoutProvider class implements the SelectionListener and ModifyLis­

tener interfaces, so it can be used to listen to such events generated by your controls.

content­

Provider.

See ExtCon­

tentProvider

class.

• class — The instance of this class will be created when the object hierarchy information

needs to be discovered. A model element must have a contentProvider class if the object is

displayed in the Main section tree. There is a default base class to be used for this purpose,

called ExtContentProvider. It provides methods for discovering information about object chil­

dren and parents. See the Eclipse IStructuredContentProvider interface for more details. In

many cases there is no need to override any of the ExtContentProvider methods, but if some

non-standard processing must be done, the first method to override is getChildrenAsList(),

as it is called by other methods in this class.

actionHan­

dler. See

the ExtAc­

tionHandler

class.

• class — The instance of this class will be created when a new object of this type needs to be

created or when the existing object needs to be removed from model or moved up or down.

Your class must extend ExtActionHandler.

The testOptions extension point
The testOptions extension point is used to contribute user interface elements for displaying options for a protocol in

the Details area of the root element in the tree, Performance Test or schedule, in this context, is used to refer to both

VU Schedule and Rate Schedule. Each contribution is displayed in a separate tab in a Tab folder.

The testOptions extension point has the following attributes:

At­

tribute Description

label The text to be displayed in the tab title.

toolTip The text to be displayed in the tab tooltip.

image The image to be displayed in the tab title.

fea­

ture_id

The feature to which these options pertain, currently not filtered.

order The numeric order of the tab, used to sort tabs. If no number is given or there are duplicate numbers, the la­

bel will be used for sorting.

Chapter 8. Test Execution Specialist Guide

At­

tribute Description

class The class that will be instantiated to display and handle options. The default implementation base class,

DefaultOptionsHandler , provides convenience methods. This class is abstract, which means that it needs

to be extended to provide concrete user interface elements. The default implementation of the ExtLayout­

Provider class for Test objects, DefaultTestLayoutProvider, loads and displays relevant options declared

through this extension point.

Contributing actions to the menu
You can use extensions to extend the menu, change navigation, and perform data correlation.

Test editor menus
The test editor has three menus. You can extend the menus by adding more actions such as remove, move up, or

move down

The first menu is displayed when the user right-clicks inside the left side of the tree. The other two menus are

displayed when the user clicks the Add and Insert buttons. The Add or Insert menus are also displayed as submenus

in the tree menu.

The IDs of the menus and named group separators are listed in the following table:

ID

Group separator defined

in ITestEditorActionIDs

org.eclipse.hyades.test.ui.editor.TestSuiteEditorPart.tree.menu

• additions.new-start

• additions.new-end

• additions.edit-start

• additions.edit-end

• additions.find-start

• additions.find-end

• IWorkbenchActionConstants.MB_AD­

DITIONS

org.eclipse.hyades.test.ui.editor.TestSuiteEditorPart.action_­

add • IWorkbenchActionConstants.MB_AD­

DITIONS

org.eclipse.hyades.test.ui.editor.TestSuiteEditorPart.action_­

insert • IWorkbenchActionConstants.MB_AD­

DITIONS

931

HCL OneTest Performance

932

Creating actions
You can use the com.ibm.rational.common.test.editor.framework.extensions.ExtActionHandler class to remove,

move up, and move down menu buttons

About this task

The editor or protocol extensions that are needed to manipulate the test, and the test add, remove, insert specific

model elements, must use the NewModelElementAction class as described in the following conditions:

1. For every model element displayed in the tree, the com.ibm.rational.common.test.editor.framework.Test

Editor class expects to find an instance of the

com.ibm.rational.common.test.editor.framework.extensions.ExtActionHandler class and some

com.ibm.rational.common.test.editor.framework.kernel.actions.NewModelElementActions

registered in com.ibm.rational.common.test.editor.framework. TestEditorplug-in’s

com.ibm.rational.common.test.editor.framework.RptMenuManager.

2. The ActionHandlers are declared in the plugin.xml file, while the

com.ibm.rational.common.test.editor.framework.kernel.actions.NewModelElementAction class must be

created and registered programmatically through the protocol plug-in class. Only one set of actions is needed

for multiple editors, because this class is context sensitive.

3. The ActionHandlers of the selected elements are asked whether to enable the Remove, Move up and Move

down buttons . The com.ibm.rational.common.test.editor.framework.extensions.ExtActionHandler examines

the selection, looks for the objects of the recognized types, and then returns a value of true or false.

4. To enable or disable Add and Insert buttons and menus, the TestEditor class passes the selection to each

of the registered com.ibm.rational.common.test.editor.framework.kernel.actions.NewModelElementAction

instances. The action is expected to examine the selection, and enable or disable its state, based on whether

this action can add its model object to the selected item.

5. The ID of each com.ibm.rational.common.test.editor.framework.kernel.actions.NewModelElementAction

or the derived type must match the type of the model object that this action represents. The ID

must have the same value as the one used in the modelObjectDescriptor extension point. The

com.ibm.rational.common.test.editor.framework.Test Editor class uses this value to locate various

providers for the specific model element.

6. There are two separate sets of actions maintained by the

com.ibm.rational.common.test.editor.framework.RptMenuManager class, the Add and the Insert actions. While

objects of the same type can be registered for both, the same instances of the same class cannot. This

means that two instances of the AddObject action must be created and registered. If the object cannot be

inserted, the insert action is not required. The same is true for the add action.

7. If an action is selected, the action calls its correspondent ActionHandler to create a new model object. At

this point, the ActionHandler class must create and initialize a new model object, including any required

children. The action will add the new model object to the selected parent, but only if the selected parent

ContentProvider returns a list of the children that have EList type, the native model list. For a composite list of

Chapter 8. Test Execution Specialist Guide

children, for example the ArrayList assembled by provider, the ActionHandler is expected to add a new child

to the parent.

8. The protocol writers must use the LoadTestNewModelElementAction class as the base class for creating

actions. The class supports filtering by feature.

Editor layer extension points
The editor layer enables you to write protocol extensions. During the initialization process, a number of extension

points are checked for extensions that define different aspects of the test editor.

The editor layer extends classes from the common framework layer to provide specific implementations for their

models. The extensions must be defined in the protocol-specific plug-ins extending the test editor.

Extension point Description

dataCorrelationHandler

• Defines an entry in the Data Correlation Handler

Selection window. The handlers are queried and

displayed in a dialog for the user to choose when

there is more than one protocol capable of creat­

ing data correlation objects out of the selected

text.

• The user interface descriptor of a handler is

matched to its data correlation package through

the typeID attribute in the extension point.

dataCorrelationUICategory

• Defines a category for grouping built-in data

sources that are represented in the user interface

by the dataCorrelationUIDescriptor extension

point.

dataCorrelatorUIDescriptor

• Provides visual representation for built-in data

source types. These are grouped under data cor­

relation user interface categories in the Built-in

Datasource Selection Wizard. The wizard is dis­

played when the user wants to create data corre­

lation with a built-in data source.

wizardPageContributor

• Used for contributing a protocol specific page or

pages to the New Test Wizard.

933

HCL OneTest Performance

934

The protocol handler can make a contribution to the details page of the test to protocol-specific test-wide options.

If your protocol needs to support data correlation, you can use the class DataCorrelationLabelProvider. The class

contains several methods to use with data correlation. Many of the methods deal with display aspects of the data

correlation objects.

In data correlation there must be an attribute name assigned to every field or property of a model object that supports

data correlation. These names are used for many purposes, one of which is to provide formatted labels for data

correlation objects. Because the LoadTest editor creates labels early in a process cycle, these labels may not contain

detailed formatting instructions. To overcome this issue, higher level protocol extensions or plug-ins can register

LabelFormatters that are called when needed.

API classes

The following classes and methods can be used to extend the common editor framework:

Class Methods

com.ibm.rational.common.test.editor.frame­

work.extensions.ExtLabelProvider • getTestEditor() - Returns the TestEditor object, the Load­

TestEditor in the Performance Test Editor

.

com.ibm.rational.common.test.editor.frame­

work.extensions.ExtLayoutProvider • getTestEditor() - Returns the TestEditor object.

• getFactory() - Returns the WidgetFactory for creating wid­

gets and controls.

• getDetails() - Returns Composite which is a parent for cre­

ating controls.

Contributing error handlers
An error handler is associated with an error condition. Error handlers specify the action to take when a specified error

condition occurs. Error handlers are provided for conditions such as verification-point failures, connection failures,

server timeouts, and data-correlation problems. You can add new types of errors and error handlers.

Defining the user interface for an error handler
After you create a new type of error, you must define the user interface for the error handler. If you do not define a

user interface, the error handler is not available in the test editor or schedule editor.

To define the user interface for a new error handler, use the

com.ibm.rational.test.common.editor.framework.exceptionDefinition extension point.

The creator class can implement the com.ibm.rational.common.test.editor.framework.extensions.IExceptionCreator

class or extend the com.ibm.rational.common.test.editor.framework.extensions.DefaultExceptionCreator class.

Chapter 8. Test Execution Specialist Guide

The com.ibm.rational.common.test.editor.framework.extensions.DefaultExceptionCreator class provides a default

implementation of the IExceptionCreator element, which uses the isMyType(CBErrorType exceptionType) method.

The following is an example definition using HTTP:

<extension point="com.ibm.rational.test.common.editor.framework.exceptionDefinition">
 <exceptionTypeDefinition
 creatorClass="com.ibm.rational.test.lt.http.editor.PageTitleErrorExceptionCreator"
 defaultBehavior="0"
 defaultMessage="%PageTitle.Vp.Failed"
 forFeature="com.ibm.rational.test.lt.feature.http"

 labelProvider="com.ibm.rational.test.lt.http.editor.ui.exceptions.PageTitleVpErrorLabelProvider">
 </exceptionTypeDefinition>
 <exceptionTypeDefinition
 creatorClass="com.ibm.rational.test.lt.http.editor.ResponseCodeVpErrorCreator"
 defaultBehavior="0"
 defaultMessage="%Resp.Code.Vp.Failed"
 forFeature="com.ibm.rational.test.lt.feature.http"

 labelProvider="com.ibm.rational.test.lt.http.editor.ui.exceptions.ResponseCodeVpErrorLabelProvider">
 </exceptionTypeDefinition>
 <exceptionTypeDefinition
 creatorClass="com.ibm.rational.test.lt.http.editor.ResponseSizeVpErrorCreator"
 defaultBehavior="0"
 defaultMessage="%Resp.Size.Vp.Failed"
 forFeature="com.ibm.rational.test.lt.feature.http"

 labelProvider="com.ibm.rational.test.lt.http.editor.ui.exceptions.RespSizeVpErrorLabelProvider">
 </exceptionTypeDefinition>
</extension>

You must specify the feature ID when you define the user interface for an error handler. By specifying the feature ID,

the test editor can find the new types of errors and to filter out error types that are not applicable in multiprotocol

tests.

Controlling how available error handlers are displayed
You can control how custom error handlers are displayed in the test and schedule editors.

For any test element, all core errors and all applicable protocol-specific errors are displayed automatically in the

Details section of the Advanced page in the test editor, if the following conditions are satisfied:

• The element implements the CBErrorHost interface.

• The canHostErrors method returns true.

• The isErrorGenerator method returns false.

These conditions are tested in the createExceptionsUi method in the ExtLayoutProvider class. Typically, you do not

modify the default behavior for a test element, but it is possible to override the createExceptionsUi method. If the

createExceptionsUi method returns null, no user interface for error handling is displayed on the Advanced page in the

test editor.

935

HCL OneTest Performance

936

The ExceptionsUI class controls the user interface for error-handling on the Advanced page. The test-specific

implementation is the TestExceptionsUI class. The schedule-specific implementation is the ScheduleExceptionsUI

class. A shortcut way to create these classes is to call the createExceptionsUi method in the TestEditor class.

Note: Container objects in schedules do not display any user interface for error handling if there are no tests

inside the containers.

Controlling how error handlers for specific elements are displayed
You can control how error handlers for specified test elements are displayed.

In the test editor, users can configure error handling for a specific model element that produces an error. For example,

if a specific instance of a content verification point fails, the user can change the error-handling behavior for only

that instance of the content verification point. To change how the error handlers for protocol-specific elements are

displayed, you must know what types of errors can be generated for the element when tests run.

The test editor SDK provides classes for the display of the error-handling user interface.

The com.ibm.rational.test.lt.testeditor.main.exceptions.TestExceptionProducerUI class

controls the error-handling user interface in the Details section of the Advanced page. The

com.ibm.rational.test.lt.testeditor.main.exceptions.DialogExceptionProducerUI class controls the error-handling user

interface in dialog boxes and properties pages.

Exemple

The following code is an example for the Details section of the Advanced page in the test editor. In the layoutControls

method, add code similar to these lines:

m_exceptionUi = new TestExceptionProducerUI(
 getTestEditor(),
 new AuthenticationExceptionCreator());
m_exceptionUi.createErrorProducerContents(
 getDetails(),
 getNtlm(),
 (LoadTestWidgetFactory) getFactory());

The AuthenticationExceptionCreator class is the same class that is specified in the plugin.xml file in the

exceptionDefinition extension point. In the refreshControls method, add code similar to this line:

m_exceptionUi.refresh(getNtlm());

The following code is an example for dialog boxes and properties pages. In the createContents method or the

createDialogArea method, add code similar to these lines:

m_errorHandling = new DialogExceptionProducerUI(
 m_page.getEditor(),
 new PageTitleErrorExceptionCreator());
m_errorHandling.createErrorProducerContents(parent, vp);

In the onCancelPressed method, which is called when the user clicks Cancel in a dialog, add code similar to this line:

Chapter 8. Test Execution Specialist Guide

m_errorHandling.cleanUp();

When the user clicks OK in a dialog or property page, the changes are applied to the CBError object immediately, so

no extra code is required. When the user clicks Cancel in a dialog or property page, the changes must be undone

using the cleanUp method.

To receive notifications when changes are made to a CBError object, override the updateEditor method by using this

code:

m_errorHandling = new DialogExceptionProducerUI(
 TestEditorPlugin.getEditorFor(m_datapool),
 new EndOfDatapoolExceptionCreator()){
 @Override
 protected void updateEditor() {
 getButton(OK).setEnabled(true);
 super.updateEditor();
 }
 };
 m_errorHandling.createErrorProducerContents(composite, m_datapool, null);

Creating an error type
The core performance test model includes the generic CBError object. The CBError object is a shell that contains the

actual error, the CBErrorType object. Extend the CBErrorType object to add new types of errors, including protocol-

specific errors. Associate error-handling behavior with an error by using the CBErrorBehaviorEnum object.

The following code is an example of creating a new protocol error type from the generic error object:

public abstract class ProtocolErrorTypeImpl extends CBErrorTypeImpl implements ProtocolErrorType {
 /**
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @generated
 */
 protected ProtocolErrorTypeImpl() {
 super();
 }

 /**
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @generated
 */
 protected EClass eStaticClass() {
 return ErrorsPackage.Literals.PROTOCOL_ERROR_TYPE;
 }

 public boolean isErrorGenerator(){
 return true;
 }

 /**
 * Imports needed at code generation time
 * so that the test runs correctly.

937

HCL OneTest Performance

938

 */
 public List<String> getExecImport() {
 ArrayList<String> imports = new ArrayList<String>();
 imports.add("import com.ibm.rational.test.lt.execution.protocol.tes.*;");
 imports.add("import com.ibm.rational.test.lt.kernel.action.impl.KThrow;");
 imports.add("import com.ibm.rational.test.lt.kernel.services.*;");
 return imports;
 }
} //ProtocolErrorTypeImpl

The following code is an example of creating a protocol error type from another protocol error type:

public class ProtocolNewErrorTypeImpl extends ProtocolErrorTypeImpl implements ProtocolNewErrorType {
 /**
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @generated
 */
 protected ProtocolNewErrorTypeImpl() {
 super();

 }
 /**
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @generated
 */
 protected EClass eStaticClass() {
 return ErrorsPackage.Literals.PROTOCOL_NEW_ERROR_TYPE;
 }

 public String getExecType(){
 return "ProtocolNewEvent" ;
 }
} //ProtocolNewErrorTypeImpl

For model elements that generate errors, declare these elements to be error generators by using this code:

public boolean isErrorGenerator(){
 return true;
}

Implementing code generation for error handling
During code generation, test elements are translated into code language elements. You must implement code

generation for new error-handling methods.

To learn more about code generation, see Extending code generation on page 943.

Complete these steps to implement code generation for objects that do not generate errors:

Chapter 8. Test Execution Specialist Guide

• For Script objects, add the <PARAM name="codegen.core.attributes"> parameter to the creation template

for the method. For KAction objects, add the <PARAM name="codegen.core.attributes"> parameter to the

execute() method.

• Add a call to the translateCoreAttributes() method. For example, the LTTestScriptDefinition class now includes

this call:

LTTestTranslator.translateCoreAttributes(scriptTemplate, null, (CBActionElement)test);

Complete the following steps to implement code generation for methods that generate errors, such as connection

failures and authentication failures:

• Add the <PARAM name="errorBehavior"> parameter to the creation template for the method.

• Add a call to the translateErrorBehavior() method. For example, code generation for the BasicAuthentication

object in HTTP includes these calls:

 CBError err = (bAuth.getCBErrors().size()==0)?null:(CBError)bAuth.getCBErrors().get(0);
 translateErrorBehavior(err, bAuthElem, ILanguageElement.TEMPLATE_CREATION);

Implementing execution for error handling
Events that require error handling at run time must have an associated errorBehavior action. Extend the

RPTEventGenerator class to specify event behaviors.

KAction objects handle events by implementing the IRPTEventHandler method. When an event such as a verification-

point failure or connection failure occurs, make the following call to the KAction object that is the parent of the event:

KAction.registerEvent(eventType, eventBehavior);

In the previous example, the eventType parameter is the type of failure. The eventBehavior parameter is the action to

take when the failure occurs.

During the KAction.finish() procedure, all registered event behaviors are processed. Behaviors that are registered

for a specific event are processed. Applicable behaviors that are specified at a higher level in the event hierarchy are

processed.

The following code implements the RPTEventGenerator class:

public abstract class RPTEventGenerator implements IRPTEventGenerator{
 RPTEvent behavior = null;
 boolean behaviorSet = false;
 IKAction act = null;
 RPTEvent eventType;

 public void setEventBehavior(IKAction act, RPTEvent eventType, RPTEvent behavior){
 behaviorSet = true;
 this.behavior = behavior;
 this.act = act;
 this.eventType = eventType;
 }

 public RPTEvent getEventBehavior(){

939

HCL OneTest Performance

940

 return behavior;
 }

 public RPTEvent getEventType(){
 return eventType;
 }

 public KAction getAction(){
 return act;
 }
}

The following code examples demonstrate how to implement error handling at run time for the ServerConnection

class.

public class ServerConnection extends RPTEventGenerator implements IServerConnection {

public ServerConnection(String name, int port, ISSLInfo sslInfo,
 INtlmAuthenticationContext ntlmContext,
 IProxyServerInfo proxyServerInfo,
 boolean closeWhenTestCompletes, RPTEvent behav) {
 this.serverAddr = new InetAddressInfo(name, port);
 this.sslInfo = sslInfo;
 this.ntlmCxt = ntlmContext;
 this.proxyInfo = proxyServerInfo;
 this.inUse = true;
 this.closeWhenTestCompletes = closeWhenTestCompletes;
 setEventBehavior(null, new RPTConnectEvent(), behav);
 }
}

The behavior for a server connection failure now includes the following code:

 registerEvent(((IRPTEventGenerator)m_Request.getServerConnection()).getEventType(),
 ((IRPTEventGenerator)m_Request.getServerConnection()).getEventBehavior());

Extending the schedule component
When you extend the schedule component in performance testing, another plug-in can contribute options to a

schedule. Those options can be set up to persist in the schedule model, and a corresponding user interface can be

displayed for editing the new options.

About this task

Another plug-in can contribute options to a schedule, have them persisted in the schedule model, and have a

corresponding user interface displayed to edit those options. A schedule object represents a performance testing

schedule. It is the main object in the schedule model. Schedules can have only one type of element added to them,

a UserGroups object. You can use the com.ibm.rational.test.common.schedule.UserGroup interface to add a user

group to a schedule.

The mechanism to extend scheduling is similar to the mechanism used to extend the test editor. See the "Extending

the test editor" topic for more information.

Chapter 8. Test Execution Specialist Guide

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Extension points for extending schedules
During the process of extending the schedule object, a number of extension points are checked to determine whether

they extend different aspects of the schedule object.

The following table lists the extension points:

Exten­

sion point Description

com.ibm.ra­

tional.test­

.common­

.schedule.ed­

itor.option­

Provider

This extension point enables a contributor to add options when a new schedule object is created

through the File > New wizard command. The class attribute must be set to a class that implements

the IOptionProvider interface from the com.ibm.rational.test.common.schedule.extensions pack­

age. A child node, forTypes, must be added also, with the type attribute set to com.ibm.rational­

.test.common.schedule.Schedule.

com.ibm.ra­

tional.test­

.common.ed­

itor.frame­

work.testOp­

tions

This extension point enables a contributor to specify that the user interface code display or edit the

options.

• Set the label attribute to the desired label string. Each set of contributed options will appear

under its own tab in the editor.

• Set the order attribute, if desired. A value of zero (0) must not be used, because it is used by

the User Load tab.

• Set the forTestType attribute to com.ibm.rational.test.common.schedule.Schedule.

If you are contributing options for both the Test and Schedule objects, you must create two in­

stances of the extension definition in your plugin.xml file.

Public APIs for extending schedules
The public APIs contain the public interfaces and classes that you can use to extend the Schedule object.

The following table lists the public interfaces and classes:

941

HCL OneTest Performance

942

Classes and

interfaces Description

com.ibm­

.rational­

.test.com­

mon.sched­

ule.editor­

.extension­

s.IOption­

Provider

• The IOptionProvider interface is used in conjunction with the optionProvider extension point

to allow contributors to initialize and add their options to a Schedule object when it is created

by using the File > New wizard command.

• The class has the method public void setDefaultOptionValues(Schedule theSchedule),

which is called after the schedule object is created. In this method, create your option object.

This object must be a subclass of the com.ibm.rational.test.common.models.behavior.CBOp­

tion class.

• Once you have created the schedule object, you can add the option object to the schedule ob­

ject by calling the addOptions() method on the schedule object. See the Javadoc information

for more details about the schedule interface.

com.ibm.ra­

tional.test­

.common.mod­

els.behav­

ior.CBOption

• This class has no functionality. It only serves as a common type for options that are added to

test and schedule objects.

com.ibm.ra­

tional.test­

.common­

.schedule­

.Schedule

• For option contributors, the important method is the boolean addOptions(CBOption options)

method. Use this method to add your option object to the Schedule object. This should be

done through the optionProvider extension point. The method returns true if the option ob­

ject is successfully added.

• If you need to remove your options from the schedule, use the boolean removeOptions(CBOp­

tion options) method. The parameter is the option object to remove. The method returns a

value of true if the option object is successfully removed.

• Use the com.ibm.rational.test.common.models.behavior.CBOption.getOptions(String str­

Type) method to retrieve your options from the schedule object. The parameter is the ful­

ly-qualified classname of the object type you want to retrieve. Note that the return type is

CBOption, so it must correspond to the appropriate type. For example, to retrieve the gener­

al options for the schedule, the following code can be used: ScheduleOptions2 theOptions =

theSchedule.getOptions(ScheduleOptions2.class.getName());

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Chapter 8. Test Execution Specialist Guide

Extending code generation
The code generation subsystem maps Load Test Behavior Model (LTBM) elements to objects of the code generation

element model (IModelElement), which in turn are mapped to objects of its ILanguageElement class. As a result, a

language element tree is created that contains all equivalent elements of the behavior model test element tree and at

the same time determines the structure of code to be generated.

Before you begin

The language elements are typed, named, and have appropriate templates defined for them. Performance testing

code generation takes place entirely within the Eclipse workbench. The Eclipse extension point mechanism is used

for code generation extensibility to accommodate new protocols.

About this task

The com.ibm.rational.test.lt.codegen.core plug-in supports code generation for the generic Load Test script extending

the com.ibm.rational.test.lt.execution.core.impl.LTTestScript class and generic test elements such as loops,

containers, transactions, data pools, generic content verification points, data sources and substituters, and generic

custom code. Specific protocols such as the com.ibm.rational.test.lt.codegen.http plug-in are implemented as

extensions of the com.ibm.rational.test.lt.codegen.core plug-in. The com.ibm.rational.test.lt.codegen.schedule plug-

in generates schedules implemented on top of com.ibm.rational.test.lt.codegen.core functionality.

For the code generation extension sample, see the plug-in com.ibm.rational.test.lt.sdksamples.codegen.socket.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Code generation
The com.ibm.rational.test.lt.codegen.core.extLibraryDependency extension point has been modified.

The com.ibm.rational.test.lt.codegen.core.extLibraryDependency extension point has been modified in the

following ways:

• supportedFeature has been added with attribute featureName, which is the feature ID of this protocol extension

as defined by extending the com.ibm.rational.test.lt.licensing.feature extension point. If this element is

specified, and the test being generated does not contain this feature, the existence of external libraries will not

be enforced. This will prevent the developer from requiring that libraries are invalid for various OS platforms. If

the element is not defined, external libraries are enforced as before, so no existing code is broken. Essentially

these external libraries will not be enforced for tests that do not contain this feature.

• optionalExtLibraryLocation has been added with attribute pathname (the same as the one for the existing

extLibraryLocation element). Libraries defined by this element are deployed when present. If they are not

present, however, no warning will be raised. An optional external library might have the supported feature

defined, so if the test does not contain the feature, the optional library, even if it exists, will not be deployed.

• optionalExtLibraryLocation and extLibraryLocation have a new attribute, RelativetoExternalFiles. Set

this attribute to true if you are providing a library that is in the external_files directory and to false if you are

providing a library that is relative to your plug-in.

943

HCL OneTest Performance

944

Extension points for code generation
During the initialization process a number of extension points are checked for existence of extensions that define

different aspects of the code generation behavior.

These extensions must be defined in the protocol specific plug-ins extending core code generation classes.

Note: Java™ has a 64KB limit on the size of a class method code. When there is a possibility of creating large

methods that approach this limit, a check has to be programmed into the code generation extension to ensure

that the limit is not being exceeded. The guideline is to generate multiple smaller methods instead.

Extension point Description

com.ibm.rational.test.lt.codegen.core.typeDefDe­

scription

Defines language element types that specify their own

translators.

com.ibm.rational.test.lt.codegen.core.elementTrans­

latorMapping

Defines what AbstractTranslator class extensions are

responsible for generating code for code generation

model elements.

com.ibm.rational.test.lt.codegen.core.structureDefi­

nition

Defines the class that perform translation at the script

level, the ScriptDefinition class.

com.ibm.rational.test.lt.codegen.core.modelElement­

Adapter

Defines the relationship between low-level behavior mod­

el elements and code generation model elements.

com.ibm.rational.test.lt.codegen.core.modelReader Defines the class that reads the behavior model ele­

ments.

com.ibm.rational.test.lt.codegen.core.TemplateLoca­

tion

Defines the location of the directory that contains the

templates.

com.ibm.rational.test.lt.codegen.core.elementType­

TemplateBinding

Associates element types with the text templates.

com.ibm.rational.test.lt.codegen.core.elementTypeIm­

portMapping

Defines the packages to be imported into the script when

a particular element type is used in the test.

com.ibm.rational.test.lt.codegen.core.testProjectDe­

pendency

Defines the projects and the plug-ins to be added to the

test project’s class path.

Generating test code
During the initialization phase of a code generation request, an object extending the

LTTestExtensionPreferences class is created by calling all plug-ins implementing the

com.ibm.rational.test.lt.codegen.core.codegenProtocolExtension extension point through their supportFeatures()

method.

About this task

Chapter 8. Test Execution Specialist Guide

The supportFeatures()method gets the feature list of the test model object, and if it determines that it supports

these features, it returns the appropriate LTTestExtensionPreferences object. The returned object implements the

com.ibm.rational.test.lt.codegen.core.config.IExtensionPreferences interface, which is the public part of the

LTTestExtensionPreferences class.

The code generation is controlled by the com.ibm.rational.test.lt.codegen.core.CodeGenerator class. This class

uses an EclipseCodegenConfiguration object that stores the hash maps for translators, the model element adapters

and the templates that are determined by language element types. The container test elements, data pools, and

some other independent protocol-specific elements have their own translators defined. Elements that cannot exist

on their own are translated as children of their containing elements by calling the translateChildren() method of the

translator.

The code generator determines the proper translator and calls its getTranslationFor() method for the given model

element.

The ElementAdapter class with its getAdapterForType() method determines the proper code generation model element

for the given Behavior Model element.

The translation of test elements involves the following steps:

1. The test elements are read from the behavior model, and the appropriate translator is determined for each of

them.

2. The language element object is created for the element and its template is determined.

3. The element attributes are read from the model and their corresponding parameters are substituted in the

template.

Results

The generation of the code language elements is recursive and generates the language element tree containing

all levels of the execution model test elements, each with the template object instantiated and containing all the

requested test substitutions. The tree is implemented by using the language element containers as its nodes. The

template substitutions for the language element containers for parameters defining multiple elements are processed

by the LangElemCollectionValue class.

Creating the script class
After all model language elements are processed and the code language elements created, the code for the script

class is generated.

About this task

The global script variables need to be declared at the top of the script, and their number and types are not known until

all test elements are processed. The names of these variables and other associated information are gathered during

the processing of the test element tree and are stored as temporary attributes of the test elements in the test model.

The script class creation is accomplished by the ScriptDefinition class and is based on a separate script template.

945

HCL OneTest Performance

946

The script template declares the imports and the script globals. It contains the parameters for script type-specific

declarations and for methods creating and returning the test elements.

The creation of the top-level script class and test project involves the following steps:

1. The language element tree and the top level script element are created.

2. The generation of script text is performed and the text is stored in Eclipse storage units.

3. The test project is configured, the class path is determined and updated, and the project is built.

Exemple

The following code represents an example of the script code structure:

package customcode;

import com.ibm.rational.test.lt.execution.http.IHTTPRequest;
...

public class Google_Test_C240F3CB2D546DE2A9BDE160BDA411D9 extends
 com.ibm.rational.test.lt.execution.protocol.impl.HTTPTestScript {

 //GLOBAL DECLARATIONS
 private IBuiltInDataSource bds1 = new
 com.ibm.rational.test.lt.kernel.custom.impl.timestampdatasource();

 { builtInDCVars[50] = new BuiltInCorrelationVar(bds1);

 builtInDCVars[50].setProperty(1, "16");
 builtInDCVars[50].setProperty(2, "16"); }

 //TEST CLASS CONSTRUCTOR
 public Google_Test_C240F3CB2D546DE2A9BDE160BDA411D9(IContainer container, String
 invocationId) {

 super(container, "google", invocationId);

 setTimeoutScheme(IKTimeoutControl.CONTINUE);
 setArmEnabled(false);

 public void execute() {
 this.add(page_1(this));
 ...
 super.execute();
 }

 //page_1 CREATION METHOD
 private HTTPPage page_1(IContainer parent) {

 HTTPPage page = new HTTPPage(parent, "Google",) {

 public void execute() {
 this.add(request_1(this);

Chapter 8. Test Execution Specialist Guide

 ...
 super.execute();
 }

 };
 return page;
 }

 //request_1 CREATION METHOD
 private HTTPAction request_1(IContainer parent) {
 HTTPAction reqAction = new HTTPAction(parent,);

 harvestContainer_16.addHarvestInstruction ("resp_content", dcVars[50], ..);

 return reqAction;

 }

}

Code generation templates
The code generation subsystem uses declaration templates and creation templates.

The declaration templates contain code for declarations of the methods and classes creating the test element. The

creation template contains code that calls these methods to instantiate the test element objects.

The type of the template is reflected in the template name and is defined by the

com.ibm.rational.test.lt.codegen.core.elementTypeTemplateBinding extensions.

Note: It is possible to have name conflicts between code generation templates with the same names that

come from different protocol extensions. Use template names containing a protocol name (for example:

HTTPScript.template) to avoid this problem.

Exemple

The following example shows a creation template for a DCSubstituter object:

ISubRule sub_<PARAM name="subRuleIdx> = newSubRule(<PARAM name="targetAttr">",
 <PARAM name="offset">,
 <PARAM name="length",
 <PARAM name="isEncoded",
 <PARAM name="dataSourceVarName">,
<PARAM name="parentInstancename">, addSubInstruction (sub_<PARAM name="subRuleIdx">);

New protocol extensions
This section describes the implementation of the code generation subsystem extension for the socket protocol as an

example of using code generation extensibility features.

A dedicated code generation plug-in, called com.ibm.rational.test.lt.sdksamples.codegen.socket was created with

subpackages of config, lang, and model. The socket code generation subsystem extends the capabilities of the

codegen.core plug-in.

947

HCL OneTest Performance

948

The config package contains the SocketExtensionPreferences class which contains the supportsFeatures() method

that expresses interest in tests with feature lists containing the socket feature. Also, its getSupportedModelElements()

method declares which translator-associated model element types this codegen extension will support.

The lang package contains two main classes, a script definition (SocketScriptDefinition) class and a translator

(SocketTranslator) class. The classes extend the appropriate super classes from the codegen.core plug-

in, and defining methods for translating script and test elements. The script definition class overrides the

doScriptLevelTranslation() method which, after calling its superclass, translates all socket script template

parameters specific to the socket protocol. The translator class overrides the getTranslationFor() method, handling

all non-socket functionality by calling its superclass, and all socket-specific test elements and parameters locally.

The model package contains the SocketElementAdapter class, which implements a getAdapterFor() method that

states what Common Behavior element type this protocol extension handles, and returns the corresponding codegen

model element.

The template directory was also added to the protocol extension plug-in, and socket-specific templates were created

and placed there. All necessary extensions were defined in the protocol extension plugin.xml file.

For the code generation extension sample, see the plug-in com.ibm.rational.test.lt.sdksamples.codegen.socket.

Public APIs of codegen.core
The public APIs contain the public interfaces and classes used to extend the code generation core subsystem.

The following table lists the public interfaces and classes:

Package Public classes and interfaces

com.ibm.rational.test.lt.codegen.core.config

• IExtensionPreferences

• InitializationException

• ConfigurationException

com.ibm.rational.test.lt.codegen.core.template

• ITemplate

• Template

• ITemplateParameter

• LangElementCollectionValue

• LangElementParameterValue

com.ibm.rational.test.lt.codegen.core.lang

• IStructureDefinition

• ILanguageElement

• LanguageElement

• ITranslator

Chapter 8. Test Execution Specialist Guide

Package Public classes and interfaces

• ICoreTranslationConstants

• TranslationException

com.ibm.rational.test.lt.codegen.core.model

• IModelElement

• ModelElement

• IModelElementAdapter

com.ibm.rational.test.lt.codegen.lttest.config

• LTTestExtensionPreferences

com.ibm.rational.test.lt.codegen.lttest.lang

• ILTTestTranslationConstants

• LTTestScriptDefinition

• LTTestTranslator

com.ibm.rational.test.lt.codegen.lttest.model

• LTTestElementAdapter

Extending the run-time environment
The run-time environment defines the plug-ins on which all other plug-ins depend. The run-time environment is

responsible for defining a structure for plug-ins and the implementation detail behind them.

Blocked Action detection
The performance testing execution engine provides the capability of detecting that an Action is blocked. The

definition of blocked is provided by the author of the Action. The definition is provided as an amount of time an

Engine Worker Thread is allowed to be unresponsive in the course of executing the Action before it is considered

blocked. The performance testing execution engine logs the detection of blocked actions at level FINEST in the

Problem Determination Log. In the simplest case, the run would be hung, and discovery of the blocked action would

come from examining the Problem Determination log after clicking Stop to end the run.

In addition to detecting blocked actions, a protocol can be notified that the action is blocked. A reference to the

blocked Eengine thread is provided with the action, making it possible for a protocol to send a message to the

blocked thread. Upon notification of an action being blocked, the protocol can retry the action, finish the action and

move to the next action, or finish the virtual user execution.

The IKAction interface will provide the following method as an entry point for protocols to react to a blocked action

condition:

949

HCL OneTest Performance

950

public void blocked(). The KAction object state, upon entering blocked(), is potentially corrupted. The protocol writer

must assume any or all data associated with the Action is not safe. Also, any locks which may have been held during

execute() have been released.

public long getBlockedTimeout()

Returns the action blocked timeout value. Default is 0, which means block indefinitely

public WorkerThread getWorkerThread()

Returns the Engine WorkerThread executing the action when the blocked state was detected.

IEngine

The performance testing engine interface has added public boolean createWorker(). The purpose of createWorker()

is to allow the sentinel thread monitoring workers to add additional workers in response to having removed workers

found executing blocked actions.

Extending subsystem management during a test run
A subsystem is a collection of classes in a discrete component within the performance testing engine that provides a

service to many actions. For example, in test execution, the KernelWait subsystem manages think and sleep time for

virtual users while a test is running.

About this task

Here are additional examples of the services that subsystems provide:

• Tracking server responses. For example, consider tests in which an HTTP request is sent to a server, and you

need to know when the response returns. Instead of tying up a thread to wait for the response, a subsystem

can do this while the rest of the threads perform other actions. The subsystem can provide notification or

reissue an action when the server response occurs.

• Handling asynchronous communication.

• Managing the sleeping action for virtual users.

• Managing logging. For example, creating a custom execution history can take a long time. You can assign a

subsystem to do this without tying up a thread with this process. You can set up a subsystem to take care of

the special logging actions while the rest of the actions perform other things.

Creating the performance test engine subsystem sample

A performance test engine subsystem provides services to one or more actions. An action that uses a subsystem

during a test run is known as a recurrent action. Most actions contain finish() at the end of their execute(). A recurrent

action requests service from a subsystem before the end of execute(). After the service is provided, the subsystem

that provides the service updates state information in the action and reissues the action for execution. Based on the

state information, a performance test engine worker thread takes a different course of execution during the recurring

call to execute() and eventually calls finish() to end the action.

Chapter 8. Test Execution Specialist Guide

The following list gives an overview of the steps that are required to use this sample:

• Creating the performance test engine subsystem sample

• Informing the performance test engine of the existence of the subsystem

• Creating a simple test and schedule

• Adding SampleAction and SampleSubsystem to the project

• Running the schedule with SampleAction using SampleSubsystem

Informing the test engine that the subsystem exists
Subsystems are identified to the performance test engine with extensions. Typically, a new protocol indicates in its

plugin.xml file the class name of the subsystem that it is providing. This example modifies an existing performance

test plug-in and specifies the class name of the sample plug-in in the plugin.xml file.

About this task

To identify the subsystem to the performance testing engine, complete the following steps.

1. Open a command prompt, and change directory to the HCL OneTest™ Performance plug-ins directory.

2. Save a copy of the existing HTTP execution JAR. For example: C:\HCL\common

\plugins>copy com.ibm.rational.test.lt.execution.http_7.0.0.v200609010404.jar

com.ibm.rational.test.lt.execution.http_7.0.0.v200609010404.jar.orig

3. Make a new copy of the HTTP execution JAR for modification. For example: C:\HCL\common\plugins>copy

com.ibm.rational.test.lt.execution.http_7.0.0.v200609010404.jar foo.jar

4. Extract the plugin.xml file. For example: C:\HCL\common\plugins>jar xvf foo.jar plugin.xml Note: You must

have a Java™ SDK in your PATH statement so that you have access to the JAR utility.

5. Add these lines to the plugin.xml file just above the </plugin> line at the bottom:

Example

<extension
 point="com.ibm.rational.test.lt.execution.Subsystem">
 <Subsystem
 feature="com.ibm.rational.test.lt.feature.lt"
 class="test.SampleSubsystem"/>
</extension>

6. Start HCL OneTest™ Performance with the -clean option so that the plug-ins are reloaded, for example: C:\IBM

\RPT>eclipse –clean.

Creating a simple test and VU Schedule
You must create a simple performance test and VU Schedule. By creating and playing back a test and a VU Schedule,

code is generated for both. Later, you will modify the generated test code so that the test contains a special action

that uses the sample subsystem.

1. Create a performance test project (File > New > Performance Test Project).

2. Type a project name, for example, testproj, and then click Finish.

3. When the Create New Test From Recording prompt opens, click Cancel.

951

HCL OneTest Performance

952

4. Right-click testproj and select New > Test.

5. Expand Test Assets, select New Test, and then click Next.

6. Name the test, for example, subtest, and then click Next.

7. In the Test Attributes window, click Next.

8. In the Protocols and Features window, select the HTTP Protocol check box.

9. In the HTTP Extension window, in the Number of HTTP pages to generate field, type 0 (zero).

10. Specify the connection details and click Finish.

11. Right-click testproj and select New >Performance Schedule.

12. Type a name for the schedule, for example, Schtest, and then click Finish.

13. Select User Group 1, and then click Add > Test.

14. Select subtest, click OK, and then click File > Save.

15. Right-click Schtest, and then select Run as > Performance Schedule.

Adding SampleAction and SampleSubsystem to the project
Import the performance test and schedule source files into the testproj project.

1. Open the Java™ perspective, open src, and then right-click test.

2. Select Import.

3. Import SampleAction.java and SampleSubsystem.java.

4. Edit the generated subtest file. The name will begin with Subtest_Test_ and end in .java.

5. At the bottom of the constructor for the test, add the following line: add(new SampleAction(this, "Sample

Action"));

Running the schedule with SampleAction using SampleSubsystem
Modify the generated test code to use SampleAction, so that the subsystem is active during the next playback.

1. Right-click the schedule and select Run As > Performance Schedule.

2. When the run completes, right-click the results in the Performance Test Runs view and select Display Test

Log.

3. Click Events.

4. Open the test log hierarchy and navigate through the events of the schedule playback. Look for message

events where SampleAction indicates it is requesting service from the subsystem, and where SampleAction

recognizes that it has received services from SampleSubsystem.

SampleAction.java code sample
This is an example of SampleAction.java.

Exemple

SampleAction.java

package customcode;

Chapter 8. Test Execution Specialist Guide

import com.ibm.rational.test.lt.kernel.IKSubsystem;
import com.ibm.rational.test.lt.kernel.action.IContainer;
import com.ibm.rational.test.lt.kernel.action.impl.KAction;

public class SampleAction extends KAction {
 final String subsystemName = "test.SampleSubsystem";
 private boolean serviced = false;

 public SampleAction(IContainer arg0, String arg1) {
 super(arg0, arg1);
 // TODO Auto-generated constructor stub
 }

 public void execute() {
 if (serviced) {
 reportMessage("SampleAction execute(): service completed");
 finish();
 } else {
 IKSubsystem subsystem = getSubsystem(subsystemName);
 if (subsystem != null) {
 reportMessage("SampleAction execute(): requesting service");
 subsystem.enqueue(this);
 } else {
 reportMessage("SampleAction execute(): Cannot find subsystem '" + subsystemName + "'");
 finish();
 }
 }
 }

 public void setServiced() {
 serviced = true;
 }
}

SampleSubsystem.java code sample
This is an example of SampleSubsystem.java.

Exemple

SampleSubsystem.java

package customcode;

import com.ibm.rational.test.lt.kernel.action.IKAction;
import com.ibm.rational.test.lt.kernel.engine.impl.Queue;
import com.ibm.rational.test.lt.kernel.impl.KSubsystem;

/**
 * Sample HCL OneTest™ Performance Engine Subsystem
 */

public class SampleSubsystem extends KSubsystem {
 private Queue sampleSubsystemQueue;
 private boolean stopRequested = false;
 private SampleAction client;

953

HCL OneTest Performance

954

 public SampleSubsystem(String name) {
 super(name);
 sampleSubsystemQueue = new Queue();
 sampleSubsystemQueue.setBlocking(true); // Allows for waiting for something to appear on the queue
 }

 /*
 * Actions enter the subsystem for service via a call to enqueue().
 * An action can get a reference to the subystem using the IKAction
 * getSubsystem() method.
 *
 * @see
 com.ibm.rational.test.lt.kernel.IKSubsystem#enqueue(com.ibm.rational.test.lt.kernel.action.IKAction)
 */
 public void enqueue(IKAction action) {
 sampleSubsystemQueue.enqueue(action);
 }

 /*
 * Message to the subsystem to stop.
 *
 * @see com.ibm.rational.test.lt.kernel.IKSubsystem#shutdown()
 */
 public void shutdown() {
 stopRequested = true;
 }

 /*
 * @see java.lang.Thread#run()
 */
 public void run() {
 while(!stopRequested) {
 ringIn(); // Informs engine subsystem is healthy
 client = null;

 // If nothing to do wait for work
 updateJob("Idle");
 client = (SampleAction)sampleSubsystemQueue.dequeue(pingTime);

 // This subsystem's work will be to touch an attribute of the action
 if (client != null) {
 updateJob("Servicing " + client.getName()); // Good for debugging

 client.setServiced();
 dispatch(client); // Serviced action leaves subsystem
 }
 }
 }
}

Extending initialization and finalization during a test run
You can specify code for your protocol to be executed by the HCL OneTest™ Performance engine threads at strategic

points during startup and shutdown. For example, you can specify code to load libraries, unload libraries, or perform

other initialization or cleanup as required by the protocol.

Chapter 8. Test Execution Specialist Guide

Before you begin

You create a class that implements IKInitializeFinalize. The interface requires the following methods:

• public void initializeEngine()

• public void finalizeEngine()

• public void initializeWorker()

• public void finalizeWorker()

• public interface IKInitializeFinalize

The IKInitializeFinalize interface provides a way for protocols to specify code that must be executed to the HCL

OneTest™ Performance engine:

• once by the engine at startup

• once by the engine at shutdown

• once by each engine worker thread at startup

• once by each engine worker thread at shutdown

Use this startup and shutdown code when it is necessary for the engine to execute initialization or shutdown code.

Also use this code for each worker thread before test execution occurs or after test execution finishes.

1. Specify a dependency on com.ibm.rational.test.lt.execution in the plugin.xml file of a protocol.

2. Use Add under plugin Extensions to specify an extension for

com.ibm.rational.test.lt.execution.InitializeFinalize.

3. Create a new extension element called InitializeFinalize. This element must have the following properties:

Choose from:

◦ class: The class name that implements IKInitializeFinalize

◦ id: The protocol feature ID

◦ dependsOn: Leave blank

Example

For example:

◦ class="com.ibm.rational.test.lt.execution.http.impl.HTTPInitializeFinalize"

◦ id="com.ibm.rational.test.lt.feature.http"

◦ dependsOn=

Public APIs for run time
The public APIs contain the public interfaces and classes that you can use to extend the run-time environment

functionality.

The following table lists the public packages:

955

HCL OneTest Performance

956

Package Description

com.ibm.rational.test.lt­

.kernel

Contains the factory, counter, monitoring, and constants classes.

com.ibm.rational.test.lt­

.kernel.action

Contains the classes and interfaces necessary to define conditions and the basic

functionality that all kernel actions should implement

com.ibm.rational.test.lt­

.kernel.arbitrary

Contains the IArbitrary interface.

com.ibm.rational.test.lt­

.kernel.custom

Contains the interfaces that enable additions of custom code to a performance test.

com.ibm.rational.test.lt­

.kernel.engine

Contains the interfaces used to manage the process of arranging actions onto

queues.

com.ibm.rational.test.lt­

.kernel.io

Contains the interfaces that get the buffer factory.

com.ibm.rational.test.lt­

.kernel.library

Contains the class that loads the library.

com.ibm.rational.test.lt­

.kernel.logging

Contains the interfaces to manage the cache.

com.ibm.rational.test.lt­

.kernel.runner

Contains the IRatlRunner interface.

com.ibm.rational.test.lt­

.kernel.services

Contains the interfaces for dataset, loop control, test information.

com.ibm.rational.test.lt­

.kernel.statistics

Contains the interfaces for statistical counters.

com.ibm.rational.test.lt­

.kernel.util

Contains the interfaces and classes for kernel utilities.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Extending the test log viewer
After running a test, the test results are saved in a test log. Use the Test Log viewer to check the results for specific

events, such as the script start and end, loop, invocation, message, or verdict.

About this task

You can extend the test log viewer for your protocol. For information about how to do this, see the Testing

Performance Tools Platform (TPTP) documentation.

Chapter 8. Test Execution Specialist Guide

Extending evaluation results
Reports are a specification of how performance test data should be extracted from the statistical model and

presented to the user.

About this task

The persisting reports contain no statistical data. After a report is created, it can be focused on any statistical model.

The user interface components for evaluation results are the Performance Test Runs view, Results Viewer, Report

Wizard, Execution History Viewer (TPTP), Protocol Data view and Properties view in Eclipse. For details about how to

use the user interface components, see the "Evaluating results" topic in the product information center.

Besides the user interface components, generic counters and aggregators also enable you to extend

the evaluation of results. The generic counters represent the mechanism for specifying the model path

of statistical data to be displayed in the Results Viewer. The generic counters are specified with the

com.ibm.rational.test.lt.execution.results.DynamicCounter extension point. The aggregators calculate the majority of

the data contained in the statistical model and reduce the amount of data that must be transmitted. The aggregators

are deployed through the com.ibm.rational.test.lt.execution.results.data.aggregation.Aggregator extension point. For

details about generic counters, see the "Generic counters" topic in the product information center. For details about

extending evaluation results with aggregators and other classes and interfaces, see the Javadoc information.

For an example of extending evaluation results, see the plug-in com.ibm.rational.test.lt.sdksamples.results.socket.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

Aggregation of statistical data
To minimize network load, the guideline is to send only a minimal subset of the statistical data that can be used to

aggregate the remainder of the statistical data. This aggregation is handled by the aggregation subsystem. There

are two primary types of aggregators: transfer aggregators and standard aggregators. Transfer aggregators transfer

data of like origin from individual nodes to the All Hosts node. Standard aggregators calculate additional data based

on the data sent across the network from the execution engine. An example of a transfer aggregator task is creating

the counter "Pages/Response Time/Google/Average interval" on the All Hosts node by considering the same counter

from three drivers. An example of a standard aggregator task is calculating counter "Pages/Response Time/Google/

Average cumulative" on the All Hosts node by tracking and weighting each "average interval" value in real time.

For more information on aggregation, refer to the Javadoc information for the following transfer aggregators:

• MaxTransferAggregator

• MinTransferAggregator

• ScalarTransferLastValueAggregator

• AverageTranferAggregator

as well as the following standard aggregators:

957

HCL OneTest Performance

958

• AverageAggregator

• MaxAggregator

• MinAggregator

• PercentAggregator

• PercentAggregator_NonInclusive

• RateAggregator

• TotalScalarAggregator

Extending report counters
In performance test reports, generic counters are collectable queries in the user interface that dynamically gather

specific information from the statistical model, such as the number of page hits, the response time, the response

success, and information about verification points. Counters are dynamic. The counter wizard is used to add counters

to reports. You can extend the counter wizard for specific protocols.

About this task

You extend the counter wizard in the ReportAction extension point, which is contained in the

com.ibm.rational.test.lt.execution.results plug-in.

Note: Any report that provides mean average data now also provides standard deviation data. If a protocol-

specific report contains a mean counter, the extension is able to add the corresponding standard deviation

counter onto that report.

The ReportAction extension point
ReportAction enables interactions directly on the report screen as well as in the Performance Test Runs

view. Use this extension point to enable report menus and menu items in the tree and to extend the

counter wizard for your protocol. Implementors of generic ReportActions must extend the abstract class

com.ibm.rational.test.lt.execution.results.actions.ReportAction, while implementors of AddCounterAction must

specify relevant data in plugin.xml only.

The following table describes the elements and attributes of the ReportAction extension point.

Elements and attributes Description

ReportActionGroup Provides menu groupings for ReportActions that define

the location of report actions within menus in reports.

 menuPos Position of a menu group in a report menu. Valid values:

"start" (top) "mid1," "mid2," and "end" (bottom).

ReportAction Provides interactivity on performance test reports and in

the Performance Test Runs view. Defines the behavior of

actions in reports.

Chapter 8. Test Execution Specialist Guide

Elements and attributes Description

 groupID ID of the ReportActionGroup (menu grouping) that con­

tains this ReportAction menu item.

 actionprovider Behavior provider that extends com.ibm.rational.test­

.lt.execution.results.ReportAction.

 Menutext Text for this menu item.

 Icon The project-relative path to the icon for this menu item.

 Tooltip Tooltip for menu item.

AddCounterAction Provides a wizard for adding and removing specified sta­

tistical descriptors (counters).

 groupID ID of ReportActionGroup that contains this wizard action.

 Menutext Menu text for an agent.

 Icon The project-relative path to the icon in the wizard for this

action.

 Tooltip Tooltip for this action.

 allowAllAvailable When true, a check box is displayed at the bottom of the

wizard that reads "Automatically add localizedCounter­

CategoryName counters to graphic as they appear in re­

sult." If the user selects this check box, any counter that

appears in the stat model that meets the specifications

of the AddCounter action is automatically added to the

graphic of focus. For an example of this feature in use,

see the Add/Remove Resource Counters wizard in the

performance testing product.

 agentID Returns the ID of the TRCAgent to which this add wizard

action applies. Agent IDs can be declared as "not" to

specify systems under test, for example !com.ibm.ra­

tional.test.lt.execution.results.XMLStatisticalData­

Processor. Declaring a "!" ID causes all other agents to be

included. If this attribute is blank, it defaults to com.ib­

m.rational.test.lt.execution.dataprocessor.XMLSta­

tisticalDataProcessor which is the performance testing

Statistical agent.

 wizardIcon The project-relative path to the icon that is displayed on

the wizard page.

959

HCL OneTest Performance

960

Elements and attributes Description

 modelBasePath Specifies the root path from the statistical model from

which AddCounterAction should pull counters for the add/

remove action.

 cshelpID The context-sensitive help ID for this wizard.

 localizedCounterCategoryName The localized description of the type of counters this wiz­

ard processes. This string is substituted into the wizard

to describe what the user is adding to the report. For ex­

ample, in the string "Add/Remove Resource Counters

Wizard", "Resource Counters" is the localizedCounter­

CategoryName. This name should be plural as indicated

above.

 showScale Makes data readable within the space provided for it in

the user interface. If showScale is true, the wizard enables

the user to adjust the scale of counters relative to each

other. It also enables a recommended scale to be calcu­

lated when data is added to a report from the wizard. For

an example of this feature in use, see the Add/Remove

Resource Counters wizard in the performance testing

product.

 showScope "Scope" refers to the nodes from which data is pulled

from in the statistical model. If true, the user is provid­

ed with a control to specify the scope of a counter. Valid

scopes are:

• All Locations Data is pulled from any node in the

model that has data meeting the specifications of

an AddCounterAction.

• Systems Under Test Data is pulled from any node

that does not contain an "Statistical Agent." This

signifies that the node is a "driver node."

• Selected location Data is pulled only from the

node on which the report is focused.

For an example of this feature in use, see the Add/Re­

move Resource Counters wizard in the performance test­

ing product.

Chapter 8. Test Execution Specialist Guide

Elements and attributes Description

 showAgents If true, the wizard shows agents in the tree hierarchy. If

not included or if false, descriptors are shown as the root

objects.

 defaultScope Specifies the default scope to be used by the wizard.

"Scope" refers to the nodes in the wizard from which data

is pulled from in the wizard. It can be used with or with­

out the showScope attribute. Valid entries are: "CURRENT",

"SUT", and "ALL."

Enablement Controls when actions are visible and selectable.

type Specifies selected object types for which this action

should be enabled. Any object that can be identified in a

report or in the Performance Test Runs view (PTR) can

be specified as a valid type, for example, a chart or table

as shown in the PTR or in a report.

path Controls visibility. If no path is specified, the item is visi­

ble on any selection where "type" is valid. Path also spec­

ifies the model path to the data to be referenced within

the selected object for menu-item visibility. Paths can

contain wildcards, and more than one path can be speci­

fied. An example path specification is as follows:

<path value="Pages,Response Time,*,Average
 Cumulative"/>

runstate Controls enablement (not visibility) by run state. If true,

the menu item is enabled only if a run is in progress.

Filterstate Controls enablement (not visibility) by filter state. If true,

the menu item is enabled only if the selected object is fil­

tered.

The following is an example of a ReportAction extension point.

<extension
 point="com.ibm.rational.test.lt.execution.results.ReportAction">

 <ReportAction
 groupId="com.ibm.rational.test.lt.execution.results.ImportGroup"
 menutext="%IMPORT_RESMON_COUNTERS"
 tooltip="%IMPORT_RESMON_COUNTERS_TOOLTIP"
 icon="icons/elcl16/import_resmon_data.gif"
 actionprovider="com.ibm.rational.test.lt.execution.rm.actions.ImportResourceCounters"
 <Enablement>
 <type objecttype="com.ibm.rational.test.lt.execution.results.view.countertree.MonitorTreeObject"/>
 <type objecttype="com.ibm.rational.test.lt.execution.results.view.countertree.GraphicTreeObject"/>

961

HCL OneTest Performance

962

 <type objecttype="com.ibm.rational.test.lt.execution.results.view.graphics.Graphic"/>
 <runstate active="false"/>
 </Enablement>
 </ReportAction>
 <AddCounterAction
 agentID="!com.ibm.rational.test.lt.execution.dataprocessor.XMLStatisticalDataProcessor"
 allowAllAvailable="true"
 cshelpID="add_resource_wiz"
 defaultScope="ALL"
 groupId="com.ibm.rational.test.lt.execution.results.addcountersgroup"
 icon="icons/elcl16/add_res_ctr.gif"
 localizedCounterCategoryName="%RESOURCE_COUNTERS_DESCRIPTION"
 menutext="%ADD_RESOURCE_COUNTER"
 showAgents="true"
 showScale="true"
 showScope="true"
 tooltip="%ADD_RESOURCE_COUNTER_TOOLTIP"
 wizardIcon="icons/wizban/add_res_wiz.gif"
 <Enablement>
 <type objecttype="com.ibm.rational.test.lt.execution.results.view.graphics.Graphic"/>
 <type objecttype="com.ibm.rational.test.lt.execution.results.view.countertree.GraphicTreeObject"/>
 </Enablement>
 </AddCounterAction>
</extension>

Extending default reports
You can specify the default performance report for your protocol. In the Preferences page in performance testing, the

Determine the default report based on protocols in test check box is selected by default. You can specify, for your

protocol, the report that automatically displays during a test run. You define the default performance report in the

RPTReport extension point, which is contained in the com.ibm.rational.test.lt.execution.results plug-in.

The RPTReport extension point
Use this extension point to define performance testing reports that are installed with the product and are available for

"Restore to default."

The following table describes the elements and attributes of the RPTReport extension point.

Elements and attributes Description

Report A performance testing report definition. Can be a part of

a ReportGroup; however, any report that applies only to a

specific protocol should be assigned to that protocol re­

port group.

 path The provider plug-in relative path to the .view file that de­

fines the performance report, for example:/reports/my_­

report.view.

Chapter 8. Test Execution Specialist Guide

Elements and attributes Description

 menuText A localized string for the Report menu item (for exam­

ple, "Display Performance Report"). Localize this string

using the "%" prefaced key. When this string is retrieved

from the extension, the localized value from the plug-in

resource bundle is provided. Refer to the example that

follows in this topic.

 icon Plug-in root-relative path to an icon used with the menu

of this report, for example: /icons/my_icon.gif

 restrictToPostRun To have this report available only after the run has com­

pleted, set this Boolean variable to "true."

 id A unique identifier for this report.

 PostRunGenerator Implies restrictToPostRun. If a report requires post-run

processing (for example, a Page Percentile report that

calculates its data based on the entire test run), this at­

tribute can specify an implementor of PostRunReportGen­

erator. Refer to the example that follows in this topic.

 isTemplate Note: this attribute is not currently available.

ReportGroup Grouping for protocol-specific reports. Results in a drop-

down menu labeled with text provided in menuText. All

protocol-specific reports must have a protocol group.

 menuText Text that labels the protocol group drop-down menu.

Should be localized using the "%" prefaced key.

 capability_id Note: This attribute is not currently available.

 defaultReportID The ID of the default report for the protocol associated

with this group.

 protocol_id The ID of the protocol to which this ReportGroup applies.

The following example shows an RPTReport extension point.

<Report
 menuText="%DISPLAY_TRANS_REPORT_LABEL"
 icon="icons/elcl16/trans_report.gif"
 path="reports/Transaction Report.view"
 id="com.ibm.rational.test.lt.execution.results.transactions"/>
 <ReportGroup menuText="%HTTP_REPORTS">
 <Report
 menuText="%DISPLAY_PERF_REPORT_LABEL"
 icon="icons/report_default.gif"
 path="reports/default.view"
 id="com.ibm.rational.test.lt.execution.results.performance"/>

963

HCL OneTest Performance

964

 <Report
 menuText="%PAGEEL_REPORT"
 icon="icons/elcl16/pageelem_report.gif"
 path="reports/Page Element Report.view"
 id="com.ibm.rational.test.lt.execution.results.pageelement"/>
 <Report
 restrictToPostRun="true"
 menuText="%PERCENTILE_REPORT"
 icon="icons/report_percent.gif"
 path="reports/Percentile Report.view"

 PostRunGenerator="com.ibm.rational.test.lt.execution.results.view.controller.PercentileReportControll
er"
 id="com.ibm.rational.test.lt.execution.result.percentile"/>
 <Report
 menuText="%VP_REPORT"
 icon="icons/report_vp.gif"
 path="reports/Verification Point Report.view"
 id="com.ibm.rational.test.lt.execution.results.vp"/>
 </ReportGroup>

Public APIs for evaluate results
The public APIs contain the public interfaces and classes that you can use to extend the evaluate results

functionality.

The following table lists the public packages:

Package Description

com.ibm.rational.test.lt­

.execution.results.data

Contains the IStatModelFacade interface used to access and modify the performance

testing statistical model.

com.ibm.rational.test.lt­

.execution.results.data­

.aggregation

Contains the aggregation classes used to aggregate statistical data in real time.

com.ibm.rational.test.lt­

.execution.results.data­

.aggregation.aggregators

Contains the aggregator classes that aggregate statistical data in real time and place

the newly calculated data on the host which contains the aggregators dependency da­

ta.

com.ibm.rational.test.lt­

.execution.results.data­

.aggregation.transferag­

gregators

Contains the aggregator classes that aggregate statistical data based on data from

all hosts in the resultset. Data calculated by these aggregators is placed in the â€œAll

Hostsâ€? host.

com.ibm.rational.test.lt­

.execution.results.inter­

nal.actions

Contains the PostRunReportGenerator interface that is specified in the extension point

RPTReport. Post Report generators are used to calculate statistical data after a run

has completed.

Chapter 8. Test Execution Specialist Guide

Package Description

com.ibm.rational.test.lt­

.execution.results.view­

.data.stringtranslator

Contains the IRPTStatStringTranslator interface extended by the implementors of

the com.ibm.rational.test.lt.execution.results.StatisticalStringTranslator

class. String translators are used to localize strings contained in the statistical model.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

965

966

Chapter 9. Test Manager Guide
This guide describes how to keep track of the performance of the application by evaluating the test results. This

guide is intended for test managers.

After the test or schedule run completes, the performance data is displayed in the results. The results include various

reports. You can customize the reports based on your needs.

Evaluating results in web analytic reports
After the test run, evaluate the results in the web analytic reports. Web analytics collect data using new technologies

thereby providing better user experience.

Comparing results among runs
To analyze the difference between two or more reports, you can compare them. For example, to analyze the

performance of the application at different time slots or different milestone builds, you can compare two runs.

About this task

You can compare the test runs from the Test Navigator view or from the web analytics report itself. To compare test

runs from the Test Navigator view, select the runs, right-click, and click Compare Results.

You can compare the test runs that are in the same project or in the different projects. When comparing multiple runs,

you cannot compare multiple time-ranges or stages.

To compare runs from the web analytics report:

1. Open the run or report to serve as the basis for comparison.

2. Click the name of the run next to the Menu option

3. Click Add and navigate to the run to compare with.

Multiple runs are displayed in the report.

4. Optional: To add, remove, or move the position of the runs, click Manage .

Related information

Comparing schedule stages on page 966

Comparing schedule stages
When you are running a schedule, in this context, is used to refer to both VU Schedule and Rate Schedule that

contains stages, time ranges are automatically created for each stage. You can view a report that compares these

stages, and you also can set preferences to display the report automatically at the end of a staged run.

Chapter 9. Test Manager Guide

About this task

In addition to comparing stages, you can add time ranges and compare them. To view the compare report

automatically at the completion of a run, click Window > Preferences > Test > Performance Test Reports, and select

Launch Compare report when staged run completes.

1. Open the run that consists of stages.

By default, reports are displayed for the entire run.

2. Click the Entire Run menu and select the stages to compare.

Both the running and completed stages show up in the list.

3. To add a new time range, click Add in the Entire run menu.

4. In the Time Range dialog, specify a name, start time, and end time of the run and click Apply.

Note: When you compare stages in a run, you cannot compare data from various geographies at the

same time.

Comparing results from various regions or agent locations
When you run a schedule that includes agents from different regions, use the Web Analytic reports to compare the

performance data from these regions.

Before you begin

Run a schedule with on premise agents on different geographic regions. See Running schedules on page 783.

About this task

When comparing agents, open the Location asset and in the General Properties tab, add an RPT_GEO property with any

value. This value is then displayed in the All Geos menu of the report.

To compare performance data:

1. From the Test Navigator view, open the schedule run that includes remote agents. The name of the run

corresponds with the name of the schedule and has a timestamp.

2. On the report toolbar, click All Geos.

967

HCL OneTest Performance

968

3. Select the regions that you want to compare and click Compare.

Note: When you compare data from various regions, you cannot compare stages in a run at the same

time.

The report shows the data in the compare mode.

Generating functional reports
You can generate functional reports of your tests, which summarize the pass or fail verdicts of elements in the test

log. Functional reports are generated from the test run as HTML files that use predefined report designs.

Before you begin

Before you can generate a functional report, you must successfully run a test or schedule and produce a test run.

The following report types are available:

Chapter 9. Test Manager Guide

• Extensible Stylesheet Language Transformation (XSLT) reports: These reports are faster to generate, but do

not contain graphs.

• Business Intelligence and Reporting Tools (BIRT) report: These reports contain graphs but are slower to

generate. You can customize and create your own BIRT report designs in the Report Design perspective of the

workbench. BIRT report generation is not supported when the workbench is running in a VMWare Windows™

image.

Note: If you use your own XSLT style sheets, verify that the style sheets contain this line: <xsl:param

name="languagePack" select="'default'"/>

1. In the Test Navigator, select a test run or runs.

You can use the Ctrl key to select multiple test runs or schedule runs. You cannot generate a functional report

that contains more than 5000 calls or objects.

2. In the Test Runs view, right-click the test runs and select Generate Functional Report.

Result

This opens the Generate HTML Functional Report wizard.

3. Select the location in the workspace where you want to generate the functional report, and type the Functional

report base name. A time stamp and the type of report is appended to this base name when the report is

generated.

If you want to keep the temporary XML file that is created to generate the report for debugging purposes,

select Keep intermediate XML data.

4. Click Next.

5. Select a predefined report designs or click Add to add a custom BIRT report design or an XSLT style sheet.

Choose from:

◦ Common Functional Report: This produces a generic functional report for all test protocols.

◦ SAP Functional Report: This produces a functional report for SAP tests.

◦ Services - Failed events: This produces a functional report for web service tests. The report contains

only failed events. Events with other verdicts are not shown in the report.

◦ Services - Failed tests: This produces a functional report for web service tests. The report contains

only failed tests. Tests with other verdicts or other event types are not shown in the report.

◦ Services - Full: This produces a functional report for web service tests. The report contains detailed

information on all events.

◦ Services - Summary: This produces a brief summary functional report for web service tests.

◦ Services - Truncated: This produces a functional report for web service tests. The report contains

detailed information on all events, but truncates XML contents after 500 characters.

One functional report is generated for each selected report design. Report designs marked with (xslt) use

XSLT style sheets and are more suitable for larger reports.

6. Click Finish.

Results

The functional reports are generated as HTML files in the specified location in the workspace.

969

HCL OneTest Performance

970

Publishing functional reports to the server
If you have generated functional reports for your test results, you can associate functional reports to test results and

then publish them to HCL OneTest™ Server so that others can view them from the web browser.

Before you begin

You must have completed the following tasks:

• Accessed HCL OneTest™ Server.

• Created an offline user token to connect to HCL OneTest™ Server from HCL OneTest™ Performance. For more

information, refer to Managing access to the server.

• Created or joined a project in HCL OneTest™ Server.

• Upgraded legacy reports to the Web Analytics report format.

Note: You can right-click the report and select Upgrade to upgrade the legacy report to the Web

Analytics report.

• Generated functional reports in HCL OneTest™ Performance. See Generating functional reports on

page 968.

1. Open HCL OneTest™ Performance, and then go to Functional Reports in the Test Navigator.

2. Select the functional report that you want to publish to HCL OneTest™ Server.

3. Right-click the selected report, and then click Publish Report.

4. Expand the project folder, and then select the test result to associate with the functional report.

For example, if you have generated a functional report for the test result test1, then you must select the test1

to associate the test result with functional report.

5. Click OK.

6. Click New Server and specify the URL of HCL OneTest™ Server.

Note: If you had added the URL of HCL OneTest™ Server in the product Preferences, then the Server

field auto-populates the URL of HCL OneTest™ Server.

7. Enter an offline user token that you created on HCL OneTest™ Server.

8. Select a project from the Project Name drop-down list.

The Project Name drop-down list displays all the projects on HCL OneTest™ Server. The name of the team

space for the project is displayed within parenthesis. You can select the appropriate project when there are

identical project names in different team spaces.

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html

Chapter 9. Test Manager Guide

You cannot create a project from the desktop client. If there are no projects or if you are not a member of any

project or team space, then you must create a project or become a member of a project or team space on the

server.

9. Enter the name of the label in the Labels field to add labels to the test result.

Note: If you run the test assets by using the -labels parameter from the Command-line interface (CLI),

then the Labels field contains the name of the labels that you provided during the run time and labels

that you added to the performance report.

10. Select the Functional Report checkbox from the Reports field.

11. Click Publish.

Results

You have published the functional report to HCL OneTest™ Server.

What to do next

You can log in to HCL OneTest™ Server and analyze the test results. For more information refer to Test results and

reports overview.

Publishing test results to the server
The test results indicate the quality of the application under test. Different stakeholders might want to check the

quality of the application but do not have the desktop client installed. As a desktop client user, you can publish test

results to HCL OneTest™ Server so that others can view them from the web browser.

Before you begin

You must have completed the following tasks:

• Accessed HCL OneTest™ Server.

• Created an offline user token to connect to HCL OneTest™ Server from HCL OneTest™ Performance. For more

information, refer to Managing access to the server.

• Created or joined a project in HCL OneTest™ Server.

• Upgraded legacy reports to the Web Analytics report format.

Note: You can right-click the report and select Upgrade to upgrade the legacy report to the Web

Analytics report.

• Configured the firewall so that HCL OneTest™ Server enables connection on port number 443.

About this task

971

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/c_results_overview.html
https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/c_results_overview.html
https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html

HCL OneTest Performance

972

You can publish both performance and functional reports. You can set the publish parameters in the Preference page

so that you do not have to do it after every run or you can set the parameters every time for the specific result that

you want to publish. Based on the parameters, the test result is published to HCL OneTest™ Server after the test run is

complete.

If you select Prompt from the drop-down list for the Publish result after execution option, after each test run, the

Publish Result dialog is displayed to publish test results to HCL OneTest™ Server. You can modify the following

options before publishing the results:

• If you want to publish reports to other than the default server added in the Preferences window, you can

change the URL of HCL OneTest™ Server.

Note: If you change the server URL, you must enter an offline token to enable the publishing of test

results.

• The default value for the Result Name field is the test result that you selected. You can provide a different

name that you want to use.

• To identify specific test results, you can enter a name in the Labels field to associate it with the test result.

Note: The Results page of HCL OneTest™ Server displays the labels that you added in the Labels field.

• You can change the project name if you want to publish reports to a different project.

Note: The Project Name drop-down list displays all the projects on HCL OneTest™ Server. The name of

the team space for the project is displayed within parenthesis. You can select the appropriate project

when there are identical project names in different team spaces.

If there are no projects or if you are not a member of any project or team space, then you must create

a project or become a member of a project or team space on the server.

You can publish large test results from HCL OneTest™ Performance to HCL OneTest™ Server. When you publish large

test results then the report publishes to HCL OneTest™ Server in chunks of predefined size.

1. Click Window > Preferences > Test > HCL OneTest Server.

2. Specify the URL of the server and click Test Connection.

3. Enter the offline user token that you generated on the server and click OK.

4. Optional: Click Manage Offline Tokens to view and remove the tokens that are associated with the desktop

client, and click Apply and Close.

For example, if there is one instance of the desktop client for multiple testers to publish reports, each tester

must remove the token created by other testers and add a new token.

5. Click the Results page from the navigation to apply settings for publishing reports.

Chapter 9. Test Manager Guide

6. Clear the Use default HCL OneTest Server URL checkbox if the URL of the server is different than that is

specified at Window > Preferences > Test > HCL OneTest Server.

The format of the URL is https://fully-qualified-domain-name:443.

7. In Publish result after execution field, select when to publish test result.

In the initial stage when you are debugging a test, you might not want to publish the test result. Select one of

the following options based on the requirement:

◦ Select Never to never publish the test results to the server.

◦ Select Prompt to prompt you to publish the test results after every test run.

Notes:

▪ A command-line interface always publishes test results to the server even if the

product preference is set to Prompt.

▪ After each test run, the Publish Result dialog is displayed to publish reports to HCL

OneTest™ Server.

◦ Select Always to publish test results after every test execution.

8. In Publish to project field, select a project that you are a member of on the server.

The Publish to project drop-down list displays all the projects on HCL OneTest™ Server. The name of the team

space for the project is displayed within parenthesis. You can select the appropriate project when there are

identical project names in different team spaces.

You cannot create a project from the desktop client. If there are no projects or if you are not a member of any

project or team space, then you must create a project or become a member of a project or team space on the

server.

9. In Reports, select the reports that you want to publish to the server.

10. Click Apply and Close.

Results

Test results are published to the HCL OneTest™ Server, depending on the parameters that you have set.

What to do next

You can log in to HCL OneTest™ Server and analyze the test results. For more information refer to Test results and

reports overview.

Related information

Publishing specific results to the server on page 973

Publishing specific results to the server
If you have a single test result or multiple test results that are not published to HCL OneTest™ Server, you can publish

a single or all of them simultaneously.

973

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/c_results_overview.html
https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/c_results_overview.html

HCL OneTest Performance

974

Before you begin

You must have completed the following tasks:

• Accessed HCL OneTest™ Server.

• Created an offline user token to connect to HCL OneTest™ Server from HCL OneTest™ Performance. For more

information, refer to Managing access to the server.

• Created or joined a project in HCL OneTest™ Server.

• Upgraded legacy reports to the Web Analytics report format.

Note: You can right-click the report and select Upgrade to upgrade the legacy report to the Web

Analytics report.

• Configured the firewall so that HCL OneTest™ Server enables connection on port number 443.

About this task

You can publish the statistical reports to HCL OneTest™ Server at this moment.

You can publish large test results from HCL OneTest™ Performance to HCL OneTest™ Server. When you publish large

test results then the report publishes to HCL OneTest™ Server in chunks of predefined size.

1. Open HCL OneTest™ Performance, and then go to File > Export.

2. Expand the Test folder, and then select Execution Result to HCL OneTest Server.

3. Click Next.

4. Expand the project, and then select one or more test results that you want to publish.

Alternatively, you can right-click on all the test results that you want to publish from Test Navigator, and then

select Publish Results.

Tip: You can press the Ctrl key to select the results from across projects.

5. Click New Server and specify the URL of HCL OneTest™ Server.

Note: If you had added the URL of HCL OneTest™ Server in the product Preferences, then the Server

field auto-populates the URL of HCL OneTest™ Server.

6. Enter an offline user token that you created on HCL OneTest™ Server.

7. Select a project from the Project Name drop-down list.

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/t_tester_access_token.html

Chapter 9. Test Manager Guide

The Project Name drop-down list displays all the projects on HCL OneTest™ Server. The name of the team

space for the project is displayed within parenthesis. You can select the appropriate project when there are

identical project names in different team spaces.

You cannot create a project from the desktop client. If there are no projects or if you are not a member of any

project or team space, then you must create a project or become a member of a project or team space on the

server.

8. Click a row against the result and type the name of the label in the Labels column to add labels to the result.

Note: If you run the test assets by using the -labels parameter from the Command-line interface (CLI),

then the Labels field contains the name of the labels that you provided during the run time and labels

that you added to the performance report.

9. Optional: Click Add Common Labels and type the name of the label to apply a common label to the selected

results.

10. Select the reports that you want to publish to the server from the Reports section.

11. Click Publish.

Results

You have published the test results to HCL OneTest™ Server.

What to do next

You can log in to HCL OneTest™ Server and analyze the test results. For more information refer to Test results and

reports overview.

Customizing reports
You can customize reports to specifically investigate a performance problem in more detail than what is provided in

the default reports.

Creating custom reports
If the default reports do not address your needs, you can create your own reports.

About this task

Before you create a custom report, determine the ways in which the custom report will be different from or similar

to the system-supplied reports. You can use a default report as a template, modify the counters, and save it with a

different name. You can create a copy of pages or charts in a report that are based out of existing pages or charts. To

copy the pages or charts, go to the Edit view and click the Duplicate icon.

You can also create a report from scratch and add the required counters. Counters for test protocol are explained in

the topics in the Reports and counters on page 1007 section.

975

https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/c_results_overview.html
https://help.hcltechsw.com/onetest/hclonetestserver/10.2.3/docs/topics/c_results_overview.html

HCL OneTest Performance

976

Note: If a counter has a lot of data, the graph is not represented properly. to ensure that the graph is displayed

properly, you must filter out some of the data.

1. From the report, click Menu and click New.

2. In Create a new report dialog, specify a name and description about the new report and click Create.

3. To change the page title, click the default page title and specify a different name.

4. Click Click to insert a row and specify the number of columns to add the views.

Each view represents a bar chart, line chart, or pie chart.

5. Select a view. To add counters to the view, click Settings .

6. On the View Settings page, select a counter and add its details.

7. Click Apply and from the Menu, click Save to save the report.

8. To add more views to the report, repeat steps 4 through 7 again.

Viewing trending reports
To view the trend of response time for an application over a period of time, open the trend report for a run. In addition

to the response time, you can view the trend for the loops, transactions, and performance requirements for the

application.

About this task

The trend report can help you determine the response times of the application at different milestones. For instance,

you can run the performance test for sprint or milestone builds and tag them. When generating the trend report, you

can specify conditions such as results that are less than 60 days old and include 'milestone' tag.

Chapter 9. Test Manager Guide

You cannot save a trend report. So, if you close the report, you have to generate it again.

To view the trend report:

1. In the Test Navigator view, select the run for which to open the trend report.

2. Right-click the run and click View Trend Report.

3. To view the trend that is based on certain criteria, in Filter, select a filter criteria.

If there is no customized filtering criteria, create one by clicking Manage and then Add.

4. To save the criteria, click Save, specify a name to the filter, and click OK.

The results in the execution results table are filtered out according to the specified criteria.

5. Click OK.

Result

The trend report is generated.

977

HCL OneTest Performance

978

Filtering data in test results
You can filter the data in a test result that is displayed in a report so that you can remove the unnecessary data and

focus on the data that is significant for the analysis.

Before you begin

You must have a test result.

1. Double-click the test result from the Test Navigator.

2. Select a report from the drop-down list.

For example, the Performance Report.

3. Click the Menu icon , and then click Edit.

4. Select a page from the left pane in which you want to filter the data.

For example, the Page Performance page.

5. Click the Settings icon on a specific graph or table.

6. Click the Filters tab on the View Settings page.

7. Perform any of the following actions described in the following table to filter the data:

Op­

tions

Actions

Fil­

ter by

count

Perform the following steps:

a. Clear the Show highest values check box to display the smallest values for the pages.

Note: By default, the Show highest values check box is selected.

b. Enter a value in the Number to display field to display the items on the graph or table based

on the specified value for the selected counter.

Note: The title of the page is updated with the value that you specified along with the

Show highest values field.

For example, if you selected the Show highest values check box and entered 10 in

the Number to display field for the Performance Summary page, then the title is dis­

played as follows:

Performance Summary (10 Highest).

c. Select the counter from the Primary counter for table filtering field by using the drop-down

list if you want to filter the data for the other counter.

d. Select the component for the counter that you selected from the Component drop-down list.

Chapter 9. Test Manager Guide

Op­

tions

Actions

For example, consider that you performed the following actions to filter the data:

◦ Selected the Show highest values check box.

◦ Entered 5 as a value in the Number to display field.

◦ Selected Page Response Time as Primary counter for table filtering and Average as Compo­

nent.

Then, the graph or table displays 5 pages that include the highest Average Page Response Time dur­

ing the test run.

Fil­

ter by

value

Perform the following steps:

a. Clear the Show counters above value check box to display the lower values for the pages.

Note: By default, the Show counters above value check box is selected.

b. Enter a value in the Filter value field to display the items on the graph or table based on the

specified value for the selected counter.

c. Select the counter from the Primary counter for table filtering field by using the drop-down

list if you want to filter the data for the other counter.

d. Select the component for the counter that you selected from the Component drop-down list.

For example, consider that you performed the following actions to filter the data:

◦ Cleared the Show counters above value check box.

◦ Entered 800 as a value in the Filter value field.

◦ Selected Page Response Time as Primary counter for table filtering and Average as Compo­

nent.

Then, the graph or table displays the pages that include the Average Page Response Time lesser

than 800 ms during the test run.

Fil­

ter by

name

Perform the following steps:

a. Enter a label name in the Filter value field.

The label name is the name that you provided for a page when you recorded the test.

b. Select the Case sensitive check box to find the pages that exactly match with the letter case

of the name that you entered in the Filter value field.

c. Select any of the following options to find pages more effectively:

979

HCL OneTest Performance

980

Op­

tions

Actions

▪ Include counters whose label contains filter value

▪ Include counters whose label equals filter value

▪ Exclude counters whose label contains filter value

▪ Exclude counters whose label equals filter value

Note: The fields Cumulated, Label, Path, and Unit are non-editable and display the preconfigured

values for the selected counter.

Result

In the Preview section, the values in the graph or table change as and when you change the filter options.

8. Click Apply to apply the changes that you made for the filters.

9. Click Save from the menu to save the data that you filtered.

10. Click Edit from the menu to exit the edit mode.

Results

You have filtered the data on the specific page for the report.

Adding additional counters on a separate page
You can add additional counters on a separate page without editing an existing report to investigate performance

problems in detail.

Before you begin

You must have created and run the test or schedule.

About this task

Each report has its pre-defined counters that gather statistical information from the recorded test. If the counter

information provided in the default reports do not address your needs, you can add additional counters on a separate

page to diagnose the performance problems in detail.

You can click the Menu icon and select Hide All Instances check box to hide the instance counters from

the counter tree. Similarly, you can click the Menu icon and select the Hide Percentile check box to hide the

percentile counters from the counter tree.

For example, when you want to add counters for the test report, you might want to hide percentile counters, which are

specifically useful for the schedule runs.

Chapter 9. Test Manager Guide

1. Double-click the report in the Test Navigator.

2. Click the Plus icon .

A new page is displayed along with the execution report with a counter tree on the left pane.

3. Click the Expand icon from the counter tree to view the available counters.

Alternatively, you can use the Search field to search the available counters by name.

4. Perform the following steps to add percentile counters to the counter tree on the left pane:

a. Click the Settings icon .

b. Enter a value for the percentile counter in the field.

For example, 99.9.

c. Click OK.

Note: The QuickView report stores the percentile counters that you added and used in a chart. When

you reload the QuickView report, you can view those percentile counters.

5. Select the check box preceded with the counter name that you want to analyze.

For example, to analyze the standard deviation for the response time of all the pages:

a. Click Pages > Response Time > All pages.

b. Select the check box preceded with the counter name StdDev. The StdDev counter statistic is

displayed as a graph.

Result

The selected counters are displayed in a graph in the right pane.

6. Rename the new tab for the new page by completing the following steps:

a. Click Up arrow of the new tab.

b. Select Rename.

c. Enter a new name for the new tab, and then click OK.

Result

The new page that you created is saved with the name you entered.

Results

You have added additional counters to be displayed on a separate page. The default chart as a line chart is displayed.

What to do next

You can change the graph view for the selected counters. See Displaying counter data in tables or as graphs on

page 982.

981

HCL OneTest Performance

982

Related information

Recording HTTP tests on page 335

Creating a VU Schedule on page 696

Running a local schedule or test on page 783

Displaying counter data in tables or as graphs
You can display the statistics of counters in a table view or a graphical view so that you can analyze the counters

information efficiently.

Before you begin

You must have completed the following tasks:

• Created and ran the test or schedule.

• Added counters on a separate page and renamed the page. See Adding additional counters on a separate

page on page 980.

1. Double-click the test or schedule report in the Test Navigator.

Result

The Performance Report is displayed.

2. Click the page you created and renamed.

Result

The counters that you added are displayed in a graph in the right pane. The default chart is the line chart.

3. Click the Settings icon to modify the view for the counter.

Result

The available controls are displayed in the Options section.

4. Select one of the following options depending on the chart type that you want to view in the graph:

◦ Lines chart

◦ Bars chart

◦ Pie chart

◦ Table

5. Modify the following parameters for the view you select:

Options Description Lines Bars Pie
Ta­

ble

Title Displays a title you enter for the graph ✓ ✓ ✓ ✓

Show leg­

end

Enables you to select the position where you want the legend to be dis­

played in the graph.

✓ ✓ ✓ ✘

Chapter 9. Test Manager Guide

Options Description Lines Bars Pie
Ta­

ble

Color

items

Displays the selected option as a color item in the legend. The available

options are as follows:

◦ Pages

◦ Transactions

◦ Resources

◦ Counters

Note: Depending on the test element that you add in your test or

schedule, the preceding options are available.

✓ ✘ ✘ ✘

Dash

items

Displays the selected option as a dashed item in the legend. The available

options are as follows:

◦ Pages

◦ Transactions

◦ Resources

◦ Counters

Note: Depending on the test element that you add in your test or

schedule, the preceding options are available.

✓ ✘ ✘ ✘

Source Enables you to select the information of counters in the graph by its

source type. The available options are as follows:

◦ All sources

◦ Load agents

◦ Resource monitoring

✓ ✓ ✓ ✘

Adapt Y

scale on

selection

Select the check box to compute the minimum and maximum limits on

the Y-axis.

✓ ✓ ✓ ✘

Palette Displays the predefined color combination for the legend in the graph.

Note: The requirements report always uses verdict colors.

✓ ✓ ✓ ✘

Adapt Y

scale on

zoomed

data

Select the check box to adjust the Y scale according to zoomed data. ✓ ✘ ✘ ✘

983

HCL OneTest Performance

984

Options Description Lines Bars Pie
Ta­

ble

Show time

ranges

Select the check box to display the time range in the background of the

graph.

✓ ✘ ✘ ✘

X axis unit Enables you to select the options that you want to view as the X axis unit

in the graph.

✓ ✘ ✘ ✘

Line

smoothing

Clear the check box to apply corners in the graph. ✓ ✘ ✘ ✘

Time line

visibility

Enables you to select the options that you want to view as the time line of

the graph. The available options are as follows:

◦ None: The time line is not visible and you cannot create a new

time range in the graph.

◦ Small (faster): The time line of the graph is in partial view.

◦ Full (draw curves slower): The time line of the graph is in full view.

Note: When you select Small (faster) or Full (draw curves slower)

option, you can drag the time line to create a new time range on

the graph.

✓ ✘ ✘ ✘

Individual

scale for

each

Sets the scale for each counter when multiple counters are displayed si­

multaneously. The available options are as follows:

◦ Unit

◦ Counter

◦ Result/Host/Geo

✓ ✓ ✘ ✘

X Ax­

is Main

Items

Displays the selected option in the X axis. The available options are as

follows:

◦ Not assigned

◦ Counters

◦ Time ranges/Results/Hosts/Geos

✘ ✓ ✘ ✘

X Axis Se­

condary

Items

Displays the selected option in the X axis as a secondary item. ✘ ✓ ✘ ✘

Stacked

Items

Displays the selected option as stack instead of separate bars in the

graph.

For example, when you select Counters for X-axis Main Items and Time

ranges/Results/Hosts/Geos for X axis Secondary Items, the other option

Not assigned is selected for Stacked Items.

✘ ✓ ✘ ✘

Chapter 9. Test Manager Guide

Options Description Lines Bars Pie
Ta­

ble

Show val­

ues

Displays the value of counters in the graph. ✘ ✓ ✘ ✘

Orientation Enables you to select orientation to view bar charts horizontally or verti­

cally.

✘ ✓ ✘ ✘

Labels dis­

play policy

Displays the labels in the graph. The available options are as follows:

◦ Hidden: To hide the labels in the bar chart

◦ Adaptative: To be able to accommodate labels within the frame of

the bar chart

◦ Fixed: To display the fixed labels.

Note: If you select Fixed, long labels might not be visible.

✘ ✓ ✘ ✘

Show val­

ues axis

Clear the check box to remove the values from the Y-axis in the graph. ✘ ✓ ✘ ✘

Horizontal

bar thick­

ness

Use an up-down control button to increment or decrement the thickness

of the horizontal bar in the graph.

Note: The maximum value you can set is 50.

✘ ✓ ✘ ✘

Donut

items

Displays the selected option as a Pie chart in the graph:

◦ Counters

◦ Time ranges/Results/Hosts/Geos

✘ ✘ ✓ ✘

Arc items Displays the selected option as an Arc in the graph.

For example, when you select Counters for Arc items, then the other op­

tion Time ranges/Results/Hosts/Geos is selected for Donut items and

vice-versa.

✘ ✘ ✓ ✘

Pie style Displays the graph either in the format of Pie or Donut. ✘ ✘ ✓ ✘

Row items Displays the selected information in the row of a table. The available op­

tions are as follows:

◦ Not assigned

◦ Counters

◦ Time ranges/Results/Hosts/Geos

✘ ✘ ✘ ✓

Column

items

Displays the selected information in the column of the table. ✘ ✘ ✘ ✓

985

HCL OneTest Performance

986

Options Description Lines Bars Pie
Ta­

ble

Group

items

Displays the selected option information in the group.

For example, when you select Counters for Row items and Time ranges/

Results/Hosts/Geos for Column items, the other option Not assigned is

selected for Group items.

✘ ✘ ✘ ✓

Draw mini

bars

Clear the check box to remove the mini bar from the values. ✘ ✘ ✘ ✓

6. Select the Counters tab and perform the following steps to remove, move, or hide the counters in the graph

and set the Cumulated value:

a. To remove, move, or hide the counters in the graph:

Action Description

 Up-Down control

icon

To move the counter on the graph.

 View icon To hide the counter on the graph.

Click the View icon again to display the hidden counter on the

graph.

 Delete icon To remove the counter from the graph.

b. Click the Expand icon to change the Cumulated value for the selected counter.

c. Select one of the following options based on the requirement when you want to display the cumulation

values on the graph:

Option Description

No To display the value of the last interval on the current time range.

From beginning of

time range

To display the cumulation of all values of the current time range.

From beginning of

run

To display the cumulation of all values from the beginning of the run to the

end of the current time range.

Note:

Chapter 9. Test Manager Guide

▪ For line charts, the default value is No.

▪ For the bar chart, pie chart, and tables, the default value is From beginning of time

range.

7. Click the Time Ranges drop-down list and select the following options to display the data in the graph either

for the entire run or number of users specified in the schedule:

Option Description

Entire

run

Select the check box to display the graph for the test for the entire run.

X Users Select the check box to display the graph for the number of users specified in the sched­

ule.

Where X is the number of users specified while creating in the schedule.

Customizing the appearance of graphs in a report
To display the data in a table, bar chart, or line chart in a manner that caters to your test requirements, use the

controls that are available in the View Options of a report.

1. In the Test Navigator, expand the project until you locate the run.

Each run begins with the name of the schedule or test, and ends with the date of the run in brackets.

2. Double-click the run.

Result

The default report opens.

3. Click the Menu icon and click the Edit icon.

4. Click the Settings icon for the graph or table to modify.

5. The controls that are available in the View Options section depend on the graph type: bar chart, line chart, or

table. For each graph type, only the applicable controls are displayed. You can adjust the following controls:

Option Description

Adapt Y Scale To compute minimum and maximum limit on the Y

axis, select the check box. (all charts)

Title Specify a title to the graph.

Show title To hide the title, clear the check box.

X Axis Main items Select the item to view on the X Axis.

Stacked Items Select the item such as Pages or Time Ranges to

view them in stack instead of separate bars.

987

HCL OneTest Performance

988

Option Description

Adapt Y scale on zoomed data To adjust the Y scale according to zoomed data, se­

lect the check box. (line charts)

Show time ranges To display the time range in the background of the

chart, select the check box.

Line smoothing To apply corners, clear the check box.

Orientation To view bar charts horizontally or vertically, select an

orientation.

Labels display policy To hide the labels in a bar chart, select Hidden. To be

able to accommodate labels within the frame of a bar

chart, select Adaptative. If you select Fixed, long la­

bels might not be visible.

Time line visibility To view the time line of the chart in partial or full view,

select Small or Full options. Drag the time line to cre­

ate a new time range. If those options are specified,

you can drag and create a new time range on the

chart itself. If you select None, the time line is not vis­

ible and you cannot create a new time range on the

chart.

6. After making the changes, click Apply and from the Menu click Save.

To apply the changes to other reports, you can export the report definition and import it back. See Exporting

report metadata on page 998.

Changing the report displayed during a run
Use this page to select the default report that opens during a run. Typically, you select Determine default report

based on protocols in test, which determines the protocols that you are testing and automatically opens the

appropriate protocol-specific reports.

1. Open the Default Report Preferences page. Click Window > Preferences > Test > Performance Test Reports >

Default Report.

2. In the Default Report window, select Determine default report based on protocols in test or a specific default

report to display a customized report or if the default reports do not meet your needs. Note, however, that you

will have to change this setting when you record other protocols.

3. Click Apply, and then click OK.

Modifying counters in a graph
To gather additional information for diagnosing performance problems, you can modify the counters that are

displayed in a graph.

Chapter 9. Test Manager Guide

About this task

Counters are specific in-built queries that gather statistical information from the recorded test. The information can

be the number of page hits, response time, and user load. By default, each report has pre-defined counters. You can

add or remove the counters from the graphs in the report.

1. Double-click the report from the Test Navigator to modify the counters.

2. Click the Menu icon , and then click Edit.

3. Click the Settings icon to modify counters on a specific graph.

4. Select the Counters tab on the View Settings page, and then perform the following steps to add, remove, or

move the counters in a graph:

a. Click the Plus button , and then select the counters from the drop-down list to add a counter.

b. Click the Remove button to remove the selected counter.

c. Use the up-down control buttons to move a counter.

The Preview section displays the result of the actions.

5. Optional: For a selected counter, you can change the component of the counter. Based on the counter

selection, the Component field shows the options available for that counter.

6. Perform the following steps to define a percentile value as decimal number for the counter:

a. Select the Percentile as component from the Component drop-down list.

b. Enter a new value in the Percentile value field.

For example, 99.9.

7. Optional: You can change the Cumulated value for the selected counter if you want to show the cumulation

values on a graph. Select one of the following options based on the requirement:

Choose from:

◦ Select No to display the value of the last interval on the current time range.

◦ Select From the beginning of the time range to display the cumulation of all values of the current time

range.

◦ Select From the beginning of the run to display the cumulation of all values from the beginning of the

run to the end of the current time range.

Notes:

◦ For line charts, the default value is No.

◦ For bar chart, pie chart, and tables, the default value is From beginning of time range.

◦ The fields Label, Path, and Unit are non-editable.

8. Click Apply.

9. Click Save from the menu.

989

HCL OneTest Performance

990

10. Optional: Click Save As to create another report with these changes.

11. Click the Edit icon to exit the edit mode.

Results

You have updated the counter information for the specific report.

Correcting time offset
Response time breakdown and resource monitoring data is time stamped using the system clock of the host

computer. If there are differences between the system clocks of the host computers that you include in a test, then

response time breakdown and resource monitoring data are skewed in reports. The best practice is to synchronize

the system clocks on all computers that you include in a test. When this is not possible, you can correct the time

offset of each host computer after a test run. Typically, correct the time offset on all computers to match the system

clock of the workbench computer.

After you run tests with resource monitoring or response time breakdown enabled, follow these steps to correct the

time offset:

1. In the Test Runs view, right-click the host where you want to correct the time offset; then click Correct Time

Offset.

2. Select a Shift Direction of positive or negative. A positive shift moves the response time breakdown and

resource monitoring data on the selected host to the right. A negative shift moves the response time

breakdown and resource monitoring data on the selected host to the left.

3. Type the hours, minutes, or seconds of the time offset you want to use, and click OK.

Results

The response time breakdown and resource monitoring data on the selected host displays with a corrected time

offset.

Export test results
You can export the test result in different formats to share it with different stakeholders.

Creating an executive summary from the workbench
To create a printable report that summarizes the findings of the performance test run on a single view, create an

executive summary. You can export the data of the test run as an executive summary from a single report or from

multiple reports such as Performance Report, Mobile and Web UI Statistical Report, Transaction Report, and Loop

Report. You can then open the summary in a word-processing program to further format and annotate the data.

About this task

You export the executive summary to a local or a shared directory. You can export a test run from the Web Analytics

report, from the test workbench, and from the command line.

Chapter 9. Test Manager Guide

When you use the workbench approach to create an executive summary, you can choose to create the summary for

multiple runs and multiple report types at the same time. When you use the Web Analytics reports or the command

line, you create executive summary for a particular run and a report at a time.

To create an executive summary from the workbench:

1. Click File > Export > Test > Executive Summary. You can also right-click the runs to create executive

summaries for from the Test Navigator view and click Export > Test > Executive Summary. Each run would

have one executive summary.

2. In Export Directory, specify the folder path to save the executive summary and click Next.

3. Select the runs to create the executive summary for. To create an executive summary for comparing two runs,

select the Generate a compare report check box and select the main run to compare the report with and click

Next.

4. Select a report to export and click Finish.

What to do next

A folder with the name of the run is created on the specified folder. To view the executive summary, open the

index.html file.

Creating an executive summary from the Web Analytics report
To create a printable report that summarizes the findings of the performance test run on a single view, create an

executive summary. You can choose to view the executive summary on a web browser or save it on a computer.

About this task

To generate an executive summary for a particular report such as Transaction report or Performance report, open

that report and then follow the steps in this topic. To generate an executive summary for multiple reports or test runs

at the same time, see Creating Executive Summary from Workbench on page 990.

To create an executive summary from the Web Analytics report:

1. Open the test run to create executive summary for. The test run opens in a web browser.

2. From the dropdown, open the report for which to create executive summary.

3. Click the Menu icon , click the Share icon , and click Executive Summary.

4. To view the executive summary of the report in another browser tab, click View on another tab or page of the

browser. To save the executive summary, click Save as an HTML file on the local computer.

5. Click Generate.

Exporting reports to HTML format
When you export a test run and share it, people can analyze test data without using the test workbench. You can also

email the test run or post it on a web server. The exported run can be displayed and printed from any browser. A test

run contains multiple reports. You can choose to export any or all of the reports.

991

HCL OneTest Performance

992

About this task

You can export a single run to a local directory or multiple runs in the compare mode to a directory. In addition to

exporting a test run from Web Analytics, you can export it from the test workbench itself and from command line.

To export from the workbench, select a single run or multiple runs and click Export > Test > Performance Test Run

Statistics as HTML application . To generate a single report comparing multiple runs, in the Export wizard, select the

Generate a compare report check box and select a base run from the dropdown. To generate one report for each run,

do not select the check box.

To export from Web Analytics:

1. Open the test run to export.

The test run opens in an external or internal web browser.

2. Click the Menu icon , click the Share icon , and click Export Session to HTML.

3. Select the type of report to export and click Export.

4. When you export from the workbench, specify a path to the folder to save the exported report.

Your current project is the default save location. You can create a folder outside of the project to store

exported reports.

When you export from an external browser, the report is compressed and saved to the default download

location of the browser.

What to do next

You can now share the test run with others. You can also export the test run from command line.

Related information

Running a test or schedule from a command line on page 823

Exporting results to a CSV file
To further analyze test results, you can export all statistics or specific statistics captured during a run to a CSV file.

About this task

You can export a single run to a local directory or multiple runs in the compare mode to a directory. You can export

the runs from Web Analytics report, workbench, and command line. To export from the workbench, select a single

run or multiple runs and click Export > Test > Performance Test Run Statistics as CSV File. To export data of specific

time ranges, on a subsequent page select a time range.

To export the run from command line, see the parameters in the Running a test or schedule from a command line on

page 823 topic.

Chapter 9. Test Manager Guide

1. Open the test run to export.

2. Click the Menu icon , click the Share icon , and click Export Session to CSV.

3. Select the encoding system for the export.

4. Complete either one of the following steps:

Choose from:

◦ To export only the last value of each counter from the results or to export data of specific time ranges,

select Simple.

Note: When you export data of specific time ranges, for example, 5 Users or 15 Users, a

separate column is created in the CSV file for each time range.

▪ To create multiple CSV files if the number of columns exceed the specified value, select the

Split output if column exceeds check box and specify a value.

◦ To export all of the data for the run, select Full.

To include description about the name of the run, node name, and time range for each counter, select

the Include per instance counters.

◦ To export data of each location (agent) in a separate section in the CSV file, select the Export each

agent separately

To export data of each location (agent) to separate CSV files, select the One file per agent check box.

5. Click Export. If you export from the workbench, the report is saved in the specified folder. If you export from

an external browser, the report is downloaded in a compressed format to the default download location of the

browser.

What to do next

You can now analyze and share the report with people who are not using the workbench.

Related information

Exporting reports to HTML format on page 991

Methods to export test results into a JSON file
You can export test results to a JSON file in different ways. You can then share the exported test results with different

stakeholders and they can analyze test data without using the product.

You can export the test results into a JSON file by using any of the following methods:

993

HCL OneTest Performance

994

• Product

• Web analytics report from the product

• Command-line interface

When you use the product method to export test results, you can select multiple test results simultaneously. However,

when you use the web analytics report or the command line, then you can export a report of the test result.

Related information

Running a test or schedule from a command line on page 823

Exporting results to a JSON file by using the product
When you want to analyze test results in a text format, you can export all test results or specific test results that are

captured during a test run to a JSON file by using the product.

Before you begin

You must have at least one or more test results.

About this task

You can automatically export reports to a comma-separated values (CSV) or JSON file at the end of a test run. You

can select the appropriate options to export reports from the command line, workbench, or both from the product

preferences (Window > Preferences > Test > Performance Test Reports > Export Reports).

1. Open the workbench, and then go to File > Export.

2. Expand the Test folder, and then select Performance Test Run Statistics as JSON file.

3. Click Next.

Result

The Export Performance Test Run Statistics window is displayed.

4. Specify the folder path to save exported test results in the Export Directory field.

Alternatively, you can click Browse and select a directory.

5. Select the encoding system for the exported results from the Exported encoding drop-down list.

6. Expand the project, and then select one or more test results that you want to export.

Note: When you select a test result, you can export data of specific time ranges. For example, Entire

Run, 5 Users, or 15 Users. By default, the report includes the data for the Entire Run.

7. Click Next and perform any of the following actions described in the following table to include the type of

results into the JSON file:

Chapter 9. Test Manager Guide

Requirements

Op­

tions

avail­

able

Actions

Sim­

ple

a. Select Simple to export only the last value of each counter from results.

b. Optional: Select Time Range Comparison to export data of specific time

ranges.

c. Optional: Select the time range that is displayed depending on the test re­

sult that you selected.

For example, Entire Run, 5 Users or 15 Users.

Note: By default, the report includes the data for the Entire Run.

When you se­

lect a test re­

sult

Full a. Select Full to export all the data for every sample interval during the test

run.

b. Optional: Select the Split output if counters number exceeds check box,

and then specify a value to create multiple JSON files if the number of

counters in the exported file exceed the specified value.

Note: The default value is set to 250.

Sim­

ple
Select Simple to export only the last value of each counter from results.

When you se­

lect one or

more test re­

sults
Full a. Select Full to export all the data for every sample interval during the test

run.

b. Optional: Select the Split output if counters number exceeds check box,

and then specify a value to create multiple JSON files if the number of

counters in the exported file exceed the specified value.

Note: The default value is set to 250.

8. Select the Include per instance counters check box to include a description of the name of the result, node

name, and time range for each counter.

9. Select the Export each agent separately check box to group the data in the exported JSON file by prefixing the

name of the counters with the name of the agent.

10. Optional: Select the One file per agent check box to export data that was run on the agent in separate JSON

files.

995

HCL OneTest Performance

996

Note: The One file per agent option is available only when you select the Export each agent

separately option.

11. Click Finish to save the exported results to a JSON file.

Results

You have exported test results in to the JSON file by using the product.

What to do next

You can now analyze the result and share the file with stakeholders for further analysis of the results.

Related information

Running a test or schedule from a command line on page 823

Exporting results to a JSON file by using a web analytic report
When you want to analyze test results in a text format, you can export all test results or specific test results that are

captured during a test run to a JSON file by using a web analytic report.

Before you begin

You must have at least one or more test results.

About this task

You can automatically export reports to a comma-separated values (CSV) or JSON file at the end of a test run. You

can select the appropriate options to export reports from the command line, workbench, or both from the product

preferences (Window > Preferences > Test > Performance Test Reports > Export Reports).

1. Open the test result that you want to export from the Test Navigator.

Result

The test result is displayed in a browser.

2. Click the Menu icon , and then click the Share icon .

3. Click Export Session to JSON file.

4. Select the encoding system from the drop-down list for the exported results.

You can select the default encoding unless the exported JSON file is shared by multiple applications that

recognize a specific encoding.

5. Perform any of the following actions described in the following table to include the type of results into the

JSON file:

Chapter 9. Test Manager Guide

Op­

tions
Actions

Sim­

ple
Select Simple to export only the last value of each counter from results.

Full a. Select Full to export all the data in the results.

b. Optional: Select the Split output if counters number exceeds check box, and then specify a

value to create multiple JSON files if the number of counters in the exported file exceed the

specified value.

6. Select the Include per instance counters check box to include a description of the name of the result, node

name, and time range for each counter.

7. Select the Export each agent separately check box to group the data in the exported JSON file by prefixing the

name of the counters with the name of the agent.

8. Optional: Select the One file per agent check box to export data that was run on the agent in separate JSON

files.

Note: The One file per agent option is available only when you select the Export each agent

separately option.

9. Click Export to specify the folder path to save the exported result.

10. Click OK to save the exported results to a JSON file.

Results

You have exported test results in to the JSON file by using the web analytic report.

What to do next

You can now analyze the result and share the file with stakeholders for further analysis of the results.

Related information

Running a test or schedule from a command line on page 823

Sharing URL of test run
When you share the URL of the test run with other people, they can view and analyze the test results on a browser on

their computer if the test workbench is running on your computer at that time.

To share the URL of the test run:

1. Open the test run to share.

2. Click the Menu icon and click the Share icon and select Share Execution Result URL.

997

HCL OneTest Performance

998

A unique URL is created for the test run.

3. Copy the URL and click Close.

What to do next

You can now share the URL of the test run with anybody.

Exporting report metadata
To share report metadata with another test workbench user, export the report definition. Use this option to share

customized report formats with other users. The recipient imports the metadata with Eclipse's Import option and

views the report from the Test Navigator or in the list of reports in the web report.

To export report metadata:

1. Click File > Export.

2. In the Export window, expand the Test folder, select Report Definitions, and click Next.

3. In Save to File, select the file that will contain the report. This file is created if it does not exist.

4. In Select Report, select the report to export, and then click Finish.

The file is saved in the .report format.

What to do next

To apply another report definition to your reports, import that report metadata by clicking File > Import > Report

Definition, and browse to the .report file.

Viewing response time breakdown
You can do detailed analysis of the response time to find bottlenecks in the HTTP traffic of the application.

Viewing page element responses
You can view the response times for individual page elements in reports, to determine which elements are the

slowest.

About this task

Page element response times do not include client delay or connection time. Because page elements can be

returned in parallel from the server under test, the page response time is not necessarily the sum of the page element

response times.

1. Open the web analytics reports.

2. On the Page Performance report, click a page (represented by a bar) and click Page Element Responses.

The Page Element Responses report displays response time for all of the elements of the page.

3. To return to the original report, click the Page Performance link in the breadcrumb.

Chapter 9. Test Manager Guide

Viewing page response time contributions
You can view the response time contributions for individual pages to determine how much time was actually taken by

the page to load and the time taken for the connection to go through and the delay on the client side of each page.

Before you begin

Because page elements can be returned in parallel from the server under test, the page response time is not

necessarily the sum of the page element response times. Client delay and connection time also contribute to page

response time. The page response time can be greater than the sum of the page element response times if, for

example, a lengthy connection time adds a delay. Connection time includes the time required for Domain Name

Services (DNS) lookups. Conversely, the page response time can be less than the sum of the page element response

times if multiple page elements are returned in parallel.

1. Open the web analytics report.

2. On the Page Performance report, click a page (represented by a bar) and click Page Response Time

Contributions.

The Page Response Time Contributions report shows the average response time taken for Connection Time,

Client Delay Time, and Page Element Response Time.

3. To return to the original report, click the Page Performance link in the breadcrumb.

Viewing response time breakdown data
In addition to viewing page element and page response time, you can do further analysis to view the response time

data for each method.

Before you begin

You must have instrumented the servers. See Instrumenting local servers on page 161.

1. Open the web analytics reports.

2. On the Page Performance report, click a page (represented by a bar) and click Display Response Time

Breakdown.

999

HCL OneTest Performance

1000

You can also directly access the response time breakdown data from the Page Element Responses report.

3. In the workbench, the Page Element Selection dialog is open.

4. Select a page element to view response time breakdown for and click Finish.

Logs overview
HCL OneTest™ Performance uses logs to store different types of information, which you can use to determine the

reason for a test failure.

HCL OneTest™ Performance has the following logs:

Test logs

The test log contains a historical record of events that occurred during a test run or a schedule run, as well as the

status of each verification point. The test log sets a verdict for each run as follows:

• Pass indicates that all verification points matched or received the expected response and all the test steps

successfully completed. For example, a response code verification point is set to PASS when the recorded

response code is received during playback. If your test does not contain verification points, PASS means that all

primary requests in the test were successful.

• Fail indicates that at least one verification point did not match the expected response or that the expected

response was not received or a Web UI step did not run successfully.

• Error indicates one of the following results: a primary request was not successfully sent to the server, no

response was received from the server for a primary request, or the primary request response was incomplete

or could not be parsed.

• The verdict is set to Inconclusive only if you provide custom code that defines a verdict of Inconclusive.

The verdict is rolled up from the child elements to the test level. For example, if a user group contains 25 virtual users,

and five virtual users have failed verdicts, that user group has only one failed verdict, not five.

The test log file is stored in binary format with a .executiondlr file name extension in the project directory of your

workspace. You can also view the test log in the user interface.

For more information about viewing test logs, see Viewing test logs on page .

Problem determination logs
You can set the level of information that is saved in the problem determination log during a run. By default, only

warnings and severe errors are logged. Typically, you change this log level only when requested to do so by the

Support person.

The problem determination logs contain internal information about the playback engine. These logs are particularly

useful for debugging problems such as Kerberos authentication, SSL negotiation, and resource constraints on

an agent. The log files are named CommonBaseEvents00.log and are located in the deployment directory.

For example, if you play back a schedule on an agent and set C:\Agent as the deployment directory, the

problem determination log files are in a directory similar to C:\Agent\deployment_root\<UserName>

../topics/topenexechist_perf.html
../topics/topenexechist_perf.html
../topics/topenexechist_perf.html
../topics/topenexechist_perf.html

Chapter 9. Test Manager Guide

\A1E14699848784C00D2DEB73763646462\CommonBaseEvents00.log. If a large amount of log information is

generated, multiple CommonBaseEvents files are created.

For more information about setting problem determination level, see Setting the problem determination level on

page 781.

Agent logs

Look in %TEMP% directory for the majordomo.log file. This file contains information about the attempts to contact the

workbench including information about any failures and the reason for the failures.

On the Microsoft™ Windows operating system, the %TEMP% directory is typically at %USERPROFILE%\AppData\Local

\Temp.

If the majordomo service is configured to log in as Local System Account, then the %TEMP% directory is at

%SystemRoot%\TEMP, typically C:\Windows\TEMP.

Error logs

If an error message is displayed when you run tests, try looking up the error message in the Performance

testing error messages section of the online help. Only the most common error messages are listed. If no error

message is displayed when you encounter a problem, open the error log by clicking Window > Show View

> Error Log. If the workbench shuts down while running tests, restart the workbench and examine the error

log. By default, warning and error messages are logged. You can increase the default logging level by clicking

Window > Preferences > Logging. The log file is stored in the .metadata directory of your workspace. To avoid

excessive logging, the Logging Level should be adjusted for individual Logger Names in the Loggers tab. For

example, to get more information about a problem connecting with IBM® Rational® Quality Manager, increase the

Logging Level for com.ibm.rational.test.lt.rqm.adapter Logger Name. For the licensing issue, adjust the level for

com.ibm.rational.test.lt.licening Logger Name. When you no longer need the extra logging, use the Restore Default

button in the Logging Preferences to reset all the levels to their recommended defaults.

Viewing test logs
To see a record of all the events that occurred during a test run or a schedule run, as well as the status of each

verification point, open the test log for that run. You can also compare an event from the test log with the request or

response in the test to view the differences between the recording and the playback of the test.

About this task

The test log file is stored in binary format with a .executiondlr file name extension in the project directory of your

workspace. You can also view the test log in the user interface.

1. In the Test Navigator view, right-click the executed test; then click Display Test Log.

2. On the Overview tab, view the verdict summary for the executed test. To see the potential data correlation

errors in a separate view, click Display Potential Data Correlation Errors.

3. On the Events tab, view the errors, failures, and passes for each event in the test.

1001

HCL OneTest Performance

1002

◦ To navigate to the verdict type, click the Select the verdict type icon.

◦ To compare an event or request in the test log with the response or request of the test, right-click an

event and click Compare With Test > Request, Compare With Test > Response Data, or Compare With

Test > Response Headers. The compare editor highlights the differences.

4. On the Data Correlation tab, see all the references and substitutions that occurred during a test execution,

as well as the data correlation errors. By default, you view both references and substituters. To view only

substituters, click the Show References icon. To view the correlation data for each virtual user that was

executed, click the Merge Users icon. This icon is enabled only for a schedule. In the Data Correlation

section, when you click an event, you can see the correlation data in either the Content View or the Table View.

What to do next

From the test log, you can submit, search, and open defects in a defect tracking system. For details on configuring the

test log preferences and working with defects, see Associating defects with a test log.

Viewing errors while running tests
To view errors and other events while a test is running, use the Execution Event Console view. If problems occur in a

test run, you can examine the Execution Event Console view to determine whether to stop or continue the test.

1. Open the Execution Event Console view by clicking Window > Show View > Execution Event Console.

2. In the Execution Event Console view, click the Filters toolbar button in the upper, right corner.

Result

The Event Console Configuration window opens.

3. Select the types of messages and verdicts to display in the event console, and then click OK.

You can also limit the number of events that are displayed per user and per run, and you can limit events to

specific user groups or agent computers (locations). To configure other settings for the event console, click

Settings.

4. Run performance tests as you normally do.

5. While a test is running, double-click an event in the Execution Event Console view to open the Event Details

window.

a. To change the order in which events are listed, click the View Menu toolbar button, and then select

Group By.

6. To load events from the test log, ensure that the Test Log view is open and in the Console view, click the Load

Test Log Events icon .

Viewing reports after a run
Reports are generated and displayed automatically after a run. Each test result begins with the name of the schedule

or test, and ends with the timestamp of the run in brackets.

About this task

http://help.eclipse.org/helios/topic/org.eclipse.hyades.test.doc.user/tasks/t_associating_defects.html

Chapter 9. Test Manager Guide

In version 8.5.1 or later, for a service test report, you can choose not to generate a report automatically after a run

by clicking Window > Preferences > Test > Performance Test Reports > Service Test Reports and clearing the

Functional Test Report generation after Test execution.

1. In the Test Navigator, expand the project until you locate the run.

2. Do either of the following:

◦ To view the default report, double-click the run. To change the default report, Open the Default Report

Preferences page. Click Window > Preferences > Test > Performance Test Reports > Default Report

◦ To view another report, right-click the test run, click Display Report, and then select the report to

display.

Note: You can also view reports remotely from a web browser. For information about viewing

reports remotely, see Accessing reports remotely on page 1003.

Accessing reports remotely
Before executing a schedule or test, you can enable an option so that you can access reports remotely from a web

browser. When you make changes to a report, the changes are saved to the workspace where the workbench is

running.

1. Open HCL OneTest™ Performance

2. Click Windows > Preferences > Test > Performance Test Reports > Web Reports.

3. Select the Allow remote access from a web browser checkbox to enable remote access to reports.

4. Select the Allow control of schedule execution from the web browser checkbox to enable the remote control

of schedule execution tasks.

5. Optional: Enter the port number in the Secure port field if the default port number is used by another service.

The default secure port number for web reports is 8443.

6. Select the User aunthentication is required to access reports checkbox to provide security for web reports.

7. Enter the crendetials in the Username and Password fields.

Note: You must use the same login credentials to access reports remotely.

8. Optional: Select the Also enable non-secured access checkbox to access the web reports by anyone who

has the URL of web report.

9. Optional: Enter the port number in the Non-secure port field if the default port number is used by another

service.

The default non-secure port number for web reports is 8080.

10. Click Apply.

Results

You have accessed reports remotely.

What to do next

1003

HCL OneTest Performance

1004

The URL of the web reports is displayed in the Reports will be available at section. You can click Copy and paste

the URL http://host_name:8080/analytics/web/index.html in a web browser to access it. To access

a secured report, you must specify the login credentials that you have set in the preference of HCL OneTest™

Performance.

Exporting test logs
To process data from a performance test in another application or to use search tools to locate text in a test log,

export the test log to a text file.

1. In the Test Navigator, right-click the run, and select Export Test Log.

a. Optional: To export only a portion of the test log, open the test log by right-clicking the test run

and then selecting Display Test Log. Right-click the elements to export, and then select Export Log

Element.

Result

The Export Test Log window opens.

2. In the Export Test Log window, specify a location for saving the file, and then select options as follows:

Option Description

Export format Select default encoding or Unicode encoding.

Include event time stamps Select to include event time stamps.

Include detailed protocol data Select to include detailed protocol data. This option

is available only for HTTP test runs.

Include response content Select to include response content. This option is

available only for HTTP test runs.

Include known binary data Select to export binary data. This option is available

only for HTTP test runs.

3. Click Finish.

Result

The test log is exported to a text file.

Exporting event log
To view all the events that occurred during the run of a test from another file, you can export this data from the Event

Log panel, to an XML, CSV, or text file.

Before you begin

You must run a test to view data in the Event Log panel.

1. On the Event Log panel toolbar click the View Menu arrow icon and select Export Event Log.

2. In the Save dialog, specify the location and format in which you want to save the events.

Chapter 9. Test Manager Guide

Exporting event console output
To view errors and other events of a test run from another file, you can export this data from the Execution Event

Console view to an XML, CSV, or text file.

Before you begin

• Ensure that the Execution Event Console view is open by clicking Window > Show View > Execution Event

Console.

• Ensure that the test is run and the Execution Event Console view contains data.

1. From the Execution Event Console view toolbar, click the View Menu arrow icon and select Export.

2. In the Save dialog, specify the location and format in which you want to save the events.

Viewing adjustments to page response times
To see the adjustments to page response times that are measured during a test run or a schedule run, open the test

log for that run.

About this task

HTTP page response times are adjusted for increased accuracy by using advanced techniques to exclude processing

time that is not related to the server under test. Other measurements, such as page element response times, are not

affected.

1. In the Test Navigator, right-click the run, and then click Display Test Log.

Result

The test log opens, displaying the Overview page.

2. Click the Events tab.

3. Expand the elements in the Events hierarchy, and navigate to the page that contains the adjustment.

4. The last element for an HTTP page is the page stop event. Select the page stop event.

Result

Under Extended Properties, the rtaa property is the adjustment to the page response time, in milliseconds,

made to exclude processing time that is unrelated to the server under test.

Disabling adjustments to page response times
Starting with HCL OneTest™ Performance Version 8.1.1, HTTP page response times are adjusted for increased

accuracy by using advanced techniques to exclude processing overhead not related to the server under test. To

configure the product to use the previous method for calculating page response times, set the RPT_VMARGS property

rptPre811PageResponseTimes.

About this task

Typically, you do not disable adjustments to page response times unless you want to compare results gathered from

versions of the product prior to 8.1.1 with results gathered from versions of the product starting with 8.1.1.

1005

HCL OneTest Performance

1006

1. In the Test Navigator, right-click the location on which to disable page response time adjustment.

2. Click Open.

3. Under Property Groups, click the General Properties link, and then click Add.

4. In the New Property window:

a. In the Property Name field, type RPT_VMARGS.

b. In the Operator field, confirm that the operator is =.

c. In the Property Value field, type -DrptPre811PageResponseTimes, and then click OK.

Viewing resource monitoring data
You can analyze the performance of the computer resources, application server, or database servers by viewing the

resource monitoring data in web analytics reports.

Adding resource counters to reports
To view performance data of resource counters that are not shown in the report by default, you can add the resource

counters.

Before you begin

You must have enabled capturing of resource monitoring data in the schedule. See Enable resource monitoring on

page 750.

1. Open the Performance Report, and from the list of Pages, click Resources.

2. Click the Menu icon and then click the Edit icon .

3. To update the graph, click the Settings icon on the graph. There would be multiple Settings icons for a

report.

4. On the View Settings page, click Counters, and click the Add icon .

5. From the dropdown, select Resource Monitoring and then from the Component dropdown, select a unit of

measurement such as Min, Max, or Average.

6. Click Apply, click Save, and then click the Edit icon.

Results

The changes are reflected in the resource monitoring graph.

Filtering resource counters
To view the performance data that is more important for you, filter the resource monitoring counters. You can filter

resource counters the same way you filter other results displayed in reports.

Before you begin

To view the Resources page in the Performance Report, you must have enabled capturing of resource monitoring data

in the schedule. See Enable resource monitoring on page 750.

Chapter 9. Test Manager Guide

1. Open the Performance Report, and from the list of Pages, click Resources.

2. Click the Menu icon and then click the Edit icon .

3. To update the graph, click the Settings icon on the graph. There would be multiple Settings icons for a

report.

4. On the View Settings page, click Filters.

5. From the dropdown, click one of the following filter types:

Option Description

Filter by count Display the specified number of items. For example,

if you select this option and then type 15, the report

will show the 15 items with the highest values (Show

highest values) or the 15 items with the lowest val­

ues (Show lowest values).

Filter by value Display items based on a comparison with the speci­

fied value. For example, if you select this option and

then type 15, the report will show all of the items that

are higher than 15 (Show counters above filter value)

or lower than 15 (Show counters below filter value).

Filter by label Display items that match the specified label. If you

are filtering a table, the label is typically a page, and

is listed in the left column. If you are filtering a graph,

the label is a legend in the graph.

6. From the Primary counter for table filtering dropdown, click a primary resource counter.

Typically, this is the Resource Monitoring counter.

7. Click Apply, click Save, and then click the Edit icon.

Results

The changes are reflected in the resource monitoring graph.

Reports and counters
After the tests or schedules are run and completed, you can view the results and open the reports to analyze the

verdict, the performance, and statistics.

Requirements report
The Performance Requirements report is renamed to Requirements report. The Requirements report validates the

performance and functional requirements that you set in a test or in a schedule.

Validation is accomplished by comparing the data in the run to the requirements that you set on the data.

1007

HCL OneTest Performance

1008

Status Summary page

With the Status Summary page, you can quickly analyze the requirements that are defined in a test result. The page

contains two tables.

• The first table provides the overall status of the run and the percentage of performance requirements that

passed.

• The second table lists all of the standard requirements that you defined.

Each requirement has a row in the table that explains the target of the performance requirement (for example, an

HTTP page), specification, and status.

Overall Summary page

The Overall Summary page provides a high-level, graphical analysis of requirements, both standard and supplemental.

The Overall Summary page contains two tables and two pie charts.

The first table presents the pass/fail status and percentage pass data for requirements and supplemental

requirements.

Both requirements and supplemental requirements are represented in the center of the report by a pie chart. In both

cases, failures are shown in red and passes are shown in green.

The final graphic on this page presents numeric details for each requirement type and for the union of both types.

Details page

The Details page provides a detailed analysis of standard requirements. It contains two tables and a bar chart.

As with the Status Summary page, the overall status of the run and percent passed value for the run are presented

in a table at the top of the page. The bar chart at the center of the report displays the margin of each performance

requirement. The margin is a percentage value that allows improvement or regression analysis with regards to a

requirement. When a performance requirement is in the passed state, it will have a margin >= 0.

The margin is calculated as follows:

% Margin = abs(specification – observed)/specification

When a performance requirement is in the “failed�? state, it will have a value <=0. The margin is calculated as

follows:

% Margin = –abs(specification – observed)/specification

Margins are useful in comparison mode because you can detect improvement or regressions before they are

significant enough to change the requirement from pass to fail. The table at the bottom of the Details page contains

a representative row for each performance requirement. Each requirement is presented with an explanation of its

target, observed result, specification, margin, and status. Passed statuses are shown in green and failed statuses are

shown in red.

Chapter 9. Test Manager Guide

Supplemental Details page

The Supplemental Details page shows a detailed analysis of supplemental requirements. It contains the same data as

the Details page, except that it pertains to supplemental requirements.

Synchronization Point report
This report provides information about the synchronization points in test runs and lets you manually release a user

from a synchronization point. To release a user, right-click in the report and select Manage Synchronization Points.

The Synchronization Point report contains the following information for each synchronization point in the run:

• The name of the synchronization point.

• Time-out Value. The time after which the synchronization point is automatically released. A value of 0 means

that the synchronization point will be released after the arrival of the first user.

• Users Late. The number of virtual users that have arrived "late"; that is, after the synchronization point was

released.

• Users Arrived. The number of virtual users that have arrived at the synchronization point.

• Current® State. The state of the synchronization point. The state can be:

◦ Inactive. No users have arrived or all locations are inactive.

◦ Active. At least one user has arrived.

◦ Released. All users have arrived, been release manually, or have timed out.

• Users Expected. The number of virtual users still expected to arrive.

• Run Duration. The time between the first user's arrival and the first user's release. The count begins as soon as

any location reports an Active state, and stops as soon as any location reports a released state. The accuracy

of the time might be adversely affected by a large statistics interval.

Loops report
This report summarizes the functionality of loops in a test.

Loop Invocation Details
This tab displays the number of times the loop was invoked in a test and loops that were invoked but did not

complete.

Loop Iteration Details
This tab displays how many iterations does each loop run and how many iterations in a loop were successful.

Loop Iteration Health
This tab displays the health of each iteration of a loop. You can also view the error that cause the failure of an

iteration of a loop.

Agents Health Report
With the Agents Health Report, you can view the usage data of CPU, Memory, Threads, and JVM Heap for the agent

machines involved in the run. The report shows usage data for the Agent Host and Agent Process on the agent

1009

HCL OneTest Performance

1010

machines. By default, the Enable Agent Health Report check box at Window > Preferences > Test > Test Execution is

selected. Also, by default, the report opens in the Compare mode. You cannot disable the compare mode.

Report

CPU

The CPU usage graph shows the usage data for the Agent Host and Agent processes. Note that the

SAP, SOA, and HCL OneTest™ API test extensions runs as external processes on the agent locations and

therefore are not counted in the Agent process but are counted in the Agent Host with all others system

processes (including the agent).

Memory

The Memory usage graph shows the memory consumed by the Agent processes in terms of average

and percentage and by the Agent Host. The average memory consumption of the agent is usually very

little. Therefore, the graph also displays the memory consumption in terms of percentage. If the CPU

and Memory consumption for the agents is high, you can decide to add more locations to the execution

of the performance tests.

JVM Heap

The JVM Heap graph shows the percentage of memory used compared to the total memory allocated

and the total JVM memory allocated. If the memory used is high, you can decide to increase the JVM

Heap size by adding the -Xmx property to the agent location.

Threads

Threads Usage graph shows the percentage of threads used for the currently running tasks compared

to the maximum of threads that the tool can create. It also shows the number of tasks waiting for the

threads to be made available to execute them.

Rate Runner report
You can use the Rate Runner report to view how all the Rate Runner groups in the Rate Schedule have performed

during the run.

Rate Runners

The Rate Runners page displays the graph with X-axis showing the time and Y-axis showing the rate or workload

generated per second. The top section of the report displays the following fields:

State: Status of the run for rate generators. One of the following statuses is displayed:

• Not started

• Arriving: At least one user has arrived at the synchronization point.

• Active: At least one iteration of workload.

• Inactive: No users or clients are running.

Users or Clients: Number of users or clients in the Arriving or Active state.

Chapter 9. Test Manager Guide

Target Rate: Number of iterations specified in Rate Generator or Rate Schedule. The report shows the value in

seconds. For example, if the iteration rate is 2 every minute, the Target Rate would show 0.032 per second.

Workloads Started - First time: Time taken for the first workload to start after the test run. The time taken includes

the time to create the users or clients, begin the workload, meet at the rate synchronization point, run any iteration

delay, and then start the workload.

Workloads Started - Elapsed time: Time taken for the first workload to start and the last workload to end.

Workloads Started: Number of workloads already started at any given point of time during the run. For example, for

a target rate of 4 every minute, at the end of one minute, the number of workloads started should be 4. However,

it should increment throughout the run based on the target rate. So, at a target rate of 4 every minute and a total

duration of 10 minutes, the number of workloads at the end of the run should show Workloads Started = 40 and

Workloads Completed = 40.

Workloads Started - Rate: Actual rate achieved for the run. Compare it with the Target Rate to determine the

performance of the application.

Percent Target: Comparison of the Target Rate with the Actual Rate (Workloads Started - Rate) to indicate by

percentage how close the workload is to reach the specified target rate.

Percent Late - Percent: The percent of workloads in a user group or Rate Runner group that did not begin to run at the

specified time.

Health

Use this page to view the number of workloads that did not meet the target rate.

Throughput

Use this page to view the number of workloads that passed successfully.

Transaction report
This report summarizes the success of transactions in the run, plots on a graph the response trend of each

transaction during a specific sample interval, and shows the transaction throughput.

This report plots the sample intervals within a run. You set the Statistics sample interval value in the schedule, as a

schedule property.

Overall page
The Overall Transaction Rate graph shows the average elapsed time for all transactions during a specific sample

interval. Elapsed time is the actual time spent within the transaction container. If you have staged loads in the

schedule, this graph also delineates the stages with time range markers, in various colors, at the top.

The table under the graph lists the following information:

1011

HCL OneTest Performance

1012

• The average elapsed time for all transactions in the entire run.

• The standard deviation of the elapsed time. The standard deviation tells you how tightly the data is grouped

about the mean. For example, assume that System A and System B both have an average elapsed time of 12

ms. However, this does not mean that the elapsed times are similar. System A might have elapsed times of 11,

12, 13, and 12 ms. System B might have elapsed times of 1, 20, 25, and 2 ms. Although the mean time is the

same, the standard deviation of System B is greater and the elapsed time is more varied.

• The longest transaction in the entire run.

• The shortest transaction in the entire run.

• The average net server time for all transactions in the entire run.

• The standard deviation of the net server time.

• The longest net server time in the entire run.

• The shortest net server time in the entire run.

Elapsed Time vs. Time
The Elapsed Time vs. Time graph shows the average response of each transaction during a specific sample interval.

Each transaction is represented by a separate line. If you have staged loads in the schedule, this graph also delineates

the stages with time range markers, in various colors, at the top.

The table under the graph lists the following information for each transaction:

• The minimum elapsed time for the entire run.

• The average elapsed time for the entire run. This is similar to the graph above, but the information in the table

is the average for the entire run rather than the average per sample interval.

• The standard deviation of the average response time. The standard deviation tells you how tightly the data

is grouped about the mean. For example, System A and System B both have an average response time of 12

ms. However, this does not mean that the response times are similar. System A might have response times of

11, 12, 13, and 12 ms. System B might have response times of 1, 20, 25, and 2. Although the mean time is the

same, the standard deviation of System B is greater and the response time is more varied.

• The maximum elapsed time for the entire run.

• The rate, per second, at which the transaction was completed.

• The number of attempts for the transaction.

Net End-to-End time vs. Time
Net end to end time for a transaction is a measured time of interactions with the server and a client such as a

browser or a device. Typically, this does not include think times or processing time by the workbench.

Net Server Time vs. Time
Net server time for a transaction is a measured time of interactions with the server. Typically, this does not include

think times or processing time by the product. The server interaction calculation is protocol specific. For example, in

HTTP protocol, the net server time is exactly the sum of all page response times. The elapsed time (wall clock time)

includes think time and other product processing overhead. For a Web UI test, the net server time includes the sum of

time spent on the server and network.

Chapter 9. Test Manager Guide

Transaction Throughput
These line graphs provide an overview of the transaction frequency and the number of users that are adding load,

both over the course of a run.

• The Transaction Hit Rate graph shows the overall rates for starting and completing transactions during a

specified sample interval. If you have staged loads in the schedule, this graph also delineates the stages with

time range markers, in various colors, at the top. The summary table under the graph lists the transaction rate

per second and the number of transactions that were completed for the entire run.

• The User Load graph shows the number of active users and the number of users that completed testing over

the course of the run. The summary table under the graph lists the number of active users, the number of

users that completed testing, and the total number of users for the latest sample interval.

Transaction Throughput Details

The Transaction Throughput Details page displays the following information:

• The number of transactions that are active during the schedule run.

• The number of virtual users that execute certain transactions simultaneously.

Transaction Health
The Transaction Health page displays whether the transaction is healthy or unhealthy. When you define error

conditions for a transaction, you can set whether the behavior of the errors affect the health of the run. If any one

condition is met in a transaction, the transaction is marked unhealthy. The Transaction Health page displays the

percentage of healthy and unhealthy transactions. The graphic bar is displayed only if there are no errors.

Note:

During the test run, the elapsed time is recorded for unhealthy transactions. You can select the Discard

time measurements for unhealthy transactions check box from the Test Execution Preferences (Windows

> Preferences > Test > Test Execution), if you do not want to record the elapsed time for the unhealthy

transactions.

Transaction Details

The Transaction Completion Percentage graph in the Transaction Details page displays the overall percentage of the

successful transactions. The Transaction Details section shows the transactions that were attempted, completed,

exited, and the percentage of completed transactions.

Transaction Percentile report
This report shows the 85th, 90th, and 95th percentile elapsed times for all users, the union of all transactions in a run,

and for the 10 slowest transactions in a run.

1013

HCL OneTest Performance

1014

The default percentiles in this report, 85, 90, and 95, are sufficient for most purposes. If you need a report on a

different percentile set, click Window > Preferences > Test > Percentile Analysis Targets to change the percentiles in

this report and in the Page Percentile report.

The Summary page of this report has a graph with three bars, which represent the 85th percentile, 90th percentile,

and 95th percentile elapsed times for all users and for all transactions in the run. For the 85th percentile bar, 85%

of all users achieved the indicated elapsed time or better. For the 90th percentile bar, 90% of all users achieved the

indicated elapsed time or better. And for the 95% percentile bar, 95% of all users achieved the indicated elapsed time

or better.

The 85%, 90%, and 95% pages show the elapsed time percentiles of the 10 slowest transactions in the run. For

example, if you click the tab for the 85th percentile, and the total for a transaction is 110 (the total is beneath each

bar), you know that 85 percent of the elapsed times for that transaction are less than or equal to 110 milliseconds

(ms).

This graph provides an overall idea of the elapsed times for each transaction. For example, the Transaction report

might indicate that a login transaction is one of the 10 slowest transactions. However, it is possible that only one

instance of the login transaction was extremely slow while the other instances of the login transaction were within

acceptable range. The Transaction Percentile report shows which transactions have slow elapsed time averages

because they were slow in general, not because a few elapsed times (out of many) were extremely slow.

The table beneath the graph provides the following information for each transaction:

• The minimum elapsed time for the run.

• The average elapsed time for the run.

• The standard deviation of the elapsed time. The standard deviation tells you how tightly the data is grouped

about the mean. For example, assume that System A and System B both have an average elapsed time of 12

ms. However, this does not mean that the elapsed times are similar. System A might have elapsed times of 11,

12, 13, and 12 ms. System B might have elapsed times of 1, 20, 25, and 2 ms. Although the mean time is the

same, the standard deviation of System B is greater and the elapsed time is more varied.

• The maximum elapsed time for the run.

• The 85th percentile for the run. That is, for this particular transaction, 85% of the elapsed times were equal to

or faster than this time.

• The 90th percentile for the run. That is, for this particular transaction, 90% of the elapsed times were equal to

or faster than this time.

• The 95th percentile for the run. That is, for this particular transaction, 95% of the elapsed times were equal to

or faster than this time.

• The number of attempts in the run.

Transaction Net Server Time Percentile report
This report shows the 85th, 90th, and 95th percentile net server times for all users and the union of all transactions in

a run. The report also shows the 10 slowest transactions in a run. The net server time corresponds to the cumulative

Chapter 9. Test Manager Guide

server response times within a transaction. Net server time does not include think times and delays, which are

included in the elapsed time.

The default percentiles in this report, 85th, 90th, and 95th, are sufficient for most purposes. However, if you must

report on a different percentile set, click Window > Preferences > Test > Percentile Analysis Targets to change the

percentiles in this report and in the Page Percentile report.

The Summary page of this report has a graph with three bars, which represent the 85th percentile, 90th percentile,

and 95th percentile net server times for all users and for all transactions in the run. For the 85th percentile bar, 85%

of all users achieved the indicated net server time or better. For the 90th percentile bar, 90% of all users achieved the

indicated net server time or better. And for the 95% percentile bar, 95% of all users achieved the indicated net server

time or better.

The 85%, 90%, and 95% pages show the net server time percentiles of the 10 slowest transactions in the run. For

example, if you click the tab for the 85th percentile, and the total for a transaction is 110 (the total is beneath each

bar), you know that 85 percent of the net server times for that transaction are less than or equal to 110 milliseconds

(ms).

This graph provides an overall idea of the net server times for each transaction. For example, the Transaction report

might indicate that a login transaction is one of the 10 slowest transactions. However, it is possible that only one

instance of the login transaction was extremely slow while the other instances of the login transaction were within

acceptable range. The Transaction Net Server Time Percentile report shows which transactions have slow net server

time averages because they were slow in general, not because a few net server times (out of many) were extremely

slow.

The table beneath the graph provides more detailed information for each transaction:

• The minimum net server time for the run.

• The average net server time for the run.

• The standard deviation of the net server time. The standard deviation tells you how tightly the data is grouped

about the mean.

• The maximum net server time for the run.

• The 85th percentile for the run. That is, for this particular transaction, 85% of the net server times were equal

to or faster than this time.

• The 90th percentile for the run. That is, for this particular transaction, 90% of the net server times were equal

to or faster than this time.

• The 95th percentile for the run. That is, for this particular transaction, 95% of the net server times were equal

to or faster than this time.

• The number of attempts in the run.

Rate Generator report
Use this report to determine if the transactions run at the rate that you specify.

The report contains three pages. See the description of each of the page.

1015

HCL OneTest Performance

1016

Rate Generators

State: Status of the run for rate generators. One of the following statuses is displayed:

• Not started

• Arriving: At least one user has arrived at the synchronization point.

• Active: At least one iteration of workload.

• Inactive: No users or clients are running.

Users or Clients: Number of users or clients in the Arriving or Active state.

Target Rate: Number of iterations specified in Rate Generator or Rate Schedule. The report shows the value in

seconds. For example, if the iteration rate is 2 every minute, the Target Rate would show 0.032 per second.

Workloads Started - First time: Time taken for the first workload to start after the test run. The time taken includes

the time to create the users or clients, begin the workload, meet at the rate synchronization point, run any iteration

delay, and then start the workload.

Workloads Started - Elapsed time: Time taken for the first workload to start and the last workload to end.

Workloads Started: Number of workloads already started at any given point of time during the run. For example, for

a target rate of 4 every minute, at the end of one minute, the number of workloads started should be 4. However,

it should increment throughout the run based on the target rate. So, at a target rate of 4 every minute and a total

duration of 10 minutes, the number of workloads at the end of the run should show Workloads Started = 40 and

Workloads Completed = 40.

Workloads Started - Rate: Actual rate achieved for the run. Compare it with the Target Rate to determine the

performance of the application.

Percent Target: Comparison of the Target Rate with the Actual Rate (Workloads Started - Rate) to indicate by

percentage how close the workload is to reach the specified target rate.

Percent Late - Percent: The percent of workloads in a user group or Rate Runner group that did not begin to run at the

specified time.

Health

Use this page to view the number of workloads that did not meet the target rate.

Throughput

Use this page to view the number of workloads that passed successfully.

Related information

Creating rate generators in user groups on page 735

Chapter 9. Test Manager Guide

HTTP performance test reports
When you test an HTTP system, reports are produced during a run and saved after a run. You can then analyze the

reports to know the performance of the system under test.

In a performance report, you can sort the order of HTTP pages that are captured in a test or schedule either by

alphabetical order or order of execution of the HTTP pages. The default sorting of the HTTP pages is by order of

execution.

You can either click the Execution order icon or the Alphabetical order icon to toggle between the sorting

options. You can also click the Up Arrow icon to sort the HTTP pages in the correct order of execution or the

correct alphabetical order. Similarly, you can click the Down Arrow icon to sort the HTTP pages in the reverse order

of execution or the reverse alphabetical order.

If you want to identify specific test results, you can enter a tag or comment in the corresponding fields of the

performance report to associate it with the test result as shown in the following image:

Performance report
The performance report summarizes the validity of the run and the data that is most significant to the run. The report

also shows the response trend of the slowest 10 pages in the test and the graph of the response trend of each page

for a specified interval.

Contents

• Overall page on page 1018

• Summary page on page 1019

• Page Performance page on page 1021

• Response vs. Time Summary page on page 1022

• Response vs. Time Detail page on page 1022

• Page Throughput page on page 1023

• Server Throughput page on page 1023

• Server Health Summary page on page 1024

• Server Health Detail page on page 1024

1017

HCL OneTest Performance

1018

• Caching Details page on page 1024

• Resources page on page 1025

• Page Element Responses on page 1027

• Page Response Time Contributions on page 1027

• Page Size on page 1028

• Errors on page 1028

• Page Health on page 1028

Overall page

The Overall page provides the following information:

• A progress indicator that shows the state of the run.

• A pie chart that shows the information about the overall verification point passed and failed for the test run if

they were set. For the schedule run, it displays the overall requirements that passed and failed.

Item
Description Verdict

Page VPs Displays the verdict of the page title verification points if

they were set. • Passed

• Failed

• Inconclusive

• Error

Page Element VPs Displays the verdict of the response code or response

size verification points if they were set. • Passed

• Failed

• Inconclusive

• Error

Page Status Codes Displays the success and failure rate for the entire run.

If a primary request includes verification points, the Page

Status Code Successes value indicates that the verifica­

tion point for the response code is passed.

If a primary request has no verification points, the Page

Status Code Successes value indicates that the server

received the primary request and returned a response

with one of the following status codes:

• Passed

• Failed

Chapter 9. Test Manager Guide

Item
Description Verdict

• 200 or 300 category

• 400 or 500 category, which is an expected re­

sponse code

Page Element Status

Codes

Displays the success and failure rate for the entire run.

If a primary request includes verification points, the Page

Element Successes value indicates that the response

code verification point passed for that request.

If a request has no verification points, the Page Element

Successes indicates that the server received the request

and returned a response with one of the following status

codes:

• 200 or 300 category

• 400 or 500 category, which is an expected re­

sponse code

• Passed

• Failed

Page Health Displays the total health of the pages, transactions, and

loops for the test or schedule run. • Healthy

• Unhealthy

• If you click any individual chart, you can go to that specific report to analyze the status in detail.

• If you click any legend (for example, Passed), the chart is updated to show only the other verdicts of a test or a

schedule run. For example, the Page Status Codes has a legend as Passed and Failed. If you click Passed, the

chart is updated to show only errors during a test or a schedule run.

• Similarly, if you double-click any legend, the chart is updated to show only the selected verdict by removing all

other verdicts from the chart. Thus you can focus on only one counter which you want to investigate in detail.

Summary page
The Summary page summarizes the most important data about the test run, so that you can analyze the final or

intermediate results of a test at a glance.

The Summary page displays the following Run Summary information:

• The name of the test.

• The number of users that are active and the number of users that have completed testing. This number is

updated during the run.

• The elapsed time. This is the run duration, which is displayed in hours, minutes, and seconds.

1019

HCL OneTest Performance

1020

• The status of the run. This can be Initializing Computers, Adding Users, Running, Transferring data to test

log, Stopped, or Complete.

• Displaying results for computer: All Hosts. To see summary results for individual computers, click the

computer name in the Performance Test Runs view.

The Summary page displays the following Page Summary information:

• The total number of page attempts and hits. A page attempt means that a primary request was sent; it does

not include requests within the page. A hit means that the server received the primary request and returned

any complete response.

• The average response time for all pages. Response time is the sum of response times for all page elements

(including the connect time and inter-request delays). Response time counters omit page response times for

pages that contain requests with status codes in the range of 4XX (client errors) to 5XX (server errors). The

only exception is when the failure (for example, a 404) is recorded and returned, and the request is not the

primary request for the page. Page response times that contain requests that time out are always discarded.

• The standard deviation of the average response time for all pages.

• The maximum response time for all pages.

• The minimum response time for all pages.

• A summary of the results for page verification points, if these verification points were set.

The Summary page displays the following Page Element Summary information:

• The total number of page element attempts and hits. A page element attempt means that a request was sent.

A hit means that the server received the request and returned any complete response.

• The total number of page elements where no request was sent to the server because the client determined

that the page elements were fresh in the local cache.

• The average response time for all page elements. Response time is the time between the first request

character sent and the last response character received. Response times for HTTP requests that time out or

that return an unexpected status code (the recorded and played back codes do not match) in the range of 4XX

(client errors) to 5XX (server errors) are discarded from the reported values.

• The standard deviation of the average response time. The standard deviation tells you how tightly the data

is grouped about the mean. For example, System A and System B both have an average response time of 12

ms. However, this does not mean that the response times are similar. System A might have response times of

11, 12, 13, and 12 ms. System B might have response times of 1, 20, 25, and 2. Although the mean time is the

same, the standard deviation of System B is greater and the response time is more varied.

• The percentage of verification points that passed.

• A summary of the results for page element verification points, if these verification points were set.

If you have set transactions in your test, the Summary page displays the following Transaction information:

Chapter 9. Test Manager Guide

• The minimum, maximum, and average response time for all transactions. Response time is the actual time

spent within the transaction container.

• The standard deviation of the average response time. The standard deviation tells you how tightly the data

is grouped about the mean. For example, System A and System B both have an average response time of 12

ms. However, this does not mean that the response times are similar. System A might have response times of

11, 12, 13, and 12 ms. System B might have response times of 1, 20, 25, and 2. Although the mean time is the

same, the standard deviation of System B is greater and the response time is more varied.

• The total number of transactions that were started and completed.

Page Performance page
The Page Performance page shows the average response of the slowest 10 pages in the test as the test progresses.

With this information, you can evaluate system response during and after the test.

The bar chart shows the average response time of the 10 slowest pages. Each bar represents a page that you visited

during recording. As you run the test, the bar chart changes, because the 10 slowest pages are updated dynamically

during the run. For example, the Logon page might be one of the 10 slowest pages at the start of the run, but then, as

the test progresses, the Shopping Cart page might replace it as one of the 10 slowest. After the run, the page shows

the 10 slowest pages for the entire run.

The table under the bar chart provides the following additional information:

• The minimum response time for each page in the run. Response time is the time between the first request

character sent and the last response character received. Response time counters omit page response times

for pages that contain requests with status codes in the range of 4XX (client errors) to 5XX (server errors).

The only exception is when the failure (for example, a 404) is recorded and returned, and the request is not the

primary request for the page. Page response times that contain requests that time out are always discarded.

• The average response time for each page in the run. This matches the information in the bar chart.

• The standard deviation of the average response time. The standard deviation tells you how tightly the data

is grouped about the mean. For example, System A and System B both have an average response time of 12

ms. However, this does not mean that the response times are similar. System A might have response times of

11, 12, 13, and 12 ms. System B might have response times of 1, 20, 25, and 2. Although the mean time is the

same, the standard deviation of System B is greater and the response time is more varied.

• The maximum response time for each page in the run.

• The number of attempts per second to access each page. An attempt means that a primary request was sent;

it does not include requests within the page.

• The total number of attempts to access the page.

To display the 10 slowest page element response times, right-click a page and click Display Page Element

Responses.

1021

HCL OneTest Performance

1022

Response vs. Time Summary page
The Response vs. Time Summary page shows the average response trend as graphed for a specified interval. It

contains two line graphs with corresponding summary tables. When a schedule includes staged loads, colored time-

range markers at the top of the graph delineate the stages.

• The Page Response vs. Time graph shows the average response time for all pages during the run. Each point

on the graph is an average of what has occurred during that interval. The table after the graph lists the total

average response time for all pages in the run and the standard deviation of the average response time.

• The Page Element response vs. Time graph shows the average response time for all page elements during the

run. Each point on the graph is an average of what has occurred during that interval. The table under the graph

lists the total average response time for all page elements in the run and the standard deviation of the average

response time. The table also lists the total number of page elements where no request was sent to the server

because the client determined that the page elements were fresh in the local cache. You set the Statistics

sample interval value in the schedule, as a schedule property.

Response vs. Time Detail page
The Response vs. Time Detail page shows the response trend as graphed for the sample intervals. Each page is

represented by a separate line.

The Average Page Response Time graph shows the average response of each page for each sample interval. When

a schedule includes staged loads, colored time-range markers at the top of the graph delineate the stages. The table

after the graph provides the following additional information:

• The minimum page response time for the run. Response time is the time between the first request character

sent of the primary request and the last response character received. Response time counters omit page

response times for pages that contain requests with status codes in the range of 4XX (client errors) to 5XX

(server errors). The only exception is when the failure (for example, a 404) is recorded and returned, and the

request is not the primary request for the page. Page response times that contain requests that time out are

always discarded.

• The average page response time for the run. This is similar to the graph, but the information in the table

includes the entire run.

• The maximum page response time for the run.

• The standard deviation of the average response time. The standard deviation tells you how tightly the data

is grouped about the mean. For example, System A and System B both have an average response time of 12

ms. However, this does not mean that the response times are similar. System A might have response times of

11, 12, 13, and 12 ms. System B might have response times of 1, 20, 25, and 2. Although the mean time is the

same, the standard deviation of System B is greater and the response time is more varied.

• The rate of page attempts per interval for the most recent statistics sample interval. A page attempt means

that the primary request was sent; it does not include requests within the page. You set the Statistics sample

interval value in the schedule, as a schedule property.

• The number of page attempts per interval.

Chapter 9. Test Manager Guide

Page Throughput page
The Page Throughput page provides an overview of the frequency of requests being transferred per sample interval.

• The Page Hit Rate graph shows the page attempt rate and page hit rate per sample interval for all pages.

A page attempt means that the primary request was sent; it does not include requests within the page.

A hit means that the server received the primary request and returned any complete response.

When a schedule includes staged loads, colored time-range markers at the top of the graph delineate the

stages. The summary table after the graph lists the total hit rates and counts for each page in the run.

• The User Load graph shows active users and users that have completed testing, over the course of a run.

The summary table after the graph lists the results for the most recent sample interval. You set the Statistics

sample interval value in the schedule, as a schedule property. As the run nears completion, the number of

active users decreases and the number of completed users increases. The summary table after the graph lists

the active and completed users for the entire run.

Note: To set the sample interval value, open the schedule, click the Statistics tab, and then view or

modify Statistics sample interval.

If the number of requests and hits are not close, the server might be having trouble keeping up with the workload.

If you add virtual users during a run and watch these two graphs in tandem, you can monitor the ability of your system

to keep up with the workload. As the page hit rate stabilizes, even though the active user count continues to climb and

the system is well-tuned, the average response time will naturally slow down. This response time reduction happens

because the system is running at its maximum effective throughput level and is effectively throttling the rate of page

hits by slowing down how quickly it responds to requests.

Server Throughput page
The Server Throughput page lists the rate and number of bytes that are transferred per interval and for the entire run.

The page also lists the status of the virtual users for each interval and for the entire run.

• The Byte Transfer Rates graph shows the rate of bytes sent and received per interval for all intervals in the

run. When a schedule includes staged loads, colored time-range markers at the top of the graph delineate the

stages. The summary table after the graph lists the total number of bytes sent and received for the entire run.

• The User Load graph shows active users and users that have completed testing, per sample interval, over the

course of a run. You set the Statistics sample interval value in the schedule, as a schedule property. As the

run nears completion, the number of active users decreases and the number of completed users increases.

The summary table after the graph lists the active and completed users for the entire run.

The bytes sent and bytes received throughput rate, which is computed from the client perspective, shows how much

data HCL OneTest™ Performance is pushing through your server. Typically, you analyze this data with other metrics,

such as the page throughput and resource monitoring data, to understand how network throughput demand affects

server performance.

1023

HCL OneTest Performance

1024

Server Health Summary page
The Server Health Summary page gives an overall indication of how well the server is responding to the load.

• The Page Health chart shows the total number of page attempts, page hits, and status code successes for the

run. The table under the bar chart lists the same information.

A page attempt means that a primary request was sent; it does not include requests within the page.

A hit means that the server received the primary and returned any complete response.

A success means that the response code verification point passed for that request. If a primary request has

no verification points, the Success value indicates that the server received the primary request and returned a

response with one of the following status codes:

◦ 200 or 300 category

◦ 400 or 500 category, which is an expected response code

• The Page Element Health chart shows the total number of page element attempts, page element hits, status

code successes, and page element redirections for the run. The table under the bar chart lists the same

information and the total number of page elements where no request was sent to the server because the

client determined that the page elements were fresh in the local cache.

Server Health Detail page
The Server Health Detail page provides specific details for the 10 pages with the lowest success rate.

• The bar chart shows 10 pages with the lowest success rate.

• The summary table under the chart lists, for all pages, the number of attempts, hits, and successes in the run

and the attempts per second during the run.

An attempt means that a primary request was sent; it does not include requests within the page.

A hit means that the server received the primary and returned any complete response.

A success means that the response code verification point passed for that request. If a primary request has

no verification points, the Success value indicates that the server received the primary request and returned a

response with one of the following status codes:

◦ 200 or 300 category

◦ 400 or 500 category, which is an expected response code

Caching Details page
The Caching Details page provides specific details on caching behavior during a test run.

• The Caching Activity graph shows the total number of page element cache attempts, page element cache hits,

and page element cache misses for the run. These values correspond to responses from the server, indicating

whether the content has been modified. Additionally, the bar chart shows the total number of page elements

in the cache that were skipped for the run. That value indicates the cache hits that were still fresh in the local

cache, where communication with the server was not necessary.

Chapter 9. Test Manager Guide

• The Page Element Cache Hit Ratios graph shows the percentage of cache attempts that indicate server-

confirmed success and client-confirmed success for the run. Server-confirmed cache hits occur when the

server returns a 304 response code. Client-confirmed cache hits occur when the content is still fresh in the

local cache and no communication with the server is required.

Resources page
The Resources page shows information about all the resource counters that were monitored during the schedule run.

You can view the following information as mentioned in the table from the Resources page:

If... Then the Resources page displays...

If you did not add any Resource Monitoring source to a

performance schedule
A message that states that you must set up the Re­

source Monitoring sources to view the resource details.

If you added Resource Monitoring sources to a perfor­

mance schedule • The Resource Monitoring sources that were mon­

itored during the schedule run.

• All resource counters for those Resource Mon­

itoring sources that were monitored during the

schedule run.

• The Unavailable sources section lists the Re­

source Monitoring sources that were unavailable

or unreachable during the schedule run.

Note: The Unavailable sources section

is displayed only if any of the Resource

Monitoring sources were unreachable or

unavailable during the schedule run.

If you added Resource Monitoring sources by using la­

bels to a performance schedule • The following information in the Server sources

matching the labels set in the schedule (*Source

defined in team space) section:

◦ Labels and the Resource Monitoring

sources associated with those labels that

were monitored during the schedule run.

◦ Resource Monitoring sources that were

unavailable or unreachable during the

schedule run.

◦ An empty array ([]) when you used labels

that were not tagged to any Resource

1025

HCL OneTest Performance

1026

If... Then the Resources page displays...

Monitoring source in HCL OneTest™ Serv­

er.

◦ The asterisk (*) symbol is shown after

the name of the Resource Monitoring

source if you add the Resource Monitor­

ing source at the team space level in HCL

OneTest™ Server.

• All resource counters for the Resource Moni­

toring sources that were monitored during the

schedule run.

If you ran a performance schedule by using the overri­

dermlabels command from the HCL OneTest™ Perfor­

mance command line

• The following information in the Server sources

matching the labels set with the command-line

flag -overridermlabels (*Source defined in team

space) section:

◦ Labels that you used to add the Resource

Monitoring sources to the schedule for

the schedule run.

◦ Resource Monitoring sources associat­

ed with those labels that were monitored

during the schedule run.

◦ Resource Monitoring sources that were

unavailable or unreachable during the

schedule run.

◦ An empty array ([]) when you used labels

that were not tagged to any Resource

Monitoring source in HCL OneTest™ Serv­

er.

◦ The asterisk (*) symbol is shown after

the name of the Resource Monitoring

Chapter 9. Test Manager Guide

If... Then the Resources page displays...

source if you add the Resource Monitor­

ing source at the team space level in HCL

OneTest™ Server.

• All resource counters for the Resource Moni­

toring sources that were monitored during the

schedule run.

The Legend shows the Resource Monitoring type and its resource counters. When you have multiple Resource

Monitoring sources, the resource counters for the respective sources are displayed in front of their Resource

Monitoring source name. You can customize the resource counter information displayed in a graph by clicking any

individual resource counter or type of source. You can click or double-click any individual resource counter for the

following results:

• A single click on the resource counter hides the data displayed on the graph. Click the resource counter again

to display the data in the graph.

• A double-click on the resource counter removes information about all other resource counters from the graph

and displays only the information about the selected resource counter.

Tip: You can click Select All option to restore all the resource counter information on the graph.

When you click on any of the sources, the graph removes all the resource counters of other sources and displays only

the resource counters of the selected source.

For example, you have an Apache httpd server and a Windows Performance Host as a Resource Monitoring source.

When the schedule completes, the Resources page displays the resource counter information of both the sources.

If you want to analyze the resource counters for any one of the sources, you can click the Apache httpd server or the

Windows Performance Host. Based on your selection, the graph is updated to show the selected source resource

counters information.

The Performance Summary table under the graph lists the most recent values of the resource counters that were

monitored during the schedule run. The first two columns show the Type of the source and Name of the resource

counter. This table also lists the minimum, maximum, and average values of the resource counters that were

monitored during the schedule run.

Page Element Responses
The Page Element page shows the 10 slowest page element responses for the selected page.

Page Response Time Contributions
The Page Response Time Contributions page shows how much time each page element contributes to the overall

page response time and the client delay time and connection time.

1027

HCL OneTest Performance

1028

Page Size
This page lists the size of each page of your application under test. The size of the page contributes to the response

time. If part of a page or an entire page is cached, then those requests coming from the cache will not contribute to

the total page size.

The size of a page is mostly determined by the size of its elements. Each bar in this report represents a page. To view

the Page Elements Size report, click a bar and select Page Element Sizes. All the elements that are on the page show

up with sizes.

Errors

The Errors page lists the number of errors and the corresponding actions that occurred in the test or schedule. You

can view the following graphs on the Errors page:

• Error Conditions: This graph displays the number of errors that the conditions met.

• Error Behaviors: This graph displays how each error condition was managed.

• Error Conditions over Time: This graph displays errors against the time that occurred during the playback of

the test or schedule.

Note: You must have defined how to manage errors in the Advanced tab of the Test Details, VU Schedule

Details, or Compound Test Details pane to log errors when a specific condition occurs.

Page Health

Use this page(report) to determine if the pages of your application have errors. If a page contains any error, the report

displays that the page is not 100% healthy. If there are pages that are not 100% healthy, the report displays another

section listing such pages and the errors reported.

Page Element report
This report summarizes the most important page element data for the run.

The graphs in this report show time intervals, attempts, hits, and successes.

• The interval depends on the Statistics sample interval value that you set for the schedule.

• An attempt means that a request was sent.

• A hit means that the server received the request and returned any response.

• A success means that the response code verification point passed for that request. If the request has no

verification point, a success means that the server received a request and returned a response where the

status code was in the 200 or 300 category, or returned an expected response in the 400 or 500 category.

• The response time is the time between the first request character sent and the last response character

received. The response time does not include HTTP requests that time out or requests that return a status

Chapter 9. Test Manager Guide

code in the range of 4XX (client errors) - 5XX (server errors) or requests that timed out.Response times for

HTTP requests that time out or that return an unexpected status code (the recorded and played back codes

do not match) in the range of 4XX (client errors) to 5XX (server errors) are discarded from the reported values.

Overall page
The Overall line graph shows the average response time for all page elements during a specified interval. When you

have set staged loads in the schedule, this graph delineates the stages with time range markers, in various colors, at

the top. The table after the graph provides the following information:

• The average response time for all page elements in the entire run

• The standard deviation of the average response time. The standard deviation tells you how tightly the data

is grouped about the mean. For example, System A and System B both have an average response time of 12

ms. However, this does not mean that the response times are similar. System A might have response times of

11, 12, 13, and 12 ms. System B might have response times of 1, 20, 25, and 2. Although the mean time is the

same, the standard deviation of System B is greater and the response time is more varied.

• The average number of page elements attempted for the entire run

• The total page element attempts for the entire run

Response vs. Time Summary page
The Response vs. Time Summary line graph shows the response time for the 10 slowest page elements in the run.

When you have set staged loads in the schedule, this graph delineates the stages with time range markers, in various

colors, at the top. The table after the graph lists the parent page and the page element, and provides the following

information:

• The average response time for that page element during the entire run

• The standard deviation of the average response time. The standard deviation tells you how tightly the data

is grouped about the mean. For example, System A and System B both have an average response time of 12

ms. However, this does not mean that the response times are similar. System A might have response times of

11, 12, 13, and 12 ms. System B might have response times of 1, 20, 25, and 2. Although the mean time is the

same, the standard deviation of System B is greater and the response time is more varied.

• The attempts per second during the most recent sample interval

• The number of attempts during the most recent sample interval

Response vs. Time Detail page
The Response vs. Time Detail page shows the response time for each page element in the run. The table lists the

parent page and page element, and provides the following information for each page element in the entire run:

• The average response time

• The standard deviation of the average response time. The standard deviation tells you how tightly the data

is grouped about the mean. For example, System A and System B both have an average response time of 12

ms. However, this does not mean that the response times are similar. System A might have response times of

11, 12, 13, and 12 ms. System B might have response times of 1, 20, 25, and 2. Although the mean time is the

same, the standard deviation of System B is greater and the response time is more varied.

1029

HCL OneTest Performance

1030

• The number of attempts

• The number of attempts per second

Page Element Throughput page
The Page Element Throughput page shows the average response trend during a specified interval. It contains two line

graphs with corresponding summary tables:

• The Page Element Hit Rate graph shows the combined attempt rate and hit rate for all page elements during

the last recorded interval. The table after the graph lists one number: the average hit rate for all pages in the

run. When a schedule includes staged loads, colored time-range markers at the top of the graph delineate the

stages.

• The User Load graph shows active users compared to users that have completed testing. The table after the

graph lists the number of active users, the number of users that have completed testing, and the total user

count for the entire run.

Server Health Detail page
The Server Health Detail bar chart shows the percentage of successes for the 10 slowest page elements in the run.

The table under the chart lists the parent page and page element, and provides the following information for the entire

run:

• The number of attempts

• The number of hits

• The number of successes

• The percent of successes (matches the information in the bar chart)

• The number of attempts per second

Caching Details page
The Caching Details page provides specific details on caching behavior during a test run.

• The Caching Activity graph shows the total number of page element cache attempts, page element cache

hits, page element cache misses for the run. These values correspond to responses from the server indicating

whether the content has been modified. Additionally, the bar chart shows the total number of page elements

in cache skipped for the run. That value indicates the cache hits that were still fresh in the local cache, where

communication with the server was not necessary.

• The Page Element Cache Hit Ratios graph shows the percentage of cache attempts that indicate server-

confirmed success and client-confirmed success for the run. Server-confirmed cache hits occur when the

server returns a 304 response code. Client-confirmed cache hits occur when the content is still fresh in the

local cache and no communication with the server is required.

• The summary table under the charts lists the the total number of page elements found fresh in the cache

for the run. This value indicates the cache hits that were still fresh in the local cache, where communication

with the server was not necessary. The table also lists the number of attempts, the total number of page

Chapter 9. Test Manager Guide

element cache attempts sent to the server, and the total number of page element cache hits confirmed by the

server for the run. Additionally, the table lists the percentage of cache attempts that indicate server-confirmed

success and client-confirmed success for the run.

Why response time of a page does not equal the sum of its requests
The response time for a page typically differs from the sum of its requests. This does not mean that your data is

incorrect. The difference can be caused by concurrent requests, page connection times, inter-request delays, and

custom code within a page.

The most common reason for the sum of the individual request times within a page to exceed the total page

response time is that requests are often sent concurrently (in parallel) to a server. Thus some of the individual request

response times overlap so the sum of the request response times would exceed the page response time.

Additionally, the page response time can exceed the sum of the individual request response times within the page for

the following reasons:

• The individual request response times do not include time to establish connections but the page response

time does include the connection request time.

• Inter-request delays are not reflected in the individual request response time but are reflected in the page

response time.

• Custom code placed within a page is executed serially (after waiting for all previous individual requests to

complete) and thus contributes to the page response time. It does not affect individual request response

times. However, we recommend that you place custom code outside of a page, where it will not affect page

response time. For more information, see Reducing the performance impact of custom code on page .

Page Percentile report
This report shows the 85th, 90th, and 95th percentile response times for all users and all pages in a run, as well as for

the 10 slowest pages in a run.

The default percentiles in this report, 85, 90, and 95, are sufficient for most purposes. However, if you are required to

report on a different percentile set, click Window > Preferences > Test > Percentile Analysis Targets to change the

percentiles in this report and in the Transaction Percentile report.

The Summary page shows a graph with three bars, which represent the 85th percentile, 90th percentile, and 95th

percentile response times for all users and for all pages in the run. For the 85th percentile bar, 85% of all users

achieved the indicated response time or better. For the 90th percentile bar, 90% of all users achieved the indicated

response time or better. And for the 95% percentile bar, 95% of all users achieved the indicated response time or

better.

The 85%, 90%, and 95% pages show the response-time percentiles of the 10 slowest pages in the run. For example, if

you click the tab for the 85th percentile, and the total for a page is 110 (the total is beneath each bar), you know that

85 percent of the response times for that page are less than or equal to 110 milliseconds (ms).

1031

../topics/ccustcodeimpact.html
../topics/ccustcodeimpact.html
../topics/ccustcodeimpact.html
../topics/ccustcodeimpact.html

HCL OneTest Performance

1032

This graph provides an overall idea of the response times for each page. For example, the Page Performance report

might indicate that a Login page is one of the 10 slowest pages. However, it is possible that one page attempt was

extremely slow, but the other attempts were within range. The Page Percentile report shows which pages have slow

responses because they were slow in general, not because a few responses (out of many) were extremely slow.

The table beneath the graph provides more detailed information for each page:

• The minimum response time for the run.

• The average response time for the run.

• The standard deviation of the average response time. The standard deviation tells you how tightly the data

is grouped about the mean. For example, System A and System B both have an average response time of 12

ms. However, this does not mean that the response times are similar. System A might have response times of

11, 12, 13, and 12 ms. System B might have response times of 1, 20, 25, and 2. Although the mean time is the

same, the standard deviation of System B is greater and the response time is more varied.

• The maximum response time for the run.

• The 85th percentile for the run. That is, for this particular page, 85% of the response times were equal to or

faster than this time.

• The 90th percentile for the run. That is, for this particular page, 90% of the response times were equal to or

faster than this time.

• The 95th percentile for the run. That is, for this particular page, 95% of the response times were equal to or

faster than this time.

• The number of attempts in the run.

Verification Points report
This report shows the status of the verification points in your tests.

This report is displayed if your tests verify page titles, the return code for a page element, or the response size of a

page element. To have your tests verify these items, complete the following steps:

1. Before recording, set the verification points. Click Window > Preferences > Test > Test Generation > HTTP

Test Generation and under Automatically include verification point of select one of the verification point

behavior that you want to test. Or, during test editing, enable page verification points individually by right-

clicking the test item.

2. In the schedule, set the level for logging statistics to Pages or All.

The VP Pass Rate vs. Time graph on the Summary page lists the percentage of verification points that passed per

sample interval during the last recorded interval. You set the Statistics sample interval value in the schedule, as

a schedule property. When a schedule includes staged loads, colored time-range markers at the top of the graph

delineate the stages.

The Page Verification Points page lists the following information for each page that has verification points:

Chapter 9. Test Manager Guide

• The number of verification points that passed in the run

• The number of verification points that failed in the run

• The percentage of verification points that passed

The Page Element Verification Points page lists the following information for each page element that has verification

points:

• The name of the page and the element

• The number of verification points that passed in the run

• The number of verification points that failed in the run

• The percentage of verification points that passed

SAP performance test reports
When you test an SAP application, these performance test reports are produced during a run and saved after a run.

SAP Performance report
The SAP Performance report summarizes the health of the run, displays the data most significant to the run, shows

the response trend of the slowest 10 transactions in the test, and graphs the response trend of each transaction for a

specified interval.

Summary page
The Summary page summarizes the most important data about the test run, so that you can analyze the final or

intermediate results of a test at a glance.

The SAP Summary section displays the following information:

• A progress indicator that shows the state of the run.

• The number of virtual users that are active and the number of virtual users that have completed testing. This

number is updated during the run.

• The elapsed time. This figure is the run duration, which is displayed in hours, minutes, and seconds.

• The location and name of the test suite or schedule.

• Results for computer, All Hosts. To see summary results for individual computers, click the computer name in

the Performance Test Runs view.

• The status of the run. This can be Initializing Computers, Adding Users, Running, Performing Execution History

Data Transfer, Stopped, or Complete.

• The total number of virtual users that are simulated during the test.

The Transaction Summary section displays the following information:

• The minimum, maximum, average, and standard deviation execution time for all transactions. Execution time

is the sum of response times for all screens of a transaction (including the connect time and inter-request

delays).

• The total number of transactions that were completed and started.

1033

HCL OneTest Performance

1034

The Screen Summary section displays the following information:

• The minimum, maximum, average, and standard deviation screen request response times for all SAP screens.

Response time is the time between the first request character that is sent and the last response character that

is received.

• The total number of SAP screens that were completed and started.

• Percent of verification points that passed.

• Total verification points that failed.

• Total verification point errors.

• Total verification points that passed.

• Total verification points that are inconclusive.

The Element Summary section displays the following information:

• The total number of SAP set, SAP get, and SAP call elements that were attempted.

• The total number of SAP set, SAP get, and SAP call elements that were completed.

• The percentage of completion of all SAP set, SAP get, and SAP call elements.

Screen Performance page
The Screen Performance page shows the average response time of the longest SAP screen requests in the test as the

test progresses. With this information, you can evaluate system response during and after the test.

If you select Do not measure performance on this screen on a SAP screen in the test editor, then the report does not

include the response time results for that screen.

The bar chart shows the average response time of the 10 slowest transactions. Each bar represents a page that you

visited during recording. As you run the test, the bar chart changes, because the 10 slowest screens are updated

dynamically during the run. For example, the SAP Easy Access screen might be one of the 10 slowest pages at the

start of the run, but then, as the test progresses, Display Material (Initial Screen) might replace it as one of the 10

slowest. After the run, the page shows the 10 slowest transactions for the entire run.

The Performance Summary table that follows the bar chart provides the following additional information for each SAP

screen:

• The minimum response time for each SAP screen in the run. Response time is the time between the first

request character that is sent and the last response character that is received.

• The average response time for each SAP screen in the run. This matches the information in the chart.

• The maximum response time for each SAP screen in the run.

• The standard deviation response time for each SAP screen in the run.

• The rate per second at which each SAP screens is started.

• The total number of times each SAP screen is started.

Chapter 9. Test Manager Guide

Response vs. Time Summary page

The Response vs. Time Summary page shows the average response trend as graphed for a specified interval. The line

graph shows the average response time for all SAP screens during the run. Each point on the graph is an average of

what has occurred during that interval. You set the Statistics sample interval in the schedule, as a schedule property.

The table that follows the graph displays the average and standard deviation response time for all SAP screens during

the run.

Response vs. Time Detail page
The Response vs. Time Detail page shows the response trend by screen as graphed for a specified interval. Each

separate line represents a SAP screen. You set the Statistics sample interval in the schedule, as a schedule property.

The line graph shows the average response of each page during a specified interval. The table that follows the graph

provides the following additional information for each SAP screen:

• The minimum SAP screen request response time for the run. This is the time between the moment the input is

validated in the SAP GUI and the time the resulting SAP screen is displayed.

• The average SAP screen request response time for the run. This is similar to the graph, but the information in

the table is for the duration of the entire run.

• The maximum SAP screen request response time for the run.

• The standard deviation for SAP screen request response time for the run.

• The rate per second at which each SAP screen is started for the most recent interval.

• The total number of times each SAP screen is started for the most recent interval.

Screen Throughput page
The Screen Throughput page provides an overview of the frequency of requests that are being transferred per interval.

• The line graph on the left shows two lines that represent the rate for intervals at which SAP screens are

started and the rate at which SAP screens are completed. The summary table under the graph lists the start

rates and the completed rates and counts for each SAP screen in the run.

• The line graph on the right shows active users and users that have completed testing, over the course of a run.

The summary table under the graph lists the results for the most recent sample interval. You set the Statistics

sample interval in the schedule, as a schedule property.

Server Health page

The Server Health Summary page shows an overall indication of how well the server is responding to the load.

The bar chart on the left represents the total number of SAP screens started. The bar chart on the right represents the

percentage of SAP screens completed compared to the SAP screens started on each interval. The percentage can be

over 100% if more screens were completed than started on a given interval.

The table that follows the charts lists the same information for each SAP screen.

1035

HCL OneTest Performance

1036

Batch Input Transaction Rate page

The Batch Input Transaction Rate page displays the number of batch input tests that were run during the test run. The

Batch Input Transaction graph represents the volume of batch input transactions that were processed during the test

run.

SAP Verification Points report
The SAP Verification Points report shows the status of the verification points in your tests.

Summary page

The Summary page displays a line graph representing the percentage of verification points that passed per interval.

You set the Statistics sample interval value in the schedule, as a schedule property.

Below the graph, the Verification Point Summary table lists the following information:

• The percentage of verification points that passed during the run.

• The number of verification points that were tested.

• The number of verification points that passed.

• The number of verification points that failed.

• The number of verification points that produced an error.

• The number of verification points that were inconclusive.

Screen Verification Points page

The Screen Verification Points page lists the following information for each page element that has verification points:

• The number of verification points that passed during the run

• The number of verification points that failed during the run

• The percentage of verification points that passed during the run

Verification points set on the screen title are counted with verification points set on get events in the screen.

Citrix performance test reports
When you test a Citrix XenApp application, these reports are produced during a run and saved after a run.

Citrix Performance report
The Citrix performance report summarizes the validity of the run, graphs show response times, average response

time, and the server health depending on requests.

Citrix Overall page
The Overall page provides the following information:

Chapter 9. Test Manager Guide

• A progress indicator that shows the state of the run.

• The bar chart indicates the overall success of the run with the percentage of window and image

synchronization successes and the percentage of verification point successes. Synchronization success

indicates that the expected window and image events in the test match the actual window and image events

in the test run.

Performance Summary page
The Summary page summarizes general data about the test run, so that you can analyze the final or intermediate

results of a test at a glance.

The Run Summary table displays the following information:

• The number of virtual users that are active and the number of virtual users that have completed testing. This

number is updated during the run.

• The elapsed time. This is the total duration of the run, which is displayed in hours, minutes, and seconds.

• The location and name of the test.

• The status of the run. This can be Initializing Computer(s), Adding Users, Running, Performing Execution

History Data Transfer, Stopped, or Complete.

• The total number of virtual users emulated during the test.

The Citrix Summary section displays the following information:

• The statistics values (average, standard deviation, maximum, minimum) of the average response time for all

response time measurements. Response times are determined by measurements that are located in the tests.

Response time measurements can be automatically generated between the last input action before a window

create event and the window create event. The table does not display values that equal zero.

• Total user actions for run. This indicates the total number of user input actions that were emulated during the

run.

• The total number of window synchronization attempts.

• The total number of window synchronization successes.

• The total number of window synchronization timeouts. A timeout occurs when the synchronization fails.

• The total number of image synchronization attempts.

• The total number of image synchronization successes.

• The total number of image synchronization timeouts. A timeout occurs when the synchronization fails.

Server Performance Summary page
The server Performance Summary page shows the average time virtual users are connected, active, and

disconnected.

The bar chart shows the average response time of each test phase. Each bar represents a particular phase in the test:

connecting to the Web interface, connecting to the server, identifying, activity phase and disconnecting. As you run

the test, the bar chart changes, because the time measurements are updated dynamically during the run.

The table under the bar chart provides the following additional information for each window:

1037

HCL OneTest Performance

1038

• The minimum response time during the run.

• The average response time during the run. This matches the information in the chart.

• The maximum response time during the run.

• The standard deviation response time during the run.

Response vs. Time Summary page

The Response vs. Time Summary page shows the average response trend as graphed for a specified interval. You

set the Statistics sample interval value in the schedule, as a schedule property. Response times are determined by

measurements that are located in the tests. Response time measurements can be automatically generated between

the last input action before a window create event and the window create event.

The line graph shows the average response time for all measurements during the run. Each point on the graph is an

average of what has occurred during that interval. The table under the graph lists the statistics values of the total

average response time for all measurements in the run.

Response vs. Time Details page

The Response vs. Time Details page shows the response trend as graphed for a specified interval. You set the

Statistics sample interval value in the schedule, as a schedule property. Response times are determined by

measurements that are located in the tests. Response time measurements can be automatically generated between

the last input action before a window create event and the window create event.

The line graph shows the average response time of each measurement for a specified interval. Each measurement is

represented by a separate line.

The table under the graph provides the following additional information for each response time measurement:

• The minimum response time during the run.

• The average window response time during the run. This is similar to the graph, but the information in the table

includes the entire run.

• The maximum window response time during the run.

• The standard deviation window response time during the run.

User Action Throughput page

The User Action Throughput page provides an overview of the frequency of requests being transferred per interval.

You set the Statistics sample interval value in the schedule, as a schedule property.

• The line graph on the left shows the user action rate per interval for all windows. This represents the activity of

virtual user input actions per second for each interval. The table under the graph lists the user action rate per

second for the entire run, and the total number of user actions for the run.

• The line graph on the right shows active users and users that have completed testing, over the course of a run.

The summary table under the graph lists the results for the most recent sample interval.

Chapter 9. Test Manager Guide

Server Health Summary page

The Server Health Summary page provides an overall indication of how well the server has performed. The graph

does not display values that equal zero.

The bar chart shows the following information:

• The total number of window synchronization attempts.

• The total number of window synchronization successes.

• The total number of window synchronization timeouts.

• The total number of image synchronization attempts.

• The total number of image synchronization successes.

• The total number of image synchronization timeouts.

• The total number of Citrix server errors or errors encountered during test execution.

Server Timeout page

The Server Timeout page shows when the synchronization timeouts and server errors occurred during the run. The

graph does not display values that equal zero.

The line graph shows the following information:

• Citrix window synchronization timeouts.

• Citrix image synchronization timeouts.

• Citrix server errors or errors encountered during test execution.

Resources page
The Resources page shows all resource counters monitored during the schedule run.

• The line chart shows the values of the resources counters monitored during the schedule run.

The chart scales automatically to accommodate the highest resource counter value.

• The summary table under the chart lists the average values of the resource counters monitored during the

schedule run. This table is organized by resource monitoring hosts.

Citrix Verification Points report
The Citrix Verification Points report shows the status of the verification points in your tests.

Summary page

The Summary page displays a line graph representing the percentage of verification points that passed per interval.

You set the Statistics sample interval value in the schedule, as a schedule property.

Below the graph, the Window Verification Point Summary table lists the following information:

1039

HCL OneTest Performance

1040

• The percentage of window verification points that passed during the run

• The number of window verification points that were attempted

• The number of window verification points that passed

• The number of window verification points that failed

The Image Synchronization Verification Point Summary table lists the following information:

• The percentage of image synchronization verification points that passed during the run

• The number of image synchronization verification points that were tested

• The number of image synchronization verification points that passed

• The number of image synchronization verification points that failed

Citrix Verification Points page

The Citrix Verification Points page contains tables with verification point details.

The Window Verification Points table lists the following information:

• The number of window verification points that passed during the run

• The number of window verification points that failed during the run

• The number of window verification points that caused an error during the run

• The number of window verification points that were inconclusive during the run

• The percentage of window verification points that passed during the run

The Image Synchronization Verification Points table lists the following information:

• The number of image synchronization verification points that passed during the run

• The number of image synchronization verification points that failed during the run

• The number of image synchronization verification points that caused an error during the run

• The number of image synchronization verification points that were inconclusive during the run

• The percentage of image synchronization verification points that passed during the run

Citrix response time percentile report
This report shows the 85th, 90th, and 95th percentile response times for all users in a run.

The default percentiles in this report, 85, 90, and 95, are sufficient for most purposes. However, if you are required to

report on a different percentile set, click Window > Preferences > Test > Percentile Analysis Targets to change the

percentiles in this report.

The Summary page shows a graph with three bars, which represent the 85th percentile, 90th percentile, and 95th

percentile response times for all users in the run. For the 85th percentile bar, 85% of all users achieved the indicated

response time or better. For the 90th percentile bar, 90% of all users achieved the indicated response time or better.

And for the 95% percentile bar, 95% of all users achieved the indicated response time or better.

Chapter 9. Test Manager Guide

The 85%, 90%, and 95% pages show the response-time percentiles of the 10 slowest window events in the run. For

example, if you click the tab for the 85th percentile, and the total for a page is 110 (the total is beneath each bar), you

know that 85 percent of the response times for that window event are less than or equal to 110 milliseconds (ms).

This graph provides an overall idea of the response times for each window event. For example, the Response Time

Measurements page of the Citrix performance report might indicate that a Login screen is one of the 10 slowest

measurements. However, it is possible that one attempt was extremely slow, but the other attempts were within

range. The Citrix response time percentile report shows which measurements have slow responses because they

were slow in general, not because a few responses (out of many) were extremely slow.

The table beneath the graph provides more detailed information for each window event:

• The minimum response time for the run.

• The average response time for the run.

• The standard deviation of the average response time. The standard deviation tells you how tightly the data

is grouped about the mean. For example, System A and System B both have an average response time of 12

ms. However, this does not mean that the response times are similar. System A might have response times of

11, 12, 13, and 12 ms. System B might have response times of 1, 20, 25, and 2. Although the mean time is the

same, the standard deviation of System B is greater and the response time is more varied.

• The maximum response time for the run.

• The 85th percentile for the run. That is, for this particular measurement, 85% of the response times were equal

to or faster than this time.

• The 90th percentile for the run. That is, for this particular measurement, 90% of the response times were equal

to or faster than this time.

• The 95th percentile for the run. That is, for this particular measurement, 95% of the response times were equal

to or faster than this time.

• The number of attempts in the run.

Related reference

Percentile analysis preferences on page 1404

Web service reports
When you test a web service, these reports are produced during a run and saved after a run.

Service Performance report
The Service Performance report summarizes the validity of the run, summarizes the data most significant to the run,

shows the response trend of the slowest 10 service calls in the test, the server health depending on requests, and

graphs the response trend of each service calls for a specified interval.

Overall page
The Overall page provides the following information:

1041

HCL OneTest Performance

1042

• A progress indicator that shows the state of the run.

• The bar graph on the left indicates the percentage of successful service calls during the run.

• The bar graph on the right indicates the percentage of verification points with a Pass status for the run.

Summary page
The Summary page summarizes the most important data about the test run, so that you can analyze the final or

intermediate results of a test at a glance.

The Run Summary table displays the following information:

• The number of virtual users that are active and the number of virtual users that have completed testing. These

numbers are updated during the run.

• The elapsed time. This is the total duration of the run, which is displayed in hours, minutes, and seconds.

• The location and name of the test.

• The results for the computer and for all computers. To see summary results for individual computers, click the

computer name in the Performance Test Runs view.

• The status of the run. This can be Initializing Computers, Adding Users, Running, Performing Execution History

Data Transfer, Stopped, or Complete.

• The total number of virtual users emulated during the test.

The Call Summary section displays the following information:

• The percentage of verification points with a Pass status.

• The total number of verification points with a Fail status.

• The total number of verification points with an Error status.

• The total number of attempted service calls.

• The total number of successful service calls.

• The total number of service calls that produced a timeout.

The Bytes Summary section displays the following information:

• The minimum, maximum, and average number of bytes sent and received for each call in the run.

• The byte rate per second for the run.

• The total number of bytes sent and received for the run.

Response Time Results page
The Response Time Results page shows the average response of the service calls in the test as the test progresses.

With this information, you can evaluate system response during and after the test. The delay between the moment

a service call is invoked and the moment the corresponding message return is received, determines the Response

times.

The bar chart shows the average response time of each service call. Each bar represents a service call that was

invoked during the test. As you run the test, the bar chart changes, because the response times are updated

dynamically during the run.

Chapter 9. Test Manager Guide

The table that follows the bar chart provides the following additional information for each service call:

• The minimum response time during the run.

• The average response time during the run. This matches the information in the chart.

• The maximum response time during the run.

• The standard deviation response time during the run.

Response Time vs. Time Summary page

The Response vs. Time Summary page shows the average response trend as graphed for a specified interval. You

set the Statistics sample interval value in the schedule, as a schedule property. Measurements that are located in the

tests determine the Response times. Response time measurements can be automatically generated between the last

input action before a service call and the corresponding message return event.

The line graph shows the average response time for all measurements during the run. Each point on the graph is an

average of what has occurred during that interval. The table that follows the graph lists one number: the total average

response time for all measurements in the run.

Response Time vs. Time Details page

The Response vs. Time Details page shows the response trend as graphed for a specified interval. You set the

Statistics sample interval value in the schedule, as a schedule property. The delay between the moment a service call

is invoked and the moment the corresponding message return is received determines the Response times.

The line graph shows the average response time of each measurement for a specified interval. A separate line

represents each measurement.

The table under the graph provides the following additional information for each response time measurement:

• The minimum response time during the run.

• The average service call response time during the run. This is similar to the graph, but the information in the

table includes the entire run.

• The maximum service call response time during the run.

• The standard deviation service call response time during the run.

Data Volume page

The Data Volume page provides details about the volume of data that is sent to and received from the service. You

set the Statistics sample interval value in the schedule, as a schedule property.

1043

HCL OneTest Performance

1044

• The Sent and Received line graph shows the total bytes sent and received per interval.

• The Received Summary table lists, for each call, the received volume rate (bytes per second) for the entire run,

the minimum and maximum received bytes per interval, and the average number of bytes received for each

call.

• The Sent Summary table table lists, for each call, the sent volume rate (bytes per second) for the entire run,

the minimum and maximum sent bytes per interval, and the average number of bytes sent for each call.

Call Throughput page

The Call Throughput page provides an overview of the frequency of service calls that are being transferred per

interval. You set the Statistics sample interval value in the schedule, as a schedule property.

• The line graph shows the calls that are started and ended per interval. Ended calls can be: success, fail, or

timeout.

• The Performance Summary table lists the details of the number of call starts, successes, failures or timeouts

for each call and for the run.

Resources page
The Resources page shows information about all the resource counters that were monitored during the schedule run.

You can view the following information as mentioned in the table from the Resources page:

If... Then the Resources page displays...

If you did not add any Resource Monitoring source to a

performance schedule
A message that states that you must set up the Re­

source Monitoring sources to view the resource details.

If you added Resource Monitoring sources to a perfor­

mance schedule • The Resource Monitoring sources that were mon­

itored during the schedule run.

• All resource counters for those Resource Mon­

itoring sources that were monitored during the

schedule run.

• The Unavailable sources section lists the Re­

source Monitoring sources that were unavailable

or unreachable during the schedule run.

Chapter 9. Test Manager Guide

If... Then the Resources page displays...

Note: The Unavailable sources section

is displayed only if any of the Resource

Monitoring sources were unreachable or

unavailable during the schedule run.

If you added Resource Monitoring sources by using la­

bels to a performance schedule • The following information in the Server sources

matching the labels set in the schedule (*Source

defined in team space) section:

◦ Labels and the Resource Monitoring

sources associated with those labels that

were monitored during the schedule run.

◦ Resource Monitoring sources that were

unavailable or unreachable during the

schedule run.

◦ An empty array ([]) when you used labels

that were not tagged to any Resource

Monitoring source in HCL OneTest™ Serv­

er.

◦ The asterisk (*) symbol is shown after

the name of the Resource Monitoring

source if you add the Resource Monitor­

ing source at the team space level in HCL

OneTest™ Server.

• All resource counters for the Resource Moni­

toring sources that were monitored during the

schedule run.

If you ran a performance schedule by using the overri­

dermlabels command from the HCL OneTest™ Perfor­

mance command line

• The following information in the Server sources

matching the labels set with the command-line

flag -overridermlabels (*Source defined in team

space) section:

1045

HCL OneTest Performance

1046

If... Then the Resources page displays...

◦ Labels that you used to add the Resource

Monitoring sources to the schedule for

the schedule run.

◦ Resource Monitoring sources associat­

ed with those labels that were monitored

during the schedule run.

◦ Resource Monitoring sources that were

unavailable or unreachable during the

schedule run.

◦ An empty array ([]) when you used labels

that were not tagged to any Resource

Monitoring source in HCL OneTest™ Serv­

er.

◦ The asterisk (*) symbol is shown after

the name of the Resource Monitoring

source if you add the Resource Monitor­

ing source at the team space level in HCL

OneTest™ Server.

• All resource counters for the Resource Moni­

toring sources that were monitored during the

schedule run.

The Legend shows the Resource Monitoring type and its resource counters. When you have multiple Resource

Monitoring sources, the resource counters for the respective sources are displayed in front of their Resource

Monitoring source name. You can customize the resource counter information displayed in a graph by clicking any

individual resource counter or type of source. You can click or double-click any individual resource counter for the

following results:

• A single click on the resource counter hides the data displayed on the graph. Click the resource counter again

to display the data in the graph.

• A double-click on the resource counter removes information about all other resource counters from the graph

and displays only the information about the selected resource counter.

Tip: You can click Select All option to restore all the resource counter information on the graph.

When you click on any of the sources, the graph removes all the resource counters of other sources and displays only

the resource counters of the selected source.

Chapter 9. Test Manager Guide

For example, you have an Apache httpd server and a Windows Performance Host as a Resource Monitoring source.

When the schedule completes, the Resources page displays the resource counter information of both the sources.

If you want to analyze the resource counters for any one of the sources, you can click the Apache httpd server or the

Windows Performance Host. Based on your selection, the graph is updated to show the selected source resource

counters information.

The Performance Summary table under the graph lists the most recent values of the resource counters that were

monitored during the schedule run. The first two columns show the Type of the source and Name of the resource

counter. This table also lists the minimum, maximum, and average values of the resource counters that were

monitored during the schedule run.

Web Service Verification Points report
The web service verification points report shows the status of the verification points in your tests.

Summary page

The Summary page displays a bar graph representing the percentage of successful web service calls for the test run.

You can set the Statistics sample interval value in the schedule, as a schedule property.

The Verification Point Summary Tab table lists the following information:

• The number of verification points that were attempted, passed, and failed during the test run.

• The percentage of verification points that passed per interval during the test run.

Verification Points Detail page

The Verification Points Detail page displays the details for all types of verification points that were checked during

the test run.

The Verification Points Detail table lists the following information:

• The number of verification points that passed, failed, caused an error, were inconclusive during the test run.

• The percentage of verification points that passed during the test run.

Response Contain Verification Points page

The Response Contain Verification Points page displays the details of contain verification points that were checked

during the test run.

The Response Contain Verification Points table lists the following information:

• The number of verification points that passed, failed, caused an error, were inconclusive during the test run.

• The percentage of verification points that passed during the test run.

1047

HCL OneTest Performance

1048

Response Equal Verification Points page

The Response Equal Verification Points page displays the details of equal verification points that were checked

during the test run.

The Response Equal Verification Points table lists the following information:

• The number of verification points that passed, failed, caused an error, were inconclusive during the test run.

• The percentage of verification points that passed during the test run.

Response Properties Verification Points page

The Response Properties Verification Points page displays the details of the verification point for the properties that

were checked during the test run.

The Response Properties Verification Points table lists the following information:

• The number of verification points that passed, failed, caused an error, and were inconclusive during the test

run.

• The percentage of verification points that passed during the test run.

Response Query Verification Points page

The Response Query Verification Points page displays the details of query verification points that were checked

during the test run.

The Response Query Verification Points table lists the following information:

• The number of verification points that passed, failed, caused an error, were inconclusive during the test run.

• The percentage of verification points that passed during the test run.

Response XSD Verification Points

The Response XSD Verification Points page displays the details of verification points that were checked during the

test run.

The Response XSD Verification Points table lists the following information:

• The number of verification points passed, failed, caused an error, were inconclusive during the test run.

• The percentage of verification points that passed during the test run.

Response Attachment Verification Points page

The Response Attachment Verification Points page displays the details of attachment verification points that were

checked during the test run.

The Response Attachment Verification Points table lists the following information:

Chapter 9. Test Manager Guide

• The number of verification points that passed, failed, caused an error, were inconclusive during the test run.

• The percentage of verification points that passed during the test run.

Response Text Verification Points

The Response Text Verification Points page displays the details of verification points that were checked during the

test run.

The Response Text Verification Points table lists the following information:

• The number of verification points that passed, failed, caused an error during the test run.

• The percentage of verification points that passed during the test run.

Callback Verification Points

The Callback Verification Points page displays the details of verification points that were checked during the test run.

The Callback Verification Points table lists the following information:

• The number of verification points that passed, failed, caused an error, were inconclusive during the test run.

• The percentage of verification points that passed during the test run.

WSDL Coverage report
The Web Services Description Language (WSDL) Coverage report displays all the bindings, methods, and ports of a

web service that were used in the test, compound test, or schedule. In this report, you can see the methods or ports

that are not called by the test so that they require more tests for better coverage.

To generate a WSDL Coverage report, in the Test Navigator view, right-click a service test result, and click WSDL

Coverage Report.

Global Summary

This section displays the number of tests, verification points, and defects available in the report.

WSDL Coverage Summary

This section includes sub-sections for the name of all the compound tests, schedules, and test runs for each WSDL

service. For example, if you run a compound test that contains four tests and each test runs a different WSDL service,

this section displays a table with four rows for the same compound test but different WSDL services used. Another

table displays each test run with the corresponding WSDL service. The tables would display a column for the overall

coverage percentage of each WSDL service.

WSDL Coverage Details

This section also includes sub-sections for the names of all the compound tests, schedules, and test runs for each

WSDL service. However, this section provides detail coverage information at the bindings, methods, and ports level

1049

HCL OneTest Performance

1050

for the WSDL service. It reports the verdict and the number of requests sent and responses received. The Coverage

column of the table indicates whether the methods or ports are called by the test. If the method is called, it shows

as 100%. If the method is not called, it shows as 0%. The percentages are then rolled up to the bindings and WSDL

service level.

For example, in the following screenshot, there is one binding BasicHttpBinding_IStockQuoteService

with two methods. The method GetStockQuote is called by the test. But, the GetWorldMajorIndices

method was not called. Therefore, at the binding level, you see 50% coverage. As a user of the web service, if the

GetWorldMajorIndices method is required, you can check why it was not used by the test.

Socket performance test reports
When you test a socket application, these performance test reports are produced during a run and saved after a run.

Socket Performance report
The Socket Performance report summarizes the health of the run, displays the data most significant to the run, shows

the response trend of the slowest 10 transactions in the test, and graphs the response trend of each transaction for a

specified interval, for socket API performance tests.

Overall page

The Overall page summarizes the most important data about the test run, so that you can analyze the final or

intermediate results of a test at a glance.

The top of the page displays a progress indicator bar that shows the state of the run.

The Virtual Users Activity bar chart displays the number of virtual users that are active and the number of virtual

users that have completed testing. This number is updated during the run.

The Run Summary section displays the following information:

• The name of the test or schedule.

• The number of virtual users that are active and the number of virtual users that have completed testing. This

number is updated during the run.

• The total number of virtual users that are simulated during the test.

Chapter 9. Test Manager Guide

• The elapsed time. This figure is the run duration, which is displayed in hours, minutes, and seconds.

• The status of the run. This can be Initializing Computers, Adding Users, Running, Performing Execution History

Data Transfer, Stopped, or Complete.

• Results for the computer, All Hosts. To see summary results for individual computers, click the computer

name in the Performance Test Runs view.

Connect Performance page
The Connect Performance page shows the performance of socket connection actions. With this information, you can

evaluate system response during and after the test.

The Connect Actions vs. Time bar chart shows the attempted and successful connection actions during the test run.

The Connect Times vs. Time bar chart shows average, maximum, minimum, and standard deviation of connection

times during the test run.

The Connect Actions Summary displays this information:

• The number of connections that were attempted

• The number of connections that were successful

The Connect Times Summary displays the average, maximum, minimum, and standard deviation of connection times.

Send/Receive Performance page

The Send/Receive Performance page shows the data throughput trend as graphed for a specified interval. The line

graph shows the average response time for all socket send and receive actions during the run. Each point on the

graph is an average of what has occurred during that interval. You set the Statistics sample interval in the schedule

as a schedule property.

The Send/Receive Actions vs. Time bar chart shows the attempted and successful send and receive actions during

the test run.

The Response Times vs. Time bar chart shows average, maximum, minimum, and standard deviation of response

times during the test run.

The Connect Actions Summary displays this information:

• The number of send and receive actions that were attempted

• The number of send and receive actions that were successful

The Connect Times Summary displays the average, maximum, minimum, and standard deviation of response times.

Byte Performance page
The Byte Performance page provides an overview of the frequency of requests that are being transferred per interval:

1051

HCL OneTest Performance

1052

• The Exchanged Bytes vs. Time line graph shows the quantity of bytes sent and received during the test run.

• The Exchanged Bytes summary table after the graph lists the total number of bytes sent and received.

HTTP counters
HTTP counters, which are displayed in the Performance Test Runs view, enable you to customize your reports with

dynamic information that is updated for each run.

Byte counters
These counters provide throughput information regarding the rate and the number of bytes sent and received during a

sample interval and during a run.

The counters in the following tables provide an aggregate value for all tests. Folders that contain aggregate counters

have a clock superimposed on them: .

Run > Throughput

Counter name Description

Bytes Received [for

Run]

The total number of bytes received for all tests for the entire

run

Bytes Sent [for Run] The total number of bytes sent for all tests for the entire run

Run > Throughput > Bytes Received

Counter name Description

Count [for Interval] The total number of bytes received for all tests within the most recent sample inter­

val

Rate [per second] [for Inter­

val]

The bytes per second received for all tests within the most recent sample interval

Rate [per second] [for Run] The bytes per second received for all tests for the entire run

Run > Throughput > Bytes Sent

Counter name Description

Count [for Interval] The total number of bytes sent for all tests within the most recent sample inter­

val

Rate [per second] [for Interval] The bytes per second sent for all tests within the most recent sample interval

Rate [per second] [for Run] The bytes per second sent for all tests for the entire run

Chapter 9. Test Manager Guide

Page counters
These counters provide information about page attempts, page hits, response time, response success, and

verification points. Some counters produce an aggregate value, where the values for several pages are rolled up into

one value; others produce values for each page.

Aggregate counters use the values for all the pages in a test to produce a single value for a report. This value is rolled

up from all values that satisfy the counter. When you drag an aggregate counter onto a report, one value is displayed.

Folders that contain aggregate counters have a clock superimposed on the folder icon: . The tables below that list

aggregate counters have this icon in their title.

Individual counters produce values for each item that satisfies the counter, rather than a single rolled-up value.

Folders that contain individual counters have an asterisk superimposed on the folder icon: . The tables below that

list individual counters have this icon in their title.

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule, as a

schedule property.

Adjustment counters

The counters in this section provide information about adjustments made to page response times.

Pages > Adjustments

Counter name Description

Average [for Interval] The average of all adjustments applied during the most recent sample interval

Average [for Run] The average of all adjustments applied for the entire run

Maximum [for Interval] The maximum adjustment applied during the most recent sample interval

Maximum [for Run] The maximum adjustment applied for the entire run

Minimum [for Interval] The minimum adjustment applied during the most recent sample interval

Minimum [for Run] The minimum adjustment applied for the entire run

Standard Deviation [for Inter­

val]

The standard deviation for adjustments applied within the most recent sample inter­

val

Standard Deviation [for Run] The standard deviation for adjustments applied for the entire run

The counters in the following table are available only after a run, and only after you have displayed the Page Percentile

report.

Pages > Adjustments > Percentile Data

Counter name Description

85 85% of the users had a maximum adjustment of this amount applied

1053

HCL OneTest Performance

1054

Counter name Description

90 90% of the users had a maximum adjustment of this amount applied

95 95% of the users had a maximum adjustment of this amount applied

Attempt counters

The counters in this section provide information about attempts. When an attempt refers to a page, it means that the

primary request was sent; it does not include requests within the page. When an attempt refers to a page element, it

means that a request was sent.

Pages > Attempts > All Pages

Counter name Description

Count [for Interval] The number of attempts for a specific page within the most recent sample interval

Count [for Run] The number of attempts for a specific page for the entire run

Rate [per second] [for Inter­

val]

The rate at which attempts occurred for a specific page during the most recent sample

interval

Rate [per second] [for Run] The rate at which attempts occurred for a specific page for the entire run

Pages > Attempts Completed > All Pages

Counter name Description

Count [for Inter­

val]

The total number of page attempts completed for a specific page during the most recent sample

interval

Pages > Attempts Completed > All Pages > Element > All Elements

Counter name Description

Count [for Inter­

val]

The total number of page attempts completed for a specific page element for the most recent

sample interval

Pages > Attempts > All Pages > Element > All Elements

Counter name Description

Count [for Interval] The number of attempts for a specific page element within the most recent sample inter­

val

Count [for Run] The number of attempts for a specific page element for the entire run

Rate [per second] [for In­

terval]

The rate at which attempts occurred for a specific page element during the most recent

sample interval

Rate [per second] [for

Run]

The rate at which attempts occurred for a specific page element for the entire run

Chapter 9. Test Manager Guide

Pages > Attempts

Counter name Description

Page Attempt Rate [per second] [for Inter­

val]

The rate at which page attempts occurred within the most recent sam­

ple interval

Page Attempt Rate [per second] [for Run] The rate at which page attempts occurred for the entire run

Page Element Attempt Rate [per second]

[for Interval]

The rate at which page element attempts occurred within the most re­

cent sample interval

Page Element Attempt Rate [per second]

[for Run]

The rate at which page element attempts occurred for the entire run

Total Page Attempts [for Interval] The number of page attempts during the most recent sample interval

Total Page Attempts [for Run] The number of page attempts for the entire run

Total Page Element Attempts [for Interval] The number of page element attempts within the most recent sample

interval

Total Page Element Attempts [for Run] The number of page element attempts for the entire run

Exemple

Each counter in the following table provides a single value to the report. This aggregated value has been calculated

from all pages.

Hit counters

Pages > Hits > All Pages

Counter name Description

Count [for Interval] The number of hits for a specific page within the most recent sample interval

Count [for Run] The number of hits for a specific page for the entire run

Rate [per second] [for Inter­

val]

The rate at which hits occurred for a specific page during the most recent sample in­

terval

Rate [per second] [for Run] The rate at which hits occurred for a specific page for the entire run

Pages > Hits > All Pages > Element > All Elements

Counter name Description

Count [for Interval] The number of hits for a specific page element within the most recent sample interval

Count [for Run] The number of hits for a specific page element for the entire run

Rate [per second] [for In­

terval]

The rate at which hits occurred for a specific page element during the most recent sam­

ple interval

Rate [per second] [for Run] The rate at which hits occurred for a specific page element for the entire run

1055

HCL OneTest Performance

1056

Pages > Hits

Counter name Description

Page Element Hit Rate [per second] [for In­

terval]

The rate of page element hits during the most recent sample interval

Page Element Hit Rate [per second] [for

Run]

The rate of page element hits for the entire run

Page Hit Rate [per second] [for Interval] The rate of page hits during the most recent sample interval

Page Hit Rate [per second] [for Run] The rate of page hits for the entire run

Total Page Element Hits [for Interval] The total number of page element hits within the most recent sample

interval

Total Page Element Hits [for Run] The total number of page element hits for the entire run

Total Page Hits [for Interval] The total number of page hits during the most recent sample interval

Total Page Hits [for Run] The total number of page hits for the entire run

Response Time counters

Response time counters omit page response times for pages that contain requests with status codes in the range of

4XX (client errors) to 5XX (server errors). The only exception is when the failure (for example, a 404) is recorded and

returned, and the request is not the primary request for the page. Page response times that contain requests that time

out are always discarded.

Pages > Response Time [ms] > All Pages

Counter name Description

Average [for Interval] The average response time for a specific page within the most recent sample inter­

val

Average [for Run] The average response time for a specific page for the entire run

Maximum [for Interval] The maximum response time for a specific page within the most recent sample in­

terval

Maximum [for Run] The maximum response time for a specific page for the entire run

Minimum [for Interval] The minimum response time for a specific page within the most recent sample in­

terval

Minimum [for Run] The minimum response time for a specific page for the entire run

Standard Deviation [for Inter­

val]

The standard deviation for a specific page within the most recent sample interval

Standard Deviation [for Run] The standard deviation for a specific page for the entire run

Chapter 9. Test Manager Guide

Pages > Response Time [ms] > All Pages > Element > All Elements

Counter name Description

Average [for Inter­

val]

The average response time for a specific page within the most recent sample inter­

val

Average [for Run] The average response time for a specific page for the entire run

The counters in the following table are available only after a run, and only after you have displayed the Page Percentile

report.

Pages > Response Time [ms] > All Pages > Percentile Data

Counter name Description

85 85% of the users experienced this response time or better on this specific

page

90 90% of the users experienced this response time or better on this specific

page

95 95% of the users experienced this response time or better on this specific

page

The counters in the following table are available only after a run, and only after you have displayed the Page Percentile

report.

Pages > Response Time [ms] > Percentile Data Summary for All Pages

Counter name Description

85 85% of the users experienced this response time or bet­

ter

90 90% of the users experienced this response time or bet­

ter

95 95% of the users experienced this response time or bet­

ter

Response time counters omit page response times for pages that contain requests with status codes in the range of

4XX (client errors) to 5XX (server errors). The only exception is when the failure (for example, a 404) is recorded and

returned, and the request is not the primary request for the page. Page response times that contain requests that time

out are always discarded.

Pages > Response Time [ms]

Counter name Description

Average Response Time for All Page Elements

[ms] [for Interval]

The average response time for all page elements within the

most recent sample interval

1057

HCL OneTest Performance

1058

Counter name Description

Average Response Time for All Page Elements

[ms] [for Run]

The average response time for all page elements for the entire

run

Average Response Time for All Pages [ms] [for In­

terval]

The average response time for all pages within the most recent

sample interval

Average Response Time for All Pages [ms] [for

Run]

The average response time for all pages for the entire run

Maximum Response Time for All Pages [ms] [for

Interval]

The maximum response time for all pages within the most re­

cent sample interval

Maximum Response Time for All Pages [ms] [for

Run]

The maximum response time for all pages for the entire run

Minimum Response Time for All Pages [ms] [for In­

terval]

The minimum response time for all pages within the most re­

cent sample interval

Minimum Response Time for All Pages [ms] [for

Run]

The minimum response time for all pages for the entire run

Response Time Standard Deviation for All Page El­

ements [for Interval]

The standard deviation for all page elements within the most re­

cent sample interval

Response Time Standard Deviation for All Page El­

ements [for Run]

The standard deviation for all page elements for the entire run

Response Time Standard Deviation for All Pages

[for Interval]

The standard deviation for all pages within the most recent

sample interval

Response Time Standard Deviation for All Pages

[for Run]

The standard deviation for all pages for the entire run

Status Code Success counters
A status code success means that the response code verification point passed for that request. If the request has

no verification points, a success means that the server received a request and returned a response where the status

code was in the 200 or 300 category, or returned an expected response in the 400 or 500 category.

Pages > Status Code Successes > All Pages

Counter name Description

Count [for Interval] The number of status code successes for a specific page during the most recent

sample interval

Count [for Run] The number of status code successes for a specific page for the entire run

Percent Status Code Success [for

Interval]

The percentage of status code successes for a specific page during the most re­

cent sample interval

Chapter 9. Test Manager Guide

Counter name Description

Percent Status Code Success [for

Run]

The percentage of status code successes for a specific page for the entire run

Pages > Status Code Successes > Element > All Elements

Counter name Description

Count [for Interval] The number of status code successes for a specific

page element during the most recent sample interval

Count [for Run] The number of status code successes for a specific

page element for the entire run

Percent Status Code Success [for Interval] The percentage of status code successes for a specific

page element during the most recent sample interval

Percent Status Code Success [for Run] The percentage of status code successes for a specific

page element for the entire run

Pages > Status Code Successes

Counter name Description

Percent Page Element Status Code Suc­

cess [for Interval]

The percentage of status code successes for all page elements during the

most recent sample interval

Percent Page Element Status Code Suc­

cess [for Run]

The percentage of status code successes for all page elements for the

entire run

Percent Page Status Code Success [for

Interval]

The percentage of status code successes for all pages during the most

recent sample interval

Percent Page Status Code Success [for

Run]

The percentage of status code successes for all pages for the entire run

Total Page Element Status Code Suc­

cesses [for Interval]

The number of status code successes for all page elements during the

most recent sample interval

Total Page Element Status Code Suc­

cesses [for Run]

The number of status code successes for all page elements for the entire

run

Total Page Status Code Successes [for

Interval]

The number of status code successes for all pages within the most recent

sample interval

Total Page Status Code Successes [for

Run]

The number of status code successes for all pages for the entire run

1059

HCL OneTest Performance

1060

Verification Point counters

The tables in this section provide information about verification points. The verdict for a verification point can be Pass,

Fail, Error, or Inconclusive.

• Pass indicates that all verification points matched or received the expected response. For example, a

response code verification point is set to PASS when the recorded response code is received during playback. If

your test does not contain verification points, PASS means that all primary requests in the test were successful.

• Fail indicates that at least one verification point did not match the expected response or that the expected

response was not received.

• Error indicates one of the following results: a primary request was not successfully sent to the server, no

response was received from the server for a primary request, or the primary request response was incomplete

or could not be parsed.

• The verdict is set to Inconclusive only if you provide custom code that defines a verdict of Inconclusive.

Pages > Verification Points > All Pages

Counter name Description

Percent Pass The percentage of page title verification points that passed for a specific page for the entire

run

Pages > Verification Points > All Pages > Element > All Elements

Counter

name
Description

Percent

Pass

The percentage of response code or response size verification points that passed for a specific page

element for the entire run

Pages > Verification Points > All Pages > Element > All Elements > Error

Counter

name
Description

Count [for

Interval]

The number of response code or response size verification points classified as Error for a specific

page element during the most recent sample interval

Count [for

Run]

The number of response code or response size verification points classified as Error for a specific

page element for the entire run

Pages > Verification Points > All Pages > Element > All Elements > Fail

Counter

name
Description

Count [for

Interval]

The number of response code or response size verification points that failed for a specific page ele­

ment during the most recent sample interval

Chapter 9. Test Manager Guide

Counter

name
Description

Count [for

Run]

The number of response code or response size verification points that failed for a specific page ele­

ment for the entire run

Pages > Verification Points > All Pages > Element > All Elements > Inconclusive

Counter

name
Description

Count [for

Interval]

The number of response code or response size verification points classified as Inconclusive for a spe­

cific page element during the most recent sample interval

Count [for

Run]

The number of response code or response size verification points classified as Inconclusive for a spe­

cific page element for the entire run

Pages > Verification Points > All Pages > Element > All Elements > Pass

Counter

name
Description

Count [for

Interval]

The number of response code or response size verification points that passed for a specific page ele­

ment during the most recent sample interval

Count [for

Run]

The number of response code or response size verification points that passed for a specific page ele­

ment for the entire run

Pages > Verification Points > All Pages > Error

Counter

name
Description

Count [for

Interval]

The number of response code or response size verification points classified as Error for a specific

page during the most recent sample interval

Count [for

Run]

The number of response code or response size verification points classified as Error for a specific

page for the entire run

Pages > Verification Points > All Pages > Fail

Counter

name
Description

Count [for In­

terval]

The number of response code or response size verification points that failed for a specific page dur­

ing the most recent sample interval

Count [for

Run]

The number of response code or response size verification points that failed for a specific page for

the entire run

1061

HCL OneTest Performance

1062

Pages > Verification Points > All Pages > Inconclusive

Counter

name
Description

Count [for

Interval]

The number of response code or response size verification points classified as Inconclusive for a spe­

cific page during the most recent sample interval

Count [for

Run]

The number of response code or response size verification points classified as Inconclusive for a spe­

cific page for the entire run

Pages > Verification Points > All Pages > Pass

Counter

name
Description

Count [for In­

terval]

The number of response code or response size verification points that passed for a specific page

during the most recent sample interval

Count [for

Run]

The number of response code or response size verification points that passed for a specific page for

the entire run

Pages > Verification Points

Counter name Description

Percent Page Element VPs

Passed [for Interval]

The percentage of response code or response size verification points that passed

during the most recent sample interval

Percent Page Element VPs

Passed [for Run]

The percentage of response code or response size verification points that passed

for the entire run

Percent Page VPs Passed [for

Interval]

The percentage of page title verification points that passed during the most recent

sample interval

Percent Page VPs Passed [for

Run]

The percentage of page title verification points that passed for the entire run

Total Page Element VPs At­

tempted [for Interval]

The number of response code or response size verification points executed during

the most recent sample interval

Total Page Element VPs At­

tempted [for Run]

The number of response code or response size verification points executed for the

entire run

Total Page Element VPs Error

[for Interval]

The number of response code or response size verification points with a verdict of

Error within the most recent sample interval

Total Page Element VPs Error

[for Run]

The number of response code or response size verification points with a verdict of

Error for the entire run

Total Page Element VPs

Failed [for Interval]

The number of response code or response size verification points that failed during

the most recent sample interval

Chapter 9. Test Manager Guide

Counter name Description

Total Page Element VPs

Failed [for Run]

The number of response code or response size verification points that failed for the

entire run

Total Page Element VPs In­

conclusive [for Interval]

The number of response code or response size verification points that were marked

as Inconclusive within the most recent sample interval

Total Page Element VPs In­

conclusive [for Run]

The number of response code or response size verification points that were marked

as Inconclusive for the entire run

Total Page Element VPs

Passed [for Interval]

The number of response code or response size verification points that passed dur­

ing the most recent sample interval

Total Page Element VPs

Passed [for Run]

The number of response code or response size verification points that passed for

the entire run

Total Page VPs Attempted

[for Interval]

The percentage of page title verification points that were executed during the most

recent sample interval

Total Page VPs Attempted

[for Run]

The percentage of page title verification points that were executed for the entire run

Total Page VPs Error [for In­

terval]

The percentage of page title verification points with a verdict of Error during the

most recent sample interval

Total Page VPs Error [for Run] For each page that contains verification points, the total with a verdict of Error for

the entire run

Total Page VPs Failed [for In­

terval]

The number of page title verification points that failed during the most recent sam­

ple interval

Total Page VPs Failed [for

Run]

The number of page title verification points that failed for the entire run

Total Page VPs Inconclusive

[for Interval]

The number of page title verification points that were marked as Inconclusive during

the most recent sample interval

Total Page VPs Inconclusive

[for Run]

The number of page title verification points that were marked as Inconclusive for the

entire run

Total Page VPs Passed [for

Interval]

The number of page title verification points that passed during the most recent sam­

ple interval

Total Page VPs Passed [for

Run]

The number of page title verification points that passed for the entire run

Run counters
These counters provide information about the active users in the run, the users that have completed the run, and the

HTTP status codes that were received.

1063

HCL OneTest Performance

1064

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule as a

schedule property.

Run

Counter name Description

Displaying Results for comput­

er

The name of the host.

Run Status The run status or er­

rors.

Run > Active Users

Counter name Description

Count [for Run] The number of users that are currently ac­

tive.

Run > Collection Time

Counter

Name Description

Count [for

Interval]

The length of time it took to collect all the statistics to send for the most recent sample interval. Typi­

cally a brief period. This value has limited use in a custom report.

Run > Completed Users

Counter name Description

Count [for Run] The number of users that have completed the run.

Run > HTTP Status Codes > 100 Codes

Counter Name Description

Count [for Inter­

val]

The number of HTTP status codes between 100 and 199 that were received during the most recent

sample interval.

Count [for Run] The number of HTTP status codes between 100 and 199 that were received in the entire run.

Run > HTTP Status Codes > 200 Codes

Counter name Description

Count [for Inter­

val]

The number of HTTP status codes between 200 and 299 that were received during the most recent

sample interval.

Count [for Run] The number of HTTP status codes between 200 and 299 that were received in the entire run.

Chapter 9. Test Manager Guide

Run > HTTP Status Codes > 300 Codes

Counter name Description

Count [for Inter­

val]

The number of HTTP status codes between 300 and 399 that were received during the most recent

sample interval.

Count [for Run] The number of HTTP status codes between 300 and 399 that were received in the entire run.

Run > HTTP Status Codes > 400 Codes

Counter name Description

Count [for Inter­

val]

The number of HTTP status codes between 400 and 499 that were received during the most recent

sample interval.

Count [for Run] The number of HTTP status codes between 400 and 499 that were received in the entire run.

Run > HTTP Status Codes > 500 Codes

Counter name Description

Count [for Inter­

val]

The number of HTTP status codes between 500 and 599 that were received during the most recent

sample interval.

Count [for Run] The number of HTTP status codes between 500 and 599 that were received in the entire run.

Run > Run Duration

Counter name Description

Count [for Run] The duration of the run, in milliseconds (ms).

Elapsed Time [H:M:S] The duration of the run, in hours, minutes, and sec­

onds.

Run > Sample Interval Length

Counter name Description

Count [for Run] The length of the sample interval.

Run > Schedule

Counter name Description

Executed Test The web address of the schedule or test that was

run.

Run > Start Time

Counter name Description

Count [for Run] The clock value at the start of the run, in milliseconds

(ms).

1065

HCL OneTest Performance

1066

Run > Total Users

Counter Name Description

Count [for Run] The total number of users that were involved in the

run.

Test counters
These counters provide information about the execution time of the tests in a run. Some counters produce an

aggregate value, where the values for all tests are rolled up into one value; others produce individual values for each

test.

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule, as a

schedule property.

The counters in the following table provide an aggregate value for all tests. Folders that contain aggregate counters

have a clock superimposed on them: .

Tests > Elapsed Time > All Tests

Counter name Description

Average [for Interval] The average execution time for all tests within the most recent sample interval

Average [for Run] The average execution time for all tests in the entire run

Maximum [for Interval] The maximum execution time for all tests within the most recent sample inter­

val

Maximum [for Run] The maximum execution time for all tests in the entire run

Minimum [for Interval] The minimum execution time for all tests within the most recent sample interval

Minimum [for Run] The minimum execution time for all tests in the entire run

Standard Deviation [for Inter­

val]

The standard deviation for all tests within the most recent sample interval

Standard Deviation [for Run] The standard deviation for all tests in the entire run

The counters in the following table provide individual values for each test. Folders that contain individual counters

have an asterisk superimposed on them: .

Tests > Elapsed Time

Counter name Description

Average Execution Time for All Tests [ms] [for

Interval]

The average execution time for each test within the most recent

sample interval

Average Execution Time for All Tests [ms] [for

Run]

The average execution time for each test in the entire run

Chapter 9. Test Manager Guide

Counter name Description

Execution Time Standard Deviation for All Tests

[for Interval]

The standard deviation for each test within the most recent sam­

ple interval

Execution Time Standard Deviation for All Tests

[for Run]

The standard deviation for each test in the entire run

Maximum Execution Time for All Tests [ms] [for

Interval]

The maximum execution time for each test within the most recent

sample interval

Maximum Execution Time for All Tests [ms] [for

Run]

The maximum execution time for each test in the entire run

Minimum Execution Time for All Tests [ms] [for

Interval]

The minimum execution time for each test within the most recent

sample interval

Minimum Execution Time for All Tests [ms] [for

Run]

The minimum execution time for each test in the entire run

Transaction counters
These counters provide information about transactions that were attempted, transactions that were completed,

and the elapsed time for the transactions. Some counters produce an aggregate value, where the values for all

transactions are rolled up into one value; others produce individual values for each transaction.

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule, as a

schedule property.

The counters in the following table provide an aggregate value for all transactions. Folders that contain aggregate

counters have a clock superimposed on them: .

Transactions > Attempts > All Transactions

Counter name Description

Count [for Interval] The total number of transactions that were attempted within the last recorded interval

Count [for Run] The total number of transactions that were attempted in the entire run

Rate [per second] [for Inter­

val]

The number of transactions that were attempted per second in the last recorded in­

terval

Rate [per second] [for Run] The number of transactions that were attempted per second in the entire run

The counters in the following table provide individual values for each transaction. Folders that contain individual

counters have an asterisk superimposed on them: .

1067

HCL OneTest Performance

1068

Transactions > Attempts

Counter name Description

Total Transactions Started [for Interval] The number of transactions that were started within the last recorded

interval

Transaction Start Rate [per second] [for In­

terval]

The rate that transactions that were started within the last recorded in­

terval

Transaction Start Rate [per second] [for

Run]

The rate that transactions that were started in the entire run

The counters in the following table provide an aggregate value for all transactions. Folders that contain aggregate

counters have a clock superimposed on them: .

Transactions > Completed > All Transactions

Counter name Description

Count [for Interval] The total number of transactions that were completed within the last recorded inter­

val

Count [for Run] The total number of transactions that were completed in the entire run

Rate [per second] [for Inter­

val]

The number of transactions that were completed per second in the last recorded in­

terval

Rate [per second] [for Run] The number of transactions that were completed per second in the entire run

The counters in the following table provide individual values for each transaction. Folders that contain individual

counters have an asterisk superimposed on them: .

Transactions > Completed

Counter name Description

Total Transactions Completed [for Run] The total number of transactions that were completed

Transaction Completion Rate [per second] [for In­

terval]

The rate that transactions were completed in the last recorded

interval

Transaction Completion Rate [per second] [for

Run]

The rate that transactions were completed in the entire run

The counters in the following table provide an aggregate value for all transactions. Folders that contain aggregate

counters have a clock superimposed on them: .

Transactions > Elapsed Time > All Transactions

Counter name Description

Average [for Interval] The average elapsed time for all transactions within the most recent sample interval

Chapter 9. Test Manager Guide

Counter name Description

Average [for Run] The average elapsed time for all transactions in the entire run

Maximum [for Interval] The maximum elapsed time for all transactions within the most recent sample inter­

val

Maximum [for Run] The maximum elapsed time for all transactions in the entire run

Minimum [for Interval] The minimum elapsed time for all transactions within the most recent sample inter­

val

Minimum [for Run] The minimum elapsed time for all transactions in the entire run

Standard deviation [for Inter­

val]

The standard deviation for all transactions within the most recent sample interval

Standard deviation [for Run] The standard deviation for all transactions for the entire run

The counters in the following table provide individual values for each transaction. Folders that contain individual

counters have an asterisk superimposed on them: .

Transactions > Elapsed Time

Counter name Description

Average Elapsed Time for All Transactions [ms]

[for Interval]

The average elapsed time for each transaction within the most

recent sample interval

Average Elapsed Time for All Transactions [ms]

[for Run]

The average elapsed time for each transaction in the entire run

Elapsed Time Standard Deviation for All Transac­

tions [for Interval]

The standard deviation for each transaction within the most re­

cent sample interval

Elapsed Time Standard Deviation for All Transac­

tions [for Run]

The standard deviation for each transaction in the entire run

Maximum Elapsed Time for All Transactions

[ms] [for Interval]

The maximum elapsed time for each transaction within the most

recent sample interval

Maximum Elapsed Time for All Transactions

[ms] [for Run]

The maximum elapsed time for each transaction in the entire run

Minimum Elapsed Time for All Transactions [ms]

[for Interval]

The minimum elapsed time for each transaction within the most

recent sample interval

Minimum Elapsed Time for All Transactions [ms]

[for Run]

The minimum elapsed time for each transaction in the entire run

1069

HCL OneTest Performance

1070

Recording with Internet Protocol v6
To record Internet Protocol version 6 traffic, set the HTTP recording preferences to Firefox and select Record using

IPv6.

1. Click Windows > Preferences > Test > RPT HTTP recording.

2. In Application to record, select Firefox.

You cannot use Internet Explorer to record IPv6.

3. Select Record using IPv6.

Result

You are now ready to record IPv6 traffic.

Changing HTTP recording preferences
You can change the behavior of the recorder by changing the preference settings. The default settings, however, are

appropriate for recording under Windows® or Linux® systems.

1. Open the HTTP Recording page. Click Window > Preferences > Test > Recording > Browsers Recording.

2. Select the setting to change.

Enable the HCL OneTest™ Performance toolbar in browsers

Click to install the annotation toolbar. This enables you to add comments and transactions, and

to change page names during recording.

Verify annotation toolbar is installed before recording

Click to verify that the annotation toolbar is installed in the web browser before recording.

3. After changing a setting, click Apply.

SAP counters
SAP generic counters, which are displayed in the Performance Test Runs view, enable you to customize your SAP

reports with dynamic information that is updated for each run.

SAP screen counters
These counters provide information about screens started, screens completed, response times, and verification

points. Some counters produce an aggregate value, where the values for several screens are rolled up into one value;

others produce values for each screen.

Aggregate counters use the values for all the screens in a test to produce a single value for a report. This value is

rolled up from all values that satisfy the counter. When you drag an aggregate counter onto a report, one value is

displayed. Folders that contain aggregate counters have a clock superimposed on the folder icon: . The tables

below that list aggregate counters have this icon in their title.

Chapter 9. Test Manager Guide

Individual counters produce values for each item that satisfies the counter, rather than a single rolled-up value.

Folders that contain individual counters have an asterisk superimposed on the folder icon: . The tables below that

list individual counters have this icon in their title.

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule, as a

schedule property.

SAP Screen Request Response Time counters

The counters in this section provide information about the SAP application response time. This is the time that

elapses from the point that the SAP GUI client sends a request and the moment the response is received and

displayed by the SAP GUI client.

SAP Screens> SAP Screen Request Response Time> All SAP Screens

Counter name Description

Average [for Interval] The average response time for a specific SAP screen during the most recent sample in­

terval

Average [for Run] The average response time for a specific SAP screen for the entire run

Maximum [for Interval] The maximum response time for a specific SAP screen during the most recent sample

interval

Maximum [for Run] The maximum response time for a specific SAP screen for the entire run

Minimum [for Interval] The minimum response time for a specific SAP screen during the most recent sample in­

terval

Minimum [for Run] The minimum response time for a specific SAP screen for the entire run

Standard Deviation [for In­

terval]

The standard deviation of response times for a specific SAP screen during the most re­

cent sample interval

Standard Deviation [for

Run]

The standard deviation of response times for a specific SAP screen for the entire run

SAP Screens> SAP Screen Request Response Time

Counter name Description

Average Screen Request Response Time for All SAP

Screens [ms] [for Interval]

The average response time for all SAP screens within the

most recent sample interval

Average Screen Request Response Time for All SAP

Screens [ms] [for Run]

The average response time for all SAP screens for the entire

run

Maximum Screen Request Response Time for All SAP

Screens [ms] [for Interval]

The maximum response time for all SAP screens within the

most recent sample interval

1071

HCL OneTest Performance

1072

Counter name Description

Maximum Screen Request Response Time for All SAP

Screens [ms] [for Run]

The maximum response time for all SAP screens for the en­

tire run

Minimum Screen Request Response Time for All SAP

Screens [ms] [for Interval]

The minimum response time for all SAP screens within the

most recent sample interval

Minimum Screen Request Response Time for All SAP

Screens [ms] [for Run]

The minimum response time for all SAP screens for the en­

tire run

Standard Deviation Screen Request Response Time

for All SAP Screens [ms] [for Interval]

The standard deviation of response times for all SAP

screens during the most recent sample interval

Standard Deviation Screen Request Response Time

for All SAP Screens [ms] [for Run]

The standard deviation of response times for all SAP

screens for the entire run

SAP Screen Request Interpretation Time counters

The counters in this section provide information about the SAP GUI interpretation time. This is the duration from

the time that the SAP GUI client receives data from the server and the moment when this data is displayed. This

measures the health of the SAP GUI client used for the test rather than the performance of the SAP server.

SAP Screens> SAP Screen Request Interpretation Time> All SAP Screens

Counter name Description

Average [for Interval] The average interpretation time for a specific SAP screen during the most recent sample

interval

Average [for Run] The average interpretation time for a specific SAP screen for the entire run

Maximum [for Interval] The maximum interpretation time for a specific SAP screen during the most recent sam­

ple interval

Maximum [for Run] The maximum interpretation time for a specific SAP screen for the entire run

Minimum [for Interval] The minimum interpretation time for a specific SAP screen during the most recent sam­

ple interval

Minimum [for Run] The minimum interpretation time for a specific SAP screen for the entire run

Standard Deviation [for

Interval]

The standard deviation of interpretation times for a specific SAP screen during the most

recent sample interval

Standard Deviation [for

Run]

The standard deviation of interpretation times for a specific SAP screen for the entire run

SAP Screens> SAP Screen Request Interpretation Time

Chapter 9. Test Manager Guide

Counter name Description

Average Screen Request Interpretation Time for All

SAP Screens [ms] [for Interval]

The average interpretation time for all SAP screens during

the most recent sample interval

Average Screen Request Interpretation Time for All

SAP Screens [ms] [for Run]

The average interpretation time for all SAP screens for the

entire run

Maximum Screen Request Interpretation Time for All

SAP Screens [ms] [for Interval]

The maximum interpretation time for all SAP screens during

the most recent sample interval

Maximum Screen Request Interpretation Time for All

SAP Screens [ms] [for Run]

The maximum interpretation time for all SAP screens for the

entire run

Minimum Screen Request Interpretation Time for All

SAP Screens [ms] [for Interval]

The minimum interpretation time for all SAP screens during

the most recent sample interval

Minimum Screen Request Interpretation Time for All

SAP Screens [ms] [for Run]

The minimum interpretation time for all SAP screens for the

entire run

Standard Deviation Screen Request Interpretation

Time for All SAP Screens [ms] [for Interval]

The standard deviation of interpretation times for all SAP

screens during the most recent sample interval

Standard Deviation Screen Request Interpretation

Time for All SAP Screens [ms] [for Run]

The standard deviation of interpretation times for all SAP

screens for the entire run

SAP Screens Started counters

The counters in this section provide information about screens that are started.

SAP Screens > SAP Screens Started> All SAP Screens

Counter name Description

Count [for Interval] The number of started screens for a specific SAP screen during the most recent sample

interval

Count [for Run] The number of started screens for a specific SAP screen for the entire run

Rate [per second] [for In­

terval]

The rate at which screens were started for a specific SAP screen during the most recent

sample interval

Rate [per second] [for

Run]

The rate at which screens were started for a specific SAP screen for the entire run

SAP Screens> SAP Screens Started

Counter name Description

SAP Screens Started Rate [for Inter­

val]

The rate at which SAP screens were started within the most recent sample in­

terval

1073

HCL OneTest Performance

1074

Counter name Description

SAP Screens Started Rate [for Run] The rate at which SAP screens were started for the entire run

Total SAP Screens Started [for Inter­

val]

The number of started SAP screens for the entire run

Total SAP Screens Started [for Run] The number of started SAP screens during the most recent sample interval

SAP Screens Completed counters

The counters in this section provide information about SAP screens that were completed.

SAP Screens> SAP Screens Completed> All SAP Screens

Counter name Description

Count [for Interval] The number of completed screens for a specific SAP screen during the most recent sam­

ple interval

Count [for Run] The number of completed screens for a specific SAP screen for the entire run

Rate [per second] [for In­

terval]

The rate at which screens were completed for a specific SAP screen during the most re­

cent sample interval

Rate [per second] [for

Run]

The rate at which screens were completed for a specific SAP screen for the entire run

SAP Screens> SAP Screens Completed

Counter name Description

SAP Screens Completed Percent [for

Interval]

The percentage of completed SAP screens within the most recent sample

interval

SAP Screens Completed Percent [for

Run]

The percentage of completed SAP screens for the entire run

SAP Screens Completed Rate [for Inter­

val]

The rate at which SAP screens were completed within the most recent

sample interval

SAP Screens Completed Rate [for Run] The rate at which SAP screens were completed for the entire run

Total SAP Screens Completed [for In­

terval]

The number of completed SAP screens within the most recent sample in­

terval

Total SAP Screens Completed [for Run] The number of completed SAP screens for the entire run

Verification Point counters

The tables in this section provide information about SAP screen verification points. The verdict for a verification point

can be Pass, Fail, Error, or Inconclusive.

Chapter 9. Test Manager Guide

• Pass indicates that the verification point matched or received the expected response. For example, a response

code verification point is set to Pass when the recorded response code is received during playback. If your test

does not contain verification points, it means that the connection succeeded.

• Fail indicates that the verification point did not match the expected response or that the expected response

was not received.

• Error indicates that the primary request was not successfully sent to the server, no response was received

from the server, or the response was incomplete or could not be parsed.

• The verdict is set to Inconclusive only if you provide custom code that defines a verdict of Inconclusive.

SAP Screens > Verification Points > All SAP Screens

Counter name Description

Percent Pass The percentage of verification points that passed for a specific SAP screen for the entire

run

SAP Screens > Verification Points > All SAP Screens > All Elements > Error

Counter name Description

Count [for In­

terval]

The number of verification points classified as Error for a specific SAP screen during the most re­

cent sample interval

Count [for Run] The number of verification points classified as Error for a specific SAP screen for the entire run

SAP Screens > Verification Points > All SAP Screens > All Elements > Fail

Counter name Description

Count [for Inter­

val]

The number of verification points that failed for a specific SAP screen during the most recent

sample interval

Count [for Run] The number of verification points that failed for a specific SAP screen for the entire run

SAP Screens > Verification Points > All SAP Screens > All Elements > Inconclusive

Counter name Description

Count [for In­

terval]

The number of verification points classified as Inconclusive for a specific SAP screen during the

most recent sample interval

Count [for

Run]

The number of verification points classified as Inconclusive for a specific SAP screen for the entire

run

SAP Screens > Verification Points > All SAP Screens > All Elements > Pass

Counter name Description

Count [for Inter­

val]

The number of verification points that passed for a specific SAP screen during the most recent

sample interval

1075

HCL OneTest Performance

1076

Counter name Description

Count [for Run] The number of verification points that passed for a specific SAP screen for the entire run

SAP Screens > Verification Points

Counter name Description

Percent SAP Screens VPs Passed

[for Interval]

The percentage of verification points that passed within the most recent sam­

ple interval

Percent SAP Screens VPs Passed

[for Run]

The percentage of verification points that passed for the entire run

Total SAP Screens VPs Attempted

[for Interval]

The number of verification points executed within the most recent sample in­

terval

Total SAP Screens VPs Attempted

[for Run]

The number of verification points executed for the entire run

Total SAP Screens VPs Error [for In­

terval]

The number of verification points with a verdict of Error within the most recent

sample interval

Total SAP Screens VPs Error [for

Run]

The number of verification points with a verdict of Error for the entire run

Total SAP Screens VPs Failed [for

Interval]

The number of verification points that failed within the most recent sample in­

terval

Total SAP Screens VPs Failed [for

Run]

The number of verification points that failed for the entire run

Total SAP Screens VPs Inconclu­

sive [for Interval]

The number of verification points that were marked as Inconclusive within the

most recent sample interval

Total SAP Screens VPs Inconclu­

sive [for Run]

The number of verification points that were marked as Inconclusive for the en­

tire run

Total SAP Screens VPs Passed [for

Interval]

The number of verification points that passed within the most recent sample

interval

Total SAP Screens VPs Passed [for

Run]

The number of verification points that passed for the entire run

SAP Elements Attempted counters

The counters in this section provide information about SAP set elements, SAP get elements or SAP calls that were

attempted.

Chapter 9. Test Manager Guide

SAP Elements > SAP Elements Attempted> All SAP Screens

Counter name Description

Count [for Interval] The number of attempted elements for a specific SAP screen during the most recent sam­

ple interval

Count [for Run] The number of attempted elements for a specific SAP screen for the entire run

Rate [per second] [for In­

terval]

The rate at which elements were attempted for a specific SAP screen within the most re­

cent sample interval

Rate [per second] [for

Run]

The rate at which elements were attempted for a specific SAP screen for the entire run

SAP Elements > SAP Elements Attempted

Counter name Description

SAP Elements Attempted Rate [for In­

terval]

The rate at which SAP elements were attempted within the most recent

sample interval

SAP Elements Attempted Rate [for

Run]

The rate at which SAP elements were attempted for the entire run

Total SAP Elements Attempted [for In­

terval]

The number of attempted SAP elements for the entire run

Total SAP Elements Attempted [for

Run]

The number of attempted SAP elements within the most recent sample in­

terval

SAP Elements Completed counters

The counters in this section provide information about SAP set elements, SAP get elements or SAP calls that

terminated normally. If an element does not complete, it is counted in the SAP Elements Attempted, but not in SAP

Elements Complete.

SAP Screens> SAP Screens Completed> All SAP Screens

Counter name Description

Count [for Interval] The number of completed elements for a specific SAP screen during the most recent

sample interval

Count [for Run] The number of completed elements for a specific SAP screen for the entire run

Rate [per second] [for In­

terval]

The rate at which elements were completed for a specific SAP screen during the most re­

cent sample interval

Rate [per second] [for

Run]

The rate at which elements were completed for a specific SAP screen for the entire run

1077

HCL OneTest Performance

1078

SAP Elements > SAP Elements Completed

Counter name Description

SAP Elements Completed Percent [for

Interval]

The percentage of completed SAP elements within the most recent sam­

ple interval

SAP Elements Completed Percent [for

Run]

The percentage of completed SAP elements for the entire run

SAP Elements Completed Rate [for In­

terval]

The rate at which SAP elements were completed within the most recent

sample interval

SAP Elements Completed Rate [for Run] The rate at which SAP elements were completed for the entire run

Total SAP Elements Completed [for In­

terval]

The number of completed SAP elements within the most recent sample in­

terval

Total SAP Elements Completed [for

Run]

The number of completed SAP elements for the entire run

Citrix counters
Citrix generic counters, which are displayed in the Performance Test Runs view, enable you to customize your Citrix

reports with dynamic information that is updated for each run.

Citrix window synchronization counters
Citrix window synchronization counters provide information about window synchronizations that were attempted,

completed, or produced a timeout within the specified timeout limit. Window synchronization is the mechanism used

by the test to compare windows from the test with actual windows in the run.

Some counters produce an aggregate value, where the values for several web service message returns are combined

into a single value; others produce values for each web service message return.

• Aggregate counters use the values for all the elements in a test to produce a single value for a report. This

value is rolled up from all values that satisfy the counter. When you drag an aggregate counter onto a report,

one value is displayed. Folders that contain aggregate counters have a clock superimposed on the folder icon:

. In the tables that follow, the aggregate counters are listed after the titles that contain this icon.

• Individual counters produce values for each item that satisfies the counter, rather than an aggregate value.

Folders that contain individual counters have an asterisk superimposed on the folder icon: . In the tables

that follow, the individual counters are listed after the titles that contain this icon.

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule, as a

schedule property.

Chapter 9. Test Manager Guide

The counters in the following table provide an aggregate value for all window synchronizations. Folders that contain

aggregate counters have a clock superimposed on them: .

Citrix Window Synchronizations> Citrix Window Synchronization Attempts

Counter name Description

Count [for Inter­

val]

The total number of window synchronizations that were attempted within the last recorded inter­

val

Count [for Run] The total number of window synchronizations that were attempted in the entire run

The counters in the following table provide an aggregate value for all window synchronizations. Folders that contain

aggregate counters have a clock superimposed on them: .

Citrix Window Synchronizations> Citrix Window Synchronization Successes

Counter name Description

Count [for Interval] The total number of window synchronizations that succeeded within the

last recorded interval

Count [for Run] The total number of window synchronizations that succeeded in the entire

run

Percent Citrix Synchronization Success

for Interval

The percentage of window synchronizations that succeeded within the

last recorded interval

Percent Citrix Synchronization Success

for Run

The percentage of window synchronizations that succeeded in the entire

run

The counters in the following table provide an aggregate value for all transactions. Folders that contain aggregate

counters have a clock superimposed on them: .

Citrix Window Synchronizations> Citrix Window Synchronization Timeouts

Counter name Description

Count [for Inter­

val]

The total number of window synchronizations that produced a timeout within the last recorded

interval

Count [for Run] The total number of window synchronizations that produced a timeout in the entire run

Citrix image synchronization counters
Citrix image synchronization counters provide information about image synchronizations that were attempted,

completed, or produced a timeout within the specified timeout limit. Image synchronization is the mechanism used by

the test to compare image areas from the test with actual image area in the run.

Some counters produce an aggregate value, where the values for several web service message returns are combined

into a single value; others produce values for each web service message return.

1079

HCL OneTest Performance

1080

• Aggregate counters use the values for all the elements in a test to produce a single value for a report. This

value is rolled up from all values that satisfy the counter. When you drag an aggregate counter onto a report,

one value is displayed. Folders that contain aggregate counters have a clock superimposed on the folder icon:

. In the tables that follow, the aggregate counters are listed after the titles that contain this icon.

• Individual counters produce values for each item that satisfies the counter, rather than an aggregate value.

Folders that contain individual counters have an asterisk superimposed on the folder icon: . In the tables

that follow, the individual counters are listed after the titles that contain this icon.

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule, as a

schedule property.

The counters in the following table provide an aggregate value for all image synchronizations. Folders that contain

aggregate counters have a clock superimposed on them: .

Citrix Image Synchronizations> Citrix Image Synchronization Attempts

Counter name Description

Count [for Inter­

val]

The total number of image synchronizations that were attempted within the last recorded inter­

val

Count [for Run] The total number of image synchronizations that were attempted in the entire run

The counters in the following table provide an aggregate value for all image synchronizations. Folders that contain

aggregate counters have a clock superimposed on them: .

Citrix Image Synchronizations> Citrix Image Synchronization Successes

Counter name Description

Count [for Interval] The total number of image synchronizations that succeeded within the

last recorded interval

Count [for Run] The total number of image synchronizations that succeeded in the entire

run

Percent Citrix Synchronization Success

for Interval

The percentage of image synchronizations that succeeded within the last

recorded interval

Percent Citrix Synchronization Success

for Run

The percentage of image synchronizations that succeeded in the entire

run

The counters in the following table provide an aggregate value for all transactions. Folders that contain aggregate

counters have a clock superimposed on them: .

Chapter 9. Test Manager Guide

Citrix Image Synchronizations> Citrix Image Synchronization Timeouts

Counter name Description

Count [for Inter­

val]

The total number of image synchronizations that produced a timeout within the last recorded in­

terval

Count [for Run] The total number of image synchronizations that produced a timeout in the entire run

Citrix Image Synchronizations> Image Synchronization Verification Points > All Image Synchronizations

Counter

name
Description

Percent

Pass

The percentage of image synchronization verification points that passed for a specific window event

for the entire run

Citrix Image Synchronizations> Image Synchronization Verification Points > All Image Synchronizations > Error

Counter

name
Description

Count [for

Interval]

The number of image synchronization verification points classified as Error for a specific window

event during the most recent sample interval

Count [for

Run]

The number of image synchronization verification points classified as Error for a specific window for

the entire run

Citrix Image Synchronizations> Image Synchronization Verification Point > All Image Synchronizations > Fail

Counter

name
Description

Count [for In­

terval]

The number of image synchronization verification points that failed for a specific window event dur­

ing the most recent sample interval

Count [for

Run]

The number of image synchronization verification points that failed for a specific window event for

the entire run

Citrix Image Synchronizations> Image Synchronization Verification Points > All Image Synchronizations > Inconclusive

Counter

name
Description

Count [for

Interval]

The number of image synchronization verification points classified as Inconclusive for a specific win­

dow event during the most recent sample interval

Count [for

Run]

The number of image synchronization verification points classified as Inconclusive for a specific win­

dow event for the entire run

1081

HCL OneTest Performance

1082

Citrix Image Synchronizations> Image Synchronization Verification Points > All Image Synchronizations > Pass

Counter

name
Description

Count [for In­

terval]

The number of image synchronization verification points that passed for a specific window event dur­

ing the most recent sample interval

Count [for

Run]

The number of image synchronization verification points that passed for a specific window event for

the entire run

Citrix Image Synchronizations> Image Synchronization Verification Points

Counter name Description

Percent Image Synchronization

VPs Passed For Interval

The percentage of image synchronization verification points that passed dur­

ing the most recent sample interval

Percent Image Synchronization

VPs Passed For Run

The percentage of image synchronization verification points that passed for

the entire run

Total Image Synchronization VPs

Attempted [for Interval]

The number of image synchronization verification points executed during the

most recent sample interval

Total Image Synchronization VPs

Attempted [for Run]

The number of image synchronization verification points executed for the en­

tire run

Total Image Synchronization VPs

Error [for Interval]

The number of image synchronization verification points with a verdict of Error

during the most recent sample interval

Total Image Synchronization VPs

Error [for Run]

The number of image synchronization verification points with a verdict of Error

for the entire run

Total Image Synchronization VPs

Failed [for Interval]

The number of image synchronization verification points that failed during the

most recent sample interval

Total Image Synchronization VPs

Failed [for Run]

The number of image synchronization verification points that failed for the en­

tire run

Total Image Synchronization VPs

Inconclusive [for Interval]

The number of image synchronization verification points that were marked as

Inconclusive within the most recent sample interval

Total Image Synchronization VPs

Inconclusive [for Run]

The number of image synchronization verification points that were marked as

Inconclusive for the entire run

Total Image Synchronization VPs

Passed [for Interval]

The number of image synchronization verification points that passed during

the most recent sample interval

Total Image Synchronization VPs

Passed [for Run]

The number of image synchronization verification points that passed for the

entire run

Chapter 9. Test Manager Guide

Citrix timer counters
Citrix timer counters provide information about the response time of window events in a run. Response times are

determined by measurements that are located in the tests.

Some counters produce an aggregate value, where the values for several web service message returns are combined

into a single value; others produce values for each web service message return.

• Aggregate counters use the values for all the elements in a test to produce a single value for a report. This

value is rolled up from all values that satisfy the counter. When you drag an aggregate counter onto a report,

one value is displayed. Folders that contain aggregate counters have a clock superimposed on the folder icon:

. In the tables that follow, the aggregate counters are listed after the titles that contain this icon.

• Individual counters produce values for each item that satisfies the counter, rather than an aggregate value.

Folders that contain individual counters have an asterisk superimposed on the folder icon: . In the tables

that follow, the individual counters are listed after the titles that contain this icon.

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule, as a

schedule property.

The counters in the following table provide an aggregate value for all tests. Folders that contain aggregate counters

have a clock superimposed on them: .

Citrix Timers> Response Time

Counter name Description

Average Response Time For All Timers For In­

terval [ms]

The average response time for all measurements within the most re­

cent sample interval

Average Response Time For All Timers For

Run [ms]

The average response time for all measurements in the entire run

Maximum Response Time For All Timers For

Interval [ms]

The maximum response time for all measurements within the most

recent sample interval

Maximum Response Time For All Timers For

Run [ms]

The maximum response time for all measurements in the entire run

Minimum Response Time For All Timers For

Interval [ms]

The minimum response time for all measurements within the most

recent sample interval

Minimum Response Time For All Timers For

Run [ms]

The minimum response time for all measurements in the entire run

Standard Deviation Response Time For All

Timers For Interval [ms]

The standard deviation response time for all measurements during

the most recent sample interval

1083

HCL OneTest Performance

1084

Counter name Description

Standard Deviation Response Time For All

Timers For Run [ms]

The standard deviation response time for all measurements in the

entire run

The counters in the following table provide individual values for each test. Folders that contain individual counters

have an asterisk superimposed on them: .

Citrix Timers> Response Time > All Response Times

Counter name Description

Average [for Interval] The average response time for all measurements within the most recent sample inter­

val

Average [for Run] The average response time for all measurements in the entire run

Maximum [for Interval] The maximum response time for all measurements within the most recent sample in­

terval

Maximum [for Run] The maximum response time for all measurements in the entire run

Minimum [for Interval] The minimum response time for all measurements within the most recent sample in­

terval

Minimum [for Run] The minimum response time for all measurements in the entire run

Standard Deviation [for In­

terval]

The standard deviation response time for all measurements during the most recent

sample interval

Standard Deviation [for

Run]

The standard deviation response time for all measurements in the entire run

Citrix user action counters
Citrix user action counters provide information about emulated user input actions in the run.

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule, as a

schedule property.

The counters in the following table provide an aggregate value for all transactions. Folders that contain aggregate

counters have a clock superimposed on them: .

User Actions

Counter Name Description

Count [for Interval] The total number of user input actions within the most recent sample interval

Count [for Run] The total number of user input actions in the entire run

Rate [per second] [for Interval] The rate per second of user input actions within the most recent sample inter­

val

Chapter 9. Test Manager Guide

Counter Name Description

Rate [per second] [for Run] The rate per second of user input actions in the entire run

The counters in the following table provide individual values for each test. Folders that contain individual counters

have an asterisk superimposed on them: .

User Actions > All User Actions

Counter Name Description

Total User Actions For Inter­

val

The total number of user input actions within the most recent sample interval

Total User Actions For Run The total number of user input actions in the entire run

User Action Rate For Interval The rate per second of user input actions within the most recent sample inter­

val

User Action Rate For Run The rate per second of user input actions in the entire run

Citrix window counters
Citrix window counters provide information about verification points.

The verdict for a verification point can be Pass, Fail, Error, or Inconclusive.

• Pass indicates that the verification point matched or received the expected response. For example, a response

code verification point is set to Pass when the recorded response code is received during the run. If your test

does not contain verification points, it means that the connection succeeded.

• Fail indicates that the verification point did not match the expected response or that the expected response

was not received.

• Error indicates that the primary request was not successfully sent to the server, no response was received

from the server, or the response was incomplete or could not be parsed.

• The verdict is set to Inconclusive only if you provide custom code that defines a verdict of Inconclusive.

Some counters produce an aggregate value, where the values for several window events are rolled up into one value;

others produce values for each window event.

• Aggregate counters use the values for all the elements in a test to produce a single value for a report. This

value is rolled up from all values that satisfy the counter. When you drag an aggregate counter onto a report,

one value is displayed. Folders that contain aggregate counters have a clock superimposed on the folder icon:

. The tables below that list aggregate counters have this icon in their title.

• Individual counters produce values for each item that satisfies the counter, rather than a single rolled-up value.

Folders that contain individual counters have an asterisk superimposed on the folder icon: . The tables

below that list individual counters have this icon in their title.

1085

HCL OneTest Performance

1086

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule, as a

schedule property.

Citrix Windows> Verification Points > All Windows™

Counter

name
Description

Percent Pass The percentage of window title verification points that passed for a specific window event for the en­

tire run

Citrix Windows> Verification Points > All Windows™ > Error

Counter

name
Description

Count [for In­

terval]

The number of window title verification points classified as Error for a specific window event within

the most recent sample interval

Count [for

Run]

The number of window title verification points classified as Error for a specific window for the entire

run

Citrix Windows> Verification Points > All Windows™ > Fail

Counter name Description

Count [for In­

terval]

The number of window title verification points that failed for a specific window event during the

most recent sample interval

Count [for

Run]

The number of window title verification points that failed for a specific window event for the entire

run

Citrix Windows> Verification Points > All Windows™ > Inconclusive

Counter

name
Description

Count [for In­

terval]

The number of window title verification points classified as Inconclusive for a specific window event

within the most recent sample interval

Count [for

Run]

The number of window title verification points classified as Inconclusive for a specific window event

for the entire run

Citrix Windows> Verification Points > All Windows™ > Pass

Counter name Description

Count [for In­

terval]

The number of window title verification points that passed for a specific window event during the

most recent sample interval

Count [for

Run]

The number of window title verification points that passed for a specific window event for the entire

run

Chapter 9. Test Manager Guide

Citrix Windows> Verification Points > All Windows™

Counter name Description

Percent Window VPs Passed

For Interval

The percentage of window title verification points that passed during the most re­

cent sample interval

Percent Window VPs Passed

For Run

The percentage of window title verification points that passed for the entire run

Total Window VPs Attempted

[for Interval]

The number of window title verification points executed during the most recent

sample interval

Total Window VPs Attempted

[for Run]

The number of window title verification points executed for the entire run

Total Window VPs Error [for

Interval]

The number of window title verification points with a verdict of Error during the

most recent sample interval

Total Window VPs Error [for

Run]

The number of window title verification points with a verdict of Error for the entire

run

Total Window VPs Failed [for

Interval]

The number of window title verification points that failed within the most recent

sample interval

Total Window VPs Failed [for

Run]

The number of window title verification points that failed for the entire run

Total Window VPs Inconclu­

sive [for Interval]

The number of window title verification points that were marked as Inconclusive

during the most recent sample interval

Total Window VPs Inconclu­

sive [for Run]

The number of window title verification points that were marked as Inconclusive for

the entire run

Total Window VPs Passed [for

Interval]

The number of window title verification points that passed during the most recent

sample interval

Total Window VPs Passed [for

Run]

The number of window title verification points that passed for the entire run

Service counters
Service counters, which are displayed in the Test Runs view, enable you to customize your service test reports with

dynamic information that is updated for each run.

Service call counters
Service call counters provide information about the calls that are invoked during the service test.

Some counters produce an aggregate value, where the values for several service calls are combined into a single

value; others produce values for each service call.

1087

HCL OneTest Performance

1088

• Aggregate counters use the values for all the elements in a test to produce a single value for a report. This

value combines all values that satisfy the counter. When you drag an aggregate counter onto a report, one

value is displayed. Folders that contain aggregate counters have a clock superimposed on the folder icon: .

In the tables that follow, the aggregate counters are listed after the titles that contain this icon.

• Individual counters produce values for each item that satisfies the counter, rather than an aggregate value.

Folders that contain individual counters have an asterisk superimposed on the folder icon: . In the tables

that follow, the individual counters are listed after the titles that contain this icon.

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule, as a

schedule property.

Web Service Calls> Connection Time> All Connection Times

Counter name Description

Average [for Inter­

val]

The average time, in milliseconds, required to establish a connection to the web service for all

web service calls within the most recent sample interval

Average [for Run] The average time, in milliseconds, required to establish a connection to the web service for all

web service calls for the entire run

Standard devia­

tion [for Interval]

The standard deviation time, in milliseconds, required to establish a connection to the web ser­

vice for all web service calls within the most recent sample interval

Standard devia­

tion [for Run]

The standard deviation time, in milliseconds, required to establish a connection to the web ser­

vice for all web service calls for the entire run

Maximum [for In­

terval]

The longest time, in milliseconds, required to establish a connection to the web service for all

web service calls within the most recent sample interval

Maximum [for

Run]

The longest time, in milliseconds, required to establish a connection to the web service for all

web service calls for the entire run

Minimum [for In­

terval]

The shortest time, in milliseconds, required to establish a connection to the web service for all

web service calls within the most recent sample interval

Minimum [for

Run]

The shortest time, in milliseconds, required to establish a connection to the web service for all

web service calls for the entire run

Web Service Calls> Connection Time

Counter name Description

Average connection time

[ms] [for Interval]

The average time, in milliseconds, required to establish a connection to the web service

for a specific web service call within the most recent sample interval

Average connection time

[ms] [for Run]

The average time, in milliseconds, required to establish a connection to the web service

for a specific web service call for the entire run

Chapter 9. Test Manager Guide

Counter name Description

Connection time standard

deviation [ms] [for Interval]

The standard deviation time, in milliseconds, required to establish a connection to the

web service for a specific web service call during the most recent sample interval

Connection time standard

deviation [ms] [for Run]

The standard deviation time, in milliseconds, required to establish a connection to the

web service for a specific web service call for the entire run

Maximum connection time

[ms] [for Interval]

The longest time, in milliseconds, required to establish a connection to the web service

for a specific web service call within the most recent sample interval

Maximum connection time

[ms] [for Run]

The longest time, in milliseconds, required to establish a connection to the web service

for a specific web service call for the entire run

Minimum connection time

[ms] [for Interval]

The shortest time, in milliseconds, required to establish a connection to the web service

for a specific web service call within the most recent sample interval

Minimum connection time

[ms] [for Run]

The shortest time, in milliseconds, required to establish a connection to the web service

for a specific web service call for the entire run

Web Service Calls> Received Bytes> All Received Bytes

Counter name Description

Average [for Inter­

val]

The average data volume, in bytes, received as a response from the web service for all web ser­

vice calls during the most recent sample interval

Average [for Run] The average data volume, in bytes, received as a response from the web service for all web ser­

vice calls for the entire run

Count [for Interval] The total data volume, in bytes, received as a response from the web service for all web service

calls during the most recent sample interval

Count [for Run] The total data volume, in bytes, received as a response from the web service for all web service

calls for the entire run

Maximum [for In­

terval]

The largest data volume, in bytes, received as a response from the web service for all web ser­

vice calls during the most recent sample interval

Maximum [for

Run]

The largest data volume, in bytes, received as a response from the web service for all web ser­

vice calls for the entire run

Maximum Count

[for Run]

The largest cumulated data volume, in bytes, received as a response from the web service for all

web service calls for the entire run

Minimum [for In­

terval]

The smallest data volume, in bytes, received as a response from the web service for all web ser­

vice calls during the most recent sample interval

Minimum [for Run] The smallest data volume, in bytes, received as a response from the web service for all web ser­

vice calls for the entire run

1089

HCL OneTest Performance

1090

Counter name Description

Minimum Count

[for Run]

The smallest cumulated data volume, in bytes, received as a response from the web service for

all web service calls for the entire run

Rate [per second]

[for Interval]

The data volume throughput, in bytes per second, received as a response from the web service

for all web service calls within the most recent sample interval

Rate [per second]

[for Run]

The data volume throughput, in bytes per second, received as a response from the web service

for all web service calls for the entire run

Standard devia­

tion [for Interval]

The standard deviation data volume, in bytes, received as a response from the web service for

all web service calls within the most recent sample interval

Standard devia­

tion [for Run]

The standard deviation data volume, in bytes, received as a response from the web service for

all web service calls for the entire run

Web Service Calls> Received Bytes

Counter name Description

Average received bytes for all

calls [Bytes] [for Interval]

The average data volume, in bytes, received as a response from the web service for

all web service calls during the most recent sample interval

Average received bytes for all

calls [Bytes] [for Run]

The average data volume, in bytes, received as a response from the web service for

all web service calls for the entire run

Maximum received bytes

[Bytes] [for Interval]

The largest data volume, in bytes, received as a response from the web service for a

specific web service call during the most recent sample interval

Maximum received bytes [per

Interval] [for Run]

The largest data volume, in bytes, received as a response from the web service for a

specific web service call for the entire run

Maximum received bytes for

all calls [Bytes] [for Interval]

The largest data volume, in bytes, received as a response from the web service for all

web service calls during the most recent sample interval

Maximum received bytes for

all calls [Bytes] [for Run]

The largest data volume, in bytes, received as a response from the web service for all

web service calls for the entire run

Minimum received bytes

[Bytes] [for Interval]

The smallest data volume, in bytes, received as a response from the web service for

a specific web service call during the most recent sample interval

Minimum received bytes [per

Interval] [for Run]

The smallest data volume, in bytes, received as a response from the web service for

a specific web service call for the entire run

Minimum received bytes for

all calls [Bytes] [for Interval]

The smallest data volume, in bytes, received as a response from the web service for

a specific web service call during the most recent sample interval

Minimum received bytes for

all calls [Bytes] [for Run]

The smallest data volume, in bytes, received as a response from the web service for

a specific web service call for the entire run

Chapter 9. Test Manager Guide

Counter name Description

Rate received bytes [for Inter­

val]

The data volume throughput, in bytes per second, received as a response from the

web service for all web service calls within the most recent sample interval

Rate received bytes [for Run] The data volume throughput, in bytes per second, received as a response from the

web service for a specific web service call for the entire run

Received bytes standard de­

viation [ms] [for Interval]

The standard deviation data volume, in bytes, received as a response from the web

service for a specific web service call within the most recent sample interval

Received bytes standard de­

viation [ms] [for Run]

The standard deviation data volume, in bytes, received as a response from the web

service for a specific web service call for the entire run

Total received bytes [Bytes]

[for Interval]

The total data volume, in bytes, received as a response from the web service for a

specific web service call during the most recent sample interval

Total received bytes [Bytes]

[for Run]

The total data volume, in bytes, received as a response from the web service for a

specific web service call for the entire run

Web Service Calls> Sent Bytes> All Sent Bytes

Counter name Description

Average [for Inter­

val]

The average data volume, in bytes, sent as a call from the web service for all web service calls

during the most recent sample interval

Average [for Run] The average data volume, in bytes, sent as a call from the web service for all web service calls

for the entire run

Count [for Interval] The total data volume, in bytes, sent as a call from the web service for all web service calls

within the most recent sample interval

Count [for Run] The total data volume, in bytes, sent as a call from the web service for all web service calls for

the entire run

Maximum [for Inter­

val]

The largest data volume, in bytes, sent as a call from the web service for all web service calls

during the most recent sample interval

Maximum [for Run] The largest data volume, in bytes, sent as a call from the web service for all web service calls

for the entire run

Maximum Count

[for Run]

The largest cumulated data volume, in bytes, sent as a call from the web service for all web

service calls for the entire run

Minimum [for Inter­

val]

The smallest data volume, in bytes, sent as a call from the web service for all web service calls

during the most recent sample interval

Minimum [for Run] The smallest data volume, in bytes, sent as a call from the web service for all web service calls

for the entire run

1091

HCL OneTest Performance

1092

Counter name Description

Minimum Count

[for Run]

The smallest cumulated data volume, in bytes, sent as a call from the web service for all web

service calls for the entire run

Rate [per second]

[for Interval]

The data volume throughput, in bytes per second, sent as a call from the web service for all

web service calls during the most recent sample interval

Rate [per second]

[for Run]

The data volume throughput, in bytes per second, sent as a call from the web service for all

web service calls for the entire run

Standard deviation

[for Interval]

The standard deviation data volume, in bytes, sent as a call from the web service for all web

service calls during the most recent sample interval

Standard deviation

[for Run]

The standard deviation data volume, in bytes, sent as a call from the web service for all web

service calls for the entire run

Web Service Calls> Sent Bytes

Counter name Description

Average sent bytes for all

calls [Bytes] [for Interval]

The average data volume, in bytes, sent as a call from the web service for all web ser­

vice calls during the most recent sample interval

Average sent bytes for all

calls [Bytes] [for Run]

The average data volume, in bytes, sent as a call from the web service for all web ser­

vice calls for the entire run

Maximum sent bytes [Bytes]

[for Interval]

The largest data volume, in bytes, sent as a call from the web service for a specific

web service call during the most recent sample interval

Maximum sent bytes [per In­

terval] [for Run]

The largest data volume, in bytes, sent as a call from the web service for a specific

web service call for the entire run

Maximum sent bytes for all

calls [Bytes] [for Interval]

The largest data volume, in bytes, sent as a call from the web service for all web ser­

vice calls during the most recent sample interval

Maximum sent bytes for all

calls [Bytes] [for Run]

The largest data volume, in bytes, sent as a call from the web service for all web ser­

vice calls for the entire run

Minimum sent bytes [Bytes]

[for Interval]

The smallest data volume, in bytes, sent as a call from the web service for a specific

web service call during the most recent sample interval

Minimum sent bytes [per In­

terval] [for Run]

The smallest data volume, in bytes, sent as a call from the web service for a specific

web service call for the entire run

Minimum sent bytes for all

calls [Bytes] [for Interval]

The smallest data volume, in bytes, sent as a call from the web service for a specific

web service call during the most recent sample interval

Minimum sent bytes for all

calls [Bytes] [for Run]

The smallest data volume, in bytes, sent as a call from the web service for a specific

web service call for the entire run

Chapter 9. Test Manager Guide

Counter name Description

Rate sent bytes [for Interval] The data volume throughput, in bytes per second, sent as a call from the web service

for all web service calls during the most recent sample interval

Rate sent bytes [for Run] The data volume throughput, in bytes per second, sent as a call from the web service

for a specific web service call for the entire run

Sent bytes standard devia­

tion [ms] [for Interval]

The standard deviation data volume, in bytes, sent as a call from the web service for

a specific web service call within the most recent sample interval

Sent bytes standard devia­

tion [ms] [for Run]

The standard deviation data volume, in bytes, sent as a call from the web service for

a specific web service call for the entire run

Total sent bytes [Bytes] [for

Interval]

The total data volume, in bytes, sent as a call from the web service for a specific web

service call during the most recent sample interval

Total sent bytes [Bytes] [for

Run]

The total data volume, in bytes, sent as a call from the web service for a specific web

service call for the entire run

Web Service Calls> Response Time> All Response Times

Counter name Description

Average [for Inter­

val]

The average time, in milliseconds, required to receive a response from the web service for all

web service calls within the most recent sample interval

Average [for Run] The average time, in milliseconds, required to receive a response from the web service for all

web service calls for the entire run

Standard devia­

tion [for Interval]

The standard deviation time, in milliseconds, required to receive a response from the web ser­

vice for all web service calls within the most recent sample interval

Standard devia­

tion [for Run]

The standard deviation time, in milliseconds, required to receive a response from the web ser­

vice for all web service calls for the entire run

Maximum [for In­

terval]

The longest time, in milliseconds, required to receive a response from the web service for all

web service calls within the most recent sample interval

Maximum [for

Run]

The longest time, in milliseconds, required to receive a response from the web service for all

web service calls for the entire run

Minimum [for In­

terval]

The shortest time, in milliseconds, required to receive a response from the web service for all

web service calls within the most recent sample interval

Minimum [for

Run]

The shortest time, in milliseconds, required to receive a response from the web service for all

web service calls for the entire run

1093

HCL OneTest Performance

1094

Web Service Calls> Response Time

Counter name Description

Average connection time

[ms] [for Interval]

The average time, in milliseconds, required to receive a response from the web service

for a specific web service call within the most recent sample interval

Average connection time

[ms] [for Run]

The average time, in milliseconds, required to receive a response from the web service

for a specific web service call for the entire run

Response time standard

deviation [ms] [for Interval]

The standard deviation time, in milliseconds, required to receive a response from the

web service for a specific web service call during the most recent sample interval

Response time standard

deviation [ms] [for Run]

The standard deviation time, in milliseconds, required to receive a response from the

web service for a specific web service call for the entire run

Maximum response time

[ms] [for Interval]

The longest time, in milliseconds, required to receive a response from the web service

for a specific web service call within the most recent sample interval

Maximum response time

[ms] [for Run]

The longest time, in milliseconds, required to receive a response from the web service

for a specific web service call for the entire run

Minimum response time

[ms] [for Interval]

The shortest time, in milliseconds, required to receive a response from the web service

for a specific web service call within the most recent sample interval

Minimum response time

[ms] [for Run]

The shortest time, in milliseconds, required to receive a response from the web service

for a specific web service call for the entire run

Web Service Calls> Web Service Call Starts> All Call Starts

Counter name Description

Count [for Interval] The number of times web service calls have been invoked during the most recent sample

interval

Count [for Run] The number of times web service calls have been invoked during the entire run

Maximum [for Interval] The maximum number of times web service calls have been invoked within an interval

Maximum [for Run] The maximum number of times web service calls have been invoked during the entire run

Rate [per second] [for

Interval]

The number of times per second that web service calls have been invoked during the most

recent sample interval

Rate [per second] [for

Run]

The number of times per second that web service calls have been invoked for the entire

run

Web Service Call> Web Service Call Starts

Counter name Description

Maximum Rate Web Service Call

Started [for Run]

The maximum number of times per second that a specific web service call has

been invoked for the entire run

Chapter 9. Test Manager Guide

Counter name Description

Maximum Web Service Call

Started [for Interval]

The maximum number of times a specific web service call has been invoked dur­

ing the most recent sample interval

Maximum Web Service Call

Started [for Run]

The maximum number of times a specific web service call has been invoked for

the entire run

Minimum Rate Web Service Call

Started [for Run]

The minimum number of times per second that a specific web service call has

been invoked for the entire run

Minimum Web Service Call Start­

ed [for Interval]

The minimum number of times a specific web service call has been invoked dur­

ing the most recent sample interval

Minimum Web Service Call Start­

ed [for Run]

The minimum number of times a specific web service call has been invoked for

the entire run

Rate Web Service Call Started

[for Interval]

The number of times per second that a specific web service call has been in­

voked during the most recent sample interval

Rate Web Service Call Started

[for Run]

The number of times per second that a specific web service call has been in­

voked for the entire run

Total Web Service Call Started

[for Interval]

The number of times that a specific web service call has been invoked during the

most recent sample interval

Total Web Service Call Started

[for Run]

The number of times that a specific web service call has been invoked for the en­

tire run

Web Service Calls> Web Service Call Successes> All Call Successes

Counter name Description

Count [for Interval] The number of times web service calls have returned a valid response during the most re­

cent sample interval

Count [for Run] The number of times web service calls have returned a valid response during the entire run

Maximum [for Inter­

val]

The maximum number of times web service calls have returned a valid response within an

interval

Maximum [for Run] The maximum number of times web service calls have returned a valid response during the

entire run

Rate [per second] [for

Interval]

The number of times per second that web service calls have returned a valid response during

the most recent sample interval

Rate [per second] [for

Run]

The number of times per second that web service calls have returned a valid response for

the entire run

1095

HCL OneTest Performance

1096

Web Service Call> Web Service Call Successes

Counter name Description

Maximum Rate Web Service

Call Success [for Run]

The maximum number of times per second that a specific web service call has re­

turned a valid response for the entire run

Maximum Web Service Call

Success [for Interval]

The maximum number of times a specific web service call has returned a valid re­

sponse during the most recent sample interval

Maximum Web Service Call

Success [for Run]

The maximum number of times a specific web service call has returned a valid re­

sponse for the entire run

Minimum Rate Web Service

Call Success [for Run]

The minimum number of times per second that a specific web service call has re­

turned a valid response for the entire run

Minimum Web Service Call

Success [for Interval]

The minimum number of times a specific web service call has returned a valid re­

sponse during the most recent sample interval

Minimum Web Service Call

Success [for Run]

The minimum number of times a specific web service call has returned a valid re­

sponse for the entire run

Rate Web Service Call Success

[for Interval]

The number of times per second that a specific web service call has returned a

valid response during the most recent sample interval

Rate Web Service Call Success

[for Run]

The number of times per second that a specific web service call has returned a

valid response for the entire run

Total Web Service Call Success

[for Interval]

The number of times that a specific web service call has returned a valid response

during the most recent sample interval

Total Web Service Call Success

[for Run]

The number of times that a specific web service call has returned a valid response

for the entire run

Web Service Calls> Web Service Call Failures> All Call Failures

Counter name Description

Count [for Interval] The number of times web service calls have failed within the most recent sample interval

Count [for Run] The number of times web service calls have failed during the entire run

Maximum [for Interval] The maximum number of times web service calls have failed within an interval

Maximum [for Run] The maximum number of times web service calls have failed during the entire run

Rate [per second] [for In­

terval]

The number of times per second that web service calls have failed during the most recent

sample interval

Rate [per second] [for

Run]

The number of times per second that web service calls have failed for the entire run

Chapter 9. Test Manager Guide

Web Service Call> Web Service Call Failures

Counter name Description

Maximum Rate Web Service Call

Failures [for Run]

The maximum number of times per second that a specific web service call has

failed for the entire run

Maximum Web Service Call Fail­

ures [for Interval]

The maximum number of times a specific web service call has failed during the

most recent sample interval

Maximum Web Service Call Fail­

ures [for Run]

The maximum number of times a specific web service call has failed for the en­

tire run

Minimum Rate Web Service Call

Failures [for Run]

The minimum number of times per second that a specific web service call has

failed for the entire run

Minimum Web Service Call Fail­

ures [for Interval]

The minimum number of times a specific web service call has failed during the

most recent sample interval

Minimum Web Service Call Fail­

ures [for Run]

The minimum number of times a specific web service call has failed for the en­

tire run

Rate Web Service Call Failures [for

Interval]

The number of times per second that a specific web service call has failed dur­

ing the most recent sample interval

Rate Web Service Call Failures [for

Run]

The number of times per second that a specific web service call has failed for

the entire run

Total Web Service Call Failures [for

Interval]

The number of times that a specific web service call has failed during the most

recent sample interval

Total Web Service Call Failures [for

Run]

The number of times that a specific web service call has failed for the entire run

Web Service Calls> Web Service Call Timeouts> All Call Timeouts

Counter name Description

Count [for Interval] The number of times web service calls produced a timeout during the most recent sample

interval

Count [for Run] The number of times web service calls produced a timeout during the entire run

Maximum [for Interval] The maximum number of times web service calls produced a timeout within an interval

Maximum [for Run] The maximum number of times web service calls produced a timeout during the entire run

Rate [per second] [for

Interval]

The number of times per second that web service calls produced a timeout during the

most recent sample interval

Rate [per second] [for

Run]

The number of times per second that web service calls produced a timeout for the entire

run

1097

HCL OneTest Performance

1098

Web Service Call> Web Service Call Timeouts

Counter name Description

Maximum Rate Web Service Call

Timeouts [for Run]

The maximum number of times per second that a specific web service call pro­

duces a timeout for the entire run

Maximum Web Service Call Time­

outs [for Interval]

The maximum number of times a specific web service call produces a timeout

during the most recent sample interval

Maximum Web Service Call Time­

outs [for Run]

The maximum number of times a specific web service call produces a timeout

for the entire run

Minimum Rate Web Service Call

Timeouts [for Run]

The minimum number of times per second that a specific web service call pro­

duces a timeout for the entire run

Minimum Web Service Call Time­

outs [for Interval]

The minimum number of times a specific web service call produces a timeout

during the most recent sample interval

Minimum Web Service Call Time­

outs [for Run]

The minimum number of times a specific web service call produces a timeout for

the entire run

Rate Web Service Call Timeouts

[for Interval]

The number of times per second that a specific web service call produces a

timeout during the most recent sample interval

Rate Web Service Call Timeouts

[for Run]

The number of times per second that a specific web service call produces a

timeout for the entire run

Total Web Service Call Timeouts

[for Interval]

The number of times that a specific web service call produces a timeout during

the most recent sample interval

Total Web Service Call Timeouts

[for Run]

The number of times that a specific web service call produces a timeout for the

entire run

Service verification point counters
Service verification point counters provide information about verification points.

The verdict for a verification point can be Pass, Fail, Error, or Inconclusive.

• Pass indicates that the verification point matched or received the expected response. For example, a response

code verification point is set to Pass when the recorded response code is received during the run. If your test

does not contain verification points, it means that the connection succeeded.

• Fail indicates that the verification point did not match the expected response or that the expected response

was not received.

• Error indicates that the primary request was not successfully sent to the server, no response was received

from the server, or the response was incomplete or could not be parsed.

• Inconclusive is returned only if you provide custom code that defines an Inconclusive verdict.

Chapter 9. Test Manager Guide

Some counters produce an aggregate value, where the values for several web service message returns are combined

into a single value; others produce values for each web service message return.

• Aggregate counters use the values for all the elements in a test to produce a single value for a report. This

value is rolled up from all values that satisfy the counter. When you drag an aggregate counter onto a report,

one value is displayed. Folders that contain aggregate counters have a clock superimposed on the folder icon:

. In the tables that follow, the aggregate counters are listed after the titles that contain this icon.

• Individual counters produce values for each item that satisfies the counter, rather than an aggregate value.

Folders that contain individual counters have an asterisk superimposed on the folder icon: . In the tables

that follow, the individual counters are listed after the titles that contain this icon.

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule, as a

schedule property.

Web Service Verification Points > All > All Returns

Counter

name
Description

Percent

Pass

The percentage of all verification points that passed for a specific web service message return for the

entire run

Web Service Verification Points > All > All Returns > Error

Counter

name
Description

Count [for In­

terval]

The number of all verification points classified as Error for a specific web service message return

during the most recent sample interval

Count [for

Run]

The number of all verification points classified as Error for a specific web service message return for

the entire run

Web Service Verification Points > All > All Returns > Fail

Counter name Description

Count [for In­

terval]

The number of all verification points that failed for a specific web service message return during the

most recent sample interval

Count [for

Run]

The number of all verification points that failed for a specific web service message return for the en­

tire run

1099

HCL OneTest Performance

1100

Web Service Verification Points > All > All Returns > Inconclusive

Counter

name
Description

Count [for

Interval]

The number of all verification points classified as Inconclusive for a specific web service message re­

turn during the most recent sample interval

Count [for

Run]

The number of all verification points classified as Inconclusive for a specific web service message re­

turn for the entire run

Web Service Verification Points > All > All Returns > Pass

Counter

name
Description

Count [for In­

terval]

The number of all verification points that passed for a specific web service message return during

the most recent sample interval

Count [for

Run]

The number of all verification points that passed for a specific web service message return for the

entire run

Web Service Verification Points > All Returns

Counter name Description

Percent All VPs Passed For

Interval

The percentage of all verification points that passed during the most recent sample

interval

Percent All VPs Passed For

Run

The percentage of all verification points that passed for the entire run

Total All VPs Attempted [for

Interval]

The number of all verification points executed within the most recent sample interval

Total All VPs Attempted [for

Run]

The number of all verification points executed for the entire run

Total All VPs Error [for Inter­

val]

The number of all verification points with a verdict of Error during the most recent

sample interval

Total All VPs Error [for Run] The number of all verification points with a verdict of Error for the entire run

Total All VPs Failed [for Inter­

val]

The number of all verification points that failed within the most recent sample inter­

val

Total All VPs Failed [for Run] The number of all verification points that failed for the entire run

Total All VPs Inconclusive

[for Interval]

The number of all verification points that were marked as Inconclusive during the

most recent sample interval

Total All VPs Inconclusive

[for Run]

The number of all verification points that were marked as Inconclusive for the entire

run

Chapter 9. Test Manager Guide

Counter name Description

Total All VPs Passed [for In­

terval]

The number of all verification points that passed within the most recent sample inter­

val

Total All VPs Passed [for

Run]

The number of all verification points that passed for the entire run

Web Service Verification Points > Attachment > All Returns

Counter

name
Description

Percent

Pass

The percentage of attachment verification points that passed for a specific web service message re­

turn for the entire run

Web Service Verification Points > Attachment > All Returns > Error

Counter

name
Description

Count [for

Interval]

The number of attachment verification points classified as Error for a specific web service message

return during the most recent sample interval

Count [for

Run]

The number of attachment verification points classified as Error for a specific web service message

return for the entire run

Web Service Verification Points > Attachment > All Returns > Fail

Counter

name
Description

Count [for In­

terval]

The number of attachment verification points that failed for a specific web service message return

during the most recent sample interval

Count [for

Run]

The number of attachment verification points that failed for a specific web service message return

for the entire run

Web Service Verification Points > Attachment > All Returns > Inconclusive

Counter

name
Description

Count [for

Interval]

The number of attachment verification points classified as Inconclusive for a specific web service

message return during the most recent sample interval

Count [for

Run]

The number of attachment verification points classified as Inconclusive for a specific web service

message return for the entire run

1101

HCL OneTest Performance

1102

Web Service Verification Points > Attachment > All Returns > Pass

Counter

name
Description

Count [for In­

terval]

The number of attachment verification points that passed for a specific web service message return

during the most recent sample interval

Count [for

Run]

The number of attachment verification points that passed for a specific web service message return

for the entire run

Web Service Verification Points > All Returns

Counter name Description

Percent Attachment VPs Passed

For Interval

The percentage of attachment verification points that passed during the most re­

cent sample interval

Percent Attachment VPs Passed

For Run

The percentage of attachment verification points that passed for the entire run

Total Attachment VPs Attempt­

ed [for Interval]

The number of attachment verification points executed during the most recent

sample interval

Total Attachment VPs Attempt­

ed [for Run]

The number of attachment verification points executed for the entire run

Total Attachment VPs Error [for

Interval]

The number of attachment verification points with a verdict of Error during the

most recent sample interval

Total Attachment VPs Error [for

Run]

The number of attachment verification points with a verdict of Error for the entire

run

Total Attachment VPs Failed [for

Interval]

The number of attachment verification points that failed during the most recent

sample interval

Total Attachment VPs Failed [for

Run]

The number of attachment verification points that failed for the entire run

Total Attachment VPs Inconclu­

sive [for Interval]

The number of attachment verification points that were marked as Inconclusive

during the most recent sample interval

Total Attachment VPs Inconclu­

sive [for Run]

The number of attachment verification points that were marked as Inconclusive

for the entire run

Total Attachment VPs Passed

[for Interval]

The number of attachment verification points that passed during the most recent

sample interval

Total Attachment VPs Passed

[for Run]

The number of attachment verification points that passed for the entire run

Chapter 9. Test Manager Guide

Web Service Verification Points > Contain > All Returns

Counter

name
Description

Percent

Pass

The percentage of contain verification points that passed for a specific web service message return

for the entire run

Web Service Verification Points > Contain > All Returns > Error

Counter

name
Description

Count [for In­

terval]

The number of contain verification points classified as Error for a specific web service message re­

turn during the most recent sample interval

Count [for

Run]

The number of contain verification points classified as Error for a specific web service message re­

turn for the entire run

Web Service Verification Points > Contain > All Returns > Fail

Counter

name
Description

Count [for In­

terval]

The number of contain verification points that failed for a specific web service message return dur­

ing the most recent sample interval

Count [for

Run]

The number of contain verification points that failed for a specific web service message return for

the entire run

Web Service Verification Points > Contain > All Returns > Inconclusive

Counter

name
Description

Count [for

Interval]

The number of contain verification points classified as Inconclusive for a specific web service mes­

sage return during the most recent sample interval

Count [for

Run]

The number of contain verification points classified as Inconclusive for a specific web service mes­

sage return for the entire run

Web Service Verification Points > Contain > All Returns > Pass

Counter

name
Description

Count [for In­

terval]

The number of contain verification points that passed for a specific web service message return dur­

ing the most recent sample interval

Count [for

Run]

The number of contain verification points that passed for a specific web service message return for

the entire run

1103

HCL OneTest Performance

1104

Web Service Verification Points > All Returns

Counter name Description

Percent Contain VPs Passed

For Interval

The percentage of contain verification points that passed during the most recent

sample interval

Percent Contain VPs Passed

For Run

The percentage of contain verification points that passed for the entire run

Total Contain VPs Attempted

[for Interval]

The number of contain verification points executed within the most recent sample

interval

Total Contain VPs Attempted

[for Run]

The number of contain verification points executed for the entire run

Total Contain VPs Error [for In­

terval]

The number of contain verification points with a verdict of Error during the most re­

cent sample interval

Total Contain VPs Error [for

Run]

The number of contain verification points with a verdict of Error for the entire run

Total Contain VPs Failed [for

Interval]

The number of contain verification points that failed during the most recent sample

interval

Total Contain VPs Failed [for

Run]

The number of contain verification points that failed for the entire run

Total Contain VPs Inconclusive

[for Interval]

The number of contain verification points that were marked as Inconclusive during

the most recent sample interval

Total Contain VPs Inconclusive

[for Run]

The number of contain verification points that were marked as Inconclusive for the

entire run

Total Contain VPs Passed [for

Interval]

The number of contain verification points that passed during the most recent sam­

ple interval

Total Contain VPs Passed [for

Run]

The number of contain verification points that passed for the entire run

web Service Verification Points > Equal > All Returns

Counter

name
Description

Percent

Pass

The percentage of equal verification points that passed for a specific web service message return for

the entire run

Chapter 9. Test Manager Guide

Web Service Verification Points > Equal > All Returns > Error

Counter

name
Description

Count [for In­

terval]

The number of equal verification points classified as Error for a specific web service message return

during the most recent sample interval

Count [for

Run]

The number of equal verification points classified as Error for a specific web service message return

for the entire run

Web Service Verification Points > Equal > All Returns > Fail

Counter

name
Description

Count [for In­

terval]

The number of equal verification points that failed for a specific web service message return during

the most recent sample interval

Count [for

Run]

The number of equal verification points that failed for a specific web service message return for the

entire run

Web Service Verification Points > Equal > All Returns > Inconclusive

Counter

name
Description

Count [for

Interval]

The number of equal verification points classified as Inconclusive for a specific web service message

return during the most recent sample interval

Count [for

Run]

The number of equal verification points classified as Inconclusive for a specific web service message

return for the entire run

Web Service Verification Points > Equal > All Returns > Pass

Counter

name
Description

Count [for In­

terval]

The number of equal verification points that passed for a specific web service message return during

the most recent sample interval

Count [for

Run]

The number of equal verification points that passed for a specific web service message return for

the entire run

Web Service Verification Points > All Returns

Counter name Description

Percent Equal VPs Passed For

Interval

The percentage of equal verification points that passed during the most recent sam­

ple interval

1105

HCL OneTest Performance

1106

Counter name Description

Percent Equal VPs Passed For

Run

The percentage of equal verification points that passed for the entire run

Total Equal VPs Attempted

[for Interval]

The number of equal verification points executed within the most recent sample in­

terval

Total Equal VPs Attempted

[for Run]

The number of equal verification points executed for the entire run

Total Equal VPs Error [for In­

terval]

The number of equal verification points with a verdict of Error during the most re­

cent sample interval

Total Equal VPs Error [for Run] The number of equal verification points with a verdict of Error for the entire run

Total Equal VPs Failed [for In­

terval]

The number of equal verification points that failed during the most recent sample

interval

Total Equal VPs Failed [for

Run]

The number of equal verification points that failed for the entire run

Total Equal VPs Inconclusive

[for Interval]

The number of equal verification points that were marked as Inconclusive during the

most recent sample interval

Total Equal VPs Inconclusive

[for Run]

The number of equal verification points that were marked as Inconclusive for the

entire run

Total Equal VPs Passed [for

Interval]

The number of equal verification points that passed during the most recent sample

interval

Total Equal VPs Passed [for

Run]

The number of equal verification points that passed for the entire run

Web Service Verification Points > Query > All Returns

Counter

name
Description

Percent

Pass

The percentage of query verification points that passed for a specific web service message return for

the entire run

Web Service Verification Points > Query > All Returns > Error

Counter

name
Description

Count [for In­

terval]

The number of query verification points classified as Error for a specific web service message return

during the most recent sample interval

Count [for

Run]

The number of query verification points classified as Error for a specific web service message return

for the entire run

Chapter 9. Test Manager Guide

Web Service Verification Points > Query > All Returns > Fail

Counter

name
Description

Count [for In­

terval]

The number of query verification points that failed for a specific web service message return during

the most recent sample interval

Count [for

Run]

The number of query verification points that failed for a specific web service message return for the

entire run

Web Service Verification Points > Query > All Returns > Inconclusive

Counter

name
Description

Count [for

Interval]

The number of query verification points classified as Inconclusive for a specific web service message

return during the most recent sample interval

Count [for

Run]

The number of query verification points classified as Inconclusive for a specific web service message

return for the entire run

Web Service Verification Points > Query > All Returns > Pass

Counter

name
Description

Count [for In­

terval]

The number of query verification points that passed for a specific web service message return during

the most recent sample interval

Count [for

Run]

The number of query verification points that passed for a specific web service message return for

the entire run

Web Service Verification Points > All Returns

Counter name Description

Percent Query VPs Passed For

Interval

The percentage of query verification points that passed during the most recent

sample interval

Percent Query VPs Passed For

Run

The percentage of query verification points that passed for the entire run

Total Query VPs Attempted

[for Interval]

The number of query verification points executed within the most recent sample in­

terval

Total Query VPs Attempted

[for Run]

The number of query verification points executed for the entire run

Total Query VPs Error [for In­

terval]

The number of query verification points with a verdict of Error during the most re­

cent sample interval

1107

HCL OneTest Performance

1108

Counter name Description

Total Query VPs Error [for Run] The number of query verification points with a verdict of Error for the entire run

Total Query VPs Failed [for In­

terval]

The number of query verification points that failed during the most recent sample

interval

Total Query VPs Failed [for

Run]

The number of query verification points that failed for the entire run

Total Query VPs Inconclusive

[for Interval]

The number of query verification points that were marked as Inconclusive during

the most recent sample interval

Total Query VPs Inconclusive

[for Run]

The number of query verification points that were marked as Inconclusive for the

entire run

Total Query VPs Passed [for

Interval]

The number of query verification points that passed during the most recent sample

interval

Total Query VPs Passed [for

Run]

The number of query verification points that passed for the entire run

Socket counters
With socket generic counters, which are displayed in the Performance Test Runs view, you can customize your socket

reports with dynamic information that is updated for each run.

Socket counters
These counters provide information about connections started, send and receive actions completed, and connection

times. Some counters produce an aggregate value, where the values for several send and receive actions are

represented in one value; others produce values for each action.

Aggregate counters use the values for all the connections in a test to produce a single value for a report. This value

is calculated from all values that satisfy the counter. When you drag an aggregate counter onto a report, one value is

displayed. Folders that contain aggregate counters have a clock superimposed on the folder icon: . The following

tables that list aggregate counters have this icon in their title.

Individual counters produce values for each connection that satisfies the counter, rather than a single aggregate

value. Folders that contain individual counters have an asterisk superimposed on the folder icon: . The following

tables that list individual counters have this icon in their title.

Some counters pertain to intervals in the run. You set the Statistics sample interval value in the schedule as a

schedule property.

Bytes Received counters

The counters in this section provide information about the number of bytes that were received.

Chapter 9. Test Manager Guide

Socket Counters> Bytes Received

Counter name Description

Count [for Interval] The number of bytes received for a specific connection during the most recent sample inter­

val

Count [for Run] The number of bytes received for a specific connection for the entire run

Bytes Sent counters

The counters in this section provide information about the number of bytes that were sent.

Socket Counters> Bytes Sent

Counter name Description

Count [for Interval] The number of bytes sent for a specific connection within the most recent sample inter­

val

Count [for Run] The number of bytes sent for a specific connection for the entire run

Connect Attempts counters

The counters in this section provide information about the number of attempts to establish a connection with the

server.

Socket Counters> Connect Attempts

Counter name Description

Count [for Interval] The number of attempts to establish a connection within the most recent sample inter­

val

Count [for Run] The number of attempts to establish a connection for the entire run

Connect Times counters

The counters in this section provide information about the connection response time. This is the time, in milliseconds,

that elapses from the point that the test client attempts to establish a connection with the server and the moment the

connection is established.

Socket Counters> Connect Times

Counter name Description

Average [for Interval] The average connection time for a specific connection during the most recent sample in­

terval

Average [for Run] The average connection time for a specific connection for the entire run

Maximum [for Interval] The maximum connection time for a specific connection during the most recent sample

interval

1109

HCL OneTest Performance

1110

Counter name Description

Maximum [for Run] The maximum connection time for a specific connection for the entire run

Minimum [for Interval] The minimum connection time for a specific connection during the most recent sample

interval

Minimum [for Run] The minimum connection time for a specific connection for the entire run

Standard Deviation [for

Interval]

The standard deviation of connection times for a specific connection during the most re­

cent sample interval

Standard Deviation [for

Run]

The standard deviation of connection times for a specific connection for the entire run

Socket Counters> Connect Times> Socket Connection Times

Counter name Description

Average [ms] [for Interval] The average connection time for all connections within the most recent sample in­

terval

Average [ms] [for Run] The average connection time for all connections for the entire run

Maximum [ms] [for Interval] The maximum connection time for all connections within the most recent sample in­

terval

Maximum [ms] [for Run] The maximum connection time for all connections for the entire run

Minimum [ms] [for Interval] The minimum connection time for a all connections within the most recent sample

interval

Minimum [ms] [for Run] The minimum connection time for a all connections for the entire run

Standard Deviation [ms] [for

Interval]

The standard deviation of connection times for all connections during the most re­

cent sample interval

Standard Deviation [ms] [for

Run]

The standard deviation of connection times for all connections for the entire run

Connects counters

The counters in this section provide information about the number of connections that were established.

Socket Counters> Connects

Counter name Description

Count [for Inter­

val]

The number of established connections for a specific connection during the most recent sample

interval

Count [for Run] The number of established connections for a specific connection for the entire run

Chapter 9. Test Manager Guide

Receive Attempts counters

The counters in this section provide information about the number of attempts to receive data from the connection.

Socket Counters> Receive Attempts

Counter name Description

Count [for Inter­

val]

The number of receive attempts for a specific connection during the most recent sample inter­

val

Count [for Run] The number of receive attempts for a specific connection for the entire run

Receives counters

The counters in this section provide information about the number of receive actions that were successfully

completed that were received.

Socket Counters> Receives

Counter name Description

Count [for Inter­

val]

The number of completed receives for a specific connection during the most recent sample in­

terval

Count [for Run] The number of completed receives for a specific connection for the entire run

Send Attempts counters

The counters in this section provide information about the number of attempts to send data from the connection.

Socket Counters> Send Attempts

Counter name Description

Count [for Interval] The number of send attempts for a specific connection during the most recent sample inter­

val

Count [for Run] The number of send attempts for a specific connection for the entire run

Sends counters

The counters in this section provide information about the number of send actions that were successfully completed.

Socket Counters> Sends

Counter name Description

Count [for Inter­

val]

The number of completed sends for a specific connection during the most recent sample inter­

val

Count [for Run] The number of completed sends for a specific connection for the entire run

1111

1112

Chapter 10. Troubleshooting Guide
This guide describes how to analyze and resolve some of the common problems that you might encounter while you

work with HCL OneTest™ Performance.

Troubleshooting performance testing
This topic provides information about how to troubleshoot several problems with HCL OneTest™ Performance

If you run tests and encounter problems, make sure that you have followed all the Performance testing tips on

page 333.

If an error message is displayed when you run tests, try looking up the error message in the Performance

testing error messages section of the online help. Only the most common error messages are listed. If no error

message is displayed when you encounter a problem, open the error log by clicking Window > Show View

> Error Log. If the workbench shuts down while running tests, restart the workbench and examine the error

log. By default, warning and error messages are logged. You can increase the default logging level by clicking

Window > Preferences > Logging. The log file is stored in the .metadata directory of your workspace. To avoid

excessive logging, the Logging Level should be adjusted for individual Logger Names in the Loggers tab. For

example, to get more information about a problem connecting with IBM® Rational® Quality Manager, increase the

Logging Level for com.ibm.rational.test.lt.rqm.adapter Logger Name. For the licensing issue, adjust the level for

com.ibm.rational.test.lt.licening Logger Name. When you no longer need the extra logging, use the Restore Default

button in the Logging Preferences to reset all the levels to their recommended defaults.

You might encounter some of these problems while performance testing:

Connectivity problems between workbench and agent computers

If the workbench stops or locks up when you attempt to start running tests, it is important to confirm that all the

agent computers are running. Perform the following steps to confirm your installation is properly configured:

• Confirm that there is sufficient disk space available on the workbench computer and the agent computers.

• Restart the workbench computer.

• Verify the network connectivity between the workbench computer and agent computers. To confirm the

hostname in majordomo.config file can be DNS resolved on the agent machine, use a shell ping to the

workbench hostname. If the ping results fail use the IP address of the workbench instead.

• Confirm the server port number on the test workbench computer. Click Window > Preferences > Server. This

is the port number that should be specified in majordomo.config file on the agent machines.

• Restart the agent computers and verify the Majordomo process is running.

Chapter 10. Troubleshooting Guide

• On the agent machines, set the optional debug flag in the majordomo.config file. Set the value equal to

true; the default value is false. You do not have to restart the agent. Within about ten seconds it should

automatically pick up the changes to majordomo.config.

Look in %TEMP% directory for the majordomo.log file. This file contains information about the attempts to

contact the workbench including information about any failures and the reason for the failures.

On the Windows operating system, the %TEMP% directory is typically at %USERPROFILE%\AppData\Local

\Temp.

If the majordomo service is configured to log in as Local System Account, then the %TEMP% directory is at

%SystemRoot%\TEMP, typically C:\Windows\TEMP.

• You can check the agent status on the workbench computer by clicking the icon. For the Agent Controller,

you can attempt to share files between the workbench computer and agent computers. Click Window

> Preferences > Agent Controller > Hosts, and then add the agent computers as hosts, and click Test

Connection to test connectivity to the instances of the Agent Controller that are running on the agent

computers.

Recording configuration problems

No HTTP traffic is captured while recording

See Recording reliable HTTP tests on page 335 for instructions on configuring your web browser. If

you are attempting to use Internet Explorer to record tests from a secure website, see Configuring

Internet Explorer for recording from a secure web site on page 336. Disable firewalls on the workbench

computer and the agent computers.

No traffic is captured while recording

Ensure that the recorder type that you select matches the protocol in use by the system under test. For

example, do not attempt to use the HTTP recorder if the system under test uses the Citrix protocol.

No test is generated after recording

When the test generator cannot create a test from the recorded traffic, typically an error message is

displayed or written to the error log. Try looking up the error message in the Performance testing error

messages section of the online help.

Recorder controls are not available

If you use a workspace from a different version of the product, the recorder controls might not be

available. Instead, the recorder controls from the other version of the product are displayed. Click

Window > Reset Perspective to reset the Performance Test or Service Test perspective. Alternately,

click File > New > Other to select the wizard to use.

Problems running large tests or long-run tests

If a test runs but ends with errors, check that the workbench computer and agent computers meet the hardware and

software requirements that are detailed in the installation guide. Pay close attention to the memory and disk space

1113

HCL OneTest Performance

1114

requirements. See Increasing memory allocation on page 827 for more information on how to set the maximum heap

size to avoid out-of-memory errors. Monitor processor and memory usage on the workbench and agent computers

and watch for excessive processor use or excessive memory use by javaw.exe or java.exe processes.

Run tests with fewer virtual users that use the default schedule settings to determine whether the behavior is linked

to the number of users. Examine the test log for error messages that the system under test generates. Run tests

with a single virtual user and make sure that the system under test is not generating errors, before you attempt to run

tests with a large number of users. If you encounter problems, restart the workbench and agent computers before

attempting to run tests again.

If the workbench shuts down while running tests, search for file names that begin with javacore. The name of

javacore files includes the date, time, and process ID. If you find a javacore file with a date, time, and process

ID matching the workbench, open the file in a text editor. You can find the reason for failure at the beginning of the

javacore file.

Data correlation errors

If you can record tests successfully, but the expected behavior is not triggered in your application when you run tests,

you might need to perform manual data correlation. Typically when additional data correlation is needed, the test log

includes messages similar to this message:Unable to extract the value. To troubleshoot data correlation problems,

try running tests using only one virtual user running on the workbench computer, and compare the playback to the

recorded test to determine which responses from the system under test are unexpected. See Debugging HTTP tests

on page 833 to learn how to use the test log and the Protocol Data view to troubleshoot HTTP tests. To learn more

about data correlation, see Correlating response and request data on page 609.

Common errors integrating with IBM® Rational® Quality Manager

All modes of the adapter use the Eclipse error log. You can view the log by opening the workbench and clicking

Window > Show View > Error Log. By default, warning and error messages are logged. You can turn on more detailed

logging for the adapter by clicking Window > Preferences > Logging. The log component for the adapter is named

com.ibm.rational.test.lt.rqm.adapter.

If you are running the adapter as a Windows™ service or from the command line, you can view the adapter.log file

without opening the test workbench.

Problem Solution or cause

Where do you look for errors or warn­

ings?

In the workbench, click Window > Show View > Error Log.

You do not see the adapter available

for selection. • Verify that the Engineering Test Management server address that is

provided to the adapter is correct. Provide the correct address.

• Check the provided login and password. Provide the correct pass­

word.

Chapter 10. Troubleshooting Guide

Problem Solution or cause

The adapter continuously fails to con­

nect to Engineering Test Manage­

ment.

Make sure that the server is running. If necessary, restart the server or check

network connectivity.

The adapter is displayed as red in the

selection dialog. • The adapter is not communicating with the server.

• The adapter might already be in use.

You attempt to import a script from

the adapter but no scripts are found. • Make sure the project path that is entered in Engineering Test Man­

agement is a project under the workspace that is associated with the

running adapter. You have to enter only the project name. This is less

error prone than typing the complete project path, but either forms

are acceptable.

• If running from the command line or as a service, be certain

the WORKSPACE_DIR environment variable that is set in the

adapter.config file is the same path as seen in the select work­

space dialog when running the test workbench. Be careful not to set

the path to a project folder under the workspace directory.

• Make sure that you are not using a workspace that contains a project

that was copied from a shared location. A workspace that contains

projects from shared locations cannot be used for projects that are

not shared.

The adapter is running from the com­

mand line or as a service, and tests

continue to fail.

Run the adapter in GUI mode so that you can see what happens when the

test workbench runs the test script.

Adapter Windows™ services does not

start. A error message states that the

service failed to start in a timely fash­

ion.

Ensure that the computer has .NET 2.0 or later. This platform can be in­

stalled from the Windows™ Update Site or manually. For more information on

installing .NET, see http://support.microsoft.com/kb/923100.

When testing shared assets, the ex­

ecution fails with and an IOException

message is displayed.

The most likely cause is that the Engineering Test Management to UNC

shared location is not set up correctly.

• From Engineering Test Management, ensure that you can access

the UNC shared directory without being prompted for a password.

You might have to map a drive on Windows™ for the Engineering Test

Management system to log into the UNC share.

• Ensure that you have defined the shared resource in Engineering Test

Management under Admin > System Properties > Resources.

1115

HCL OneTest Performance

1116

Problem Solution or cause

• Ensure that the test-script points to a shared location that still exists.

If you have associated a Engineering Test Management test script

with a shared location that has changed (for example if the IP ad­

dress has been reassigned) you might need to reassociate every test

script

• Ensure that the UNC shared directory that is specified in Engineering

Test Management points to a project.

When testing shared assets, the exe­

cution fails with a low level model er­

ror.

Ensure that the adapter has the required protocol extensions installed. The

test assets located on the shared location can only be run on an adapter

workspace that supports those protocols.

Service tests that were created in a

previous version of the product can­

not be run.

Upgrade every SOA asset to the latest version.

The adapter cannot connect to the

server, and one of the following error

messages is displayed:

• Communications error with

server

• Error occurred while regis­

tering the adapter

• When using Engineering Test Management 3.0 or later, the server

URL that is configured for the adapter must exactly match the pub­

lic URI of the Engineering Test Management server. The server pub­

lic URI is available on the Engineering Test Management adminis­

tration page. By default the administration page is at https://server­

name:9443/qm/admin.

• The adapter user must be a member of the Engineering Test Man­

agement project area. Open the project area administration page on

the Engineering Test Management server to determine whether the

adapter user is a member of the project area. For Engineering Test

Management 3.0 and later, the adapter user must be a member in the

test team member role, not the test team contributor role. This error

can also occur if you have modified these roles from their defaults.

Performance testing error messages
Find more information about the error messages.

Chapter 10. Troubleshooting Guide

PRXE0101W
%1

terminating

due

to

exception:

%2

PRXE4943W
Transaction

[%1]

has

been

aborted.

PRXE4951I
User

group

[%1]

was

not

found.

RMSE0003W
RMSE0003W

There

are

currently

no

selected

counters

for

the

source

named

{0}.

The source has no counters selected.

System action: Execution of the schedule will continue but the information related to this source won't be collected.

1117

HCL OneTest Performance

1118

User response: Consider selecting at least one counter from the Resource Monitoring Service web console.

RMSE0004W
RMSE0004W

The

source

named

{0}

is

no

longer

available.

This source has been removed from the Service web console after it was added to this schedule.

System action: Execution of the schedule will continue but the information related to this source won't be collected.

User response: Consider adding it back, then edit the schedule to update the sources to be monitored during its

execution.

RMSE0005W
RMSE0005W

The

source

named

{0}

is

reporting

the

error

message

{1}.

Look at the reported error.

System action: Execution of the schedule will continue but the information related to this source won't be collected.

User response: Consider fixing it from the Resource Monitoring Service web console.

Chapter 10. Troubleshooting Guide

RMSE0006W
The

server

does

not

support

resource

monitoring

labels.

The server does not support resource monitoring labels.

System action: Execution of the schedule will continue but the resource monitoring counters won't be collected.

User response: Consider using a service that supports this feature.

RPAC0001W
The

JAR

%1

referenced

in

preferences

could

not

be

found.

Preferences

on

the

cloud

workbench

will

be

cleared.

The Resource Monitoring preferences list a JAR file that is required for an instrumented application server type.

This JAR file must be mapped to a new location and transferred to the cloud workbench. But this transaction failed,

because the file could not be found locally.

1119

HCL OneTest Performance

1120

System action: Execution in the cloud will continue but the instrumented application server types that require the

listed JAR file might fail.

User response: Open the child preference page under Test -> Performance Resource Monitoring. Ensure that the

listed files exist and can be found in a valid location.

RPHD1032E
Error

occurred

while

instructing

HCL

OneTest™

Performance

engine

to

enable

real-

time

protocol

data

for

user:

%1.

It's

possible

that

no

data

will

be

seen

for

this

user

in

the

Protocol

Data

view.

Chapter 10. Troubleshooting Guide

There was a general error when starting real-time browsing in the Protocol Data View.

System action: The Protocol Data View will not be updated in real-time during this run. This does not affect test

execution or post-run usage of the view.

User response: Ensure there is a stable connection with the Performance Test Agent and System Under Test. If

problem persists, contact support.

1121

HCL OneTest Performance

1122

RPHD1034E
Error

occurred

while

instructing

HCL

OneTest™

Performance

engine

to

disable

real-

time

protocol

data

for

user:

%1.

It's

possible

that

data

for

this

user

will

continue

to

be

displayed

in

the

Protocol

Data

view.

= There was a general error when ending real-time browsing in the Protocol Data View.

System action: None.

Chapter 10. Troubleshooting Guide

User response: If the Protocol Data View no longer updates for additional runs or when the test editor selection is

changed, closing the view and reopening it may help.

RPHE0001E
example

of

translatable

error

message

%1

RPHE0010W
Unknown

authentication

scheme

'%1'

discovered

in

HTTP

401

response,

ignoring.

RPHE0011W
Unrecognized

authentication

header

'%1'

discovered

in

HTTP

401

response,

ignoring.

1123

HCL OneTest Performance

1124

RPHE0012W
No

authentication

headers

found

in

HTTP

401

response,

ignoring.

RPHE0013W
The

server

requested

NTLM

authentication

but

no

NTLM

authentication

context

was

supplied

with

this

request.

Authentication

is

not

possible.

Chapter 10. Troubleshooting Guide

RPHE0014W
NTLM

authentication

failed

for

this

request.

Verify

that

the

NTLM

authentication

context

values

for

this

request

are

correct.

RPHE0100W
Host

name

'%1'

can

not

be

resolved.

A connection could not be established with the host. This can occur if the testing environment changes so that the

host name is no longer correct. This can also occur when running a test on a different computer, such as an agent

computer, from the workbench computer that was used for recording, if the new computer cannot resolve the host

name.

User response: If the host name is incorrect due to a change in the testing environment, update the host name in the

test. Otherwise, try to resolve the host name using the command nslookup <hostname>. Run nslookup on the agent

computer if the error is happening on the agent computer. If nslookup is also unable to resolve the name, contact your

network administrator. If nslookup resolves the host name, but the test continues to fail, try changing the host name

to a fully-qualified host name. Alternatively, edit the hosts file.

1125

HCL OneTest Performance

1126

RPHE0101W
Encountered

error

while

updating

dynamic

cookie

cache

while

interpreting

'Set-

Cookie'

header

with

value

'%1'

sent

from

web-

server

'%2'

retrieving

URI

'%3'.

Explanation

message:

'%4'.

Cache

not

updated

to

include

this

cookie

value.

Chapter 10. Troubleshooting Guide

RPHE0102W
Unexpected

challenge(HTTP

status

code=401)

received

during

HTTP

playback

to

web-

server

'%1'

retrieving

URI

'%2'.

This

behavior

differs

from

the

behavior

recorded

during

test

creation.

For

authentication

to

playback

correctly

a

challenge

must

be

recorded

during

test

creation.

1127

HCL OneTest Performance

1128

RPHE0103W
Authentication

failed

during

HTTP

playback

to

web-

server

'%1'

retrieving

URI

'%2'.

Probable

cause:

username

'%3'

and/

or

password

'%4'

incorrect.

RPHE0104W
Exception

occurred

during

attempt

to

write

request

to

web-

server

'%1'

getting

url

'%2'.

Explanation:

%3

Chapter 10. Troubleshooting Guide

RPHE0105W
General

un-

handled

exception

occurred

during

socket

I/O

read

from

web-

server

'%1'

retrieving

URI

'%2'.

Explanation

message:

'%3'.

This error occurs when the server abruptly closes the connection to the virtual user. Servers might close connections

if the virtual user is detected as a security risk due to a invalid cookie, failed SSL negotiation, or an improperly

formatted request.

User response: Compare the request that was sent at run time (in the test log) to the one that is in the test. To

determine if differences between the requests are valid, record the test again and compare the two requests.

1129

HCL OneTest Performance

1130

RPHE0106W
A

read

time-

out

occurred

during

a

socket

I/O

read

from

web-

server

'%1'

retrieving

URI

'%2'.

Since

this

URI

is

the

primary

request

for

the

current

page

all

secondary

requests

will

be

skipped

and

the

next

page

will

be

attempted.

Current

time-

out

value

of

'%3'

milliseconds

should

be

increased

if

long

delays

are

expected

on

this

page.

Chapter 10. Troubleshooting Guide

The server did not return the response data before the timeout interval elapsed. If the server is under heavy load, the

behavior can be caused by bottlenecks on the server or the agent computers. This error can also occur if an incorrect

request is sent and the server is unable to respond.

User response: If the server is under heavy load, examine the server and agent computers to find and fix bottlenecks.

Increase the timeout value. To stop tests or virtual users when this error occurs, enable error handling in the test and

configure the server timeout error condition. If the server is not under heavy load, examine the request to ensure that

it is valid and accurate.

1131

HCL OneTest Performance

1132

RPHE0107W
A

read

time-

out

occurred

during

a

socket

I/O

read

from

web-

server

'%1'

retrieving

URI

'%2'.

This

secondary

request

will

be

skipped.

Current

time-

out

value

of

'%3'

milliseconds

should

be

increased

if

long

delays

are

expected

on

this

request.

Chapter 10. Troubleshooting Guide

The server did not return the response data before the timeout interval elapsed. If the server is under heavy load, the

behavior can be caused by bottlenecks on the server or the agent computers. This error can also occur if an incorrect

request is sent and the server is unable to respond.

User response: If the server is under heavy load, examine the server and agent computers to find and fix bottlenecks.

Increase the timeout value. To stop tests or virtual users when this error occurs, enable error handling in the test and

configure the server timeout error condition. If the server is not under heavy load, examine the request to ensure that

it is valid and accurate.

1133

HCL OneTest Performance

1134

RPHE0108W
A

connect

time-

out

occurred

during

a

socket

I/O

connect

to

web-

server

'%1'

attempting

to

retrieve

URI

'%2'.

Since

this

URI

is

the

primary

request

for

the

current

page

all

secondary

requests

will

be

skipped

and

the

next

page

will

be

attempted.

Chapter 10. Troubleshooting Guide

This error can occur if the server or agent computer is under heavy load. This error can also occur if the server or host

computer is not configured with enough connections, or if the agent computer is not configured with enough sockets.

User response: Examine the server and agent computers to find and fix bottlenecks. To stop tests or virtual users

when this error occurs, enable and configure error handling in the test.

RPHE0109W
A

connect

time-

out

occurred

during

a

socket

I/O

connect

to

web-

server

'%1'

attempting

to

retrieve

URI

'%2'.

This

secondary

request

will

be

skipped.

This error can occur if the server or agent computer is under heavy load. This error can also occur if the server or host

computer is not configured with enough connections, or if the agent computer is not configured with enough sockets.

User response: Examine the server and agent computers to find and fix bottlenecks. To stop tests or virtual users

when this error occurs, enable and configure error handling in the test.

1135

HCL OneTest Performance

1136

RPHE0110W
Unexpected

challenge(HTTP

status

code=407)

received

while

accessing

HTTP

proxy

'%1'

retrieving

URI

'%2'.

This

behavior

differs

from

the

behavior

recorded

during

test

creation.

For

authentication

to

playback

correctly

a

challenge

must

be

recorded

during

test

creation.

When the test was recorded, no basic authentication was required on the proxy server. When the test is run, the proxy

server is requesting basic authentication information that is not in the test.

Chapter 10. Troubleshooting Guide

User response: Record the test again to capture basic authentication information. Play back the new test, or add the

basic authentication information to the request in the original test.

RPHE0111W
Authentication

failed

accessing

proxy-

server

'%1'

retrieving

URI

'%2'.

Probable

cause:

username

'%3'

and/

or

password

'%4'

incorrect.

Basic authentication failed when connecting to the proxy server. This can occur if an incorrect user name or

password is supplied.

User response: Ensure that user name and password are correct.

1137

HCL OneTest Performance

1138

RPHE0112W
An

error

occurred

during

decoding

of

content

received

from

web-

server

'%1'

attempting

to

retrieve

URI

'%2'.

Explanation

message:

'%3'.

Chapter 10. Troubleshooting Guide

RPHE0113E
Error

encountered

during

the

process

of

URI

substitution

for

host=

%1

and

URI

=

%2 .

Data

correlation

supplied

a

malformed

URI=

%3 .

Explanation:

%4.

If

you

attempted

to

perform

a

custom

data

substitution

on

this

URI

ensure

it

has

proper

URI

syntax.

If

you

did

not

perform

a

custom

data

substitution

then

an

internal

may

have

been

encountered

and

you

should

contact

product

support

for

further

problem

determination.

1139

HCL OneTest Performance

1140

RPHE0113W
An

error

occurred

during

encoding

of

an

annotated

execution

history

event

property.

Explanation

message:

'%1'.

RPHE0114E
An

error

was

encountered

during

transform

of

response

data.

%1

The response data was not in a format that the data transformer could interpret. This can occur when an error is

returned from the server instead of valid response data.

User response: Examine the response data for errors.

Chapter 10. Troubleshooting Guide

RPHE0114W
Exception

occurred

during

attempt

to

write

request

to

proxy-

server

'%1'

getting

URL

'%2'

on

host

'%3'.

Explanation:

%4.

RPHE0115E
An

error

was

encountered

during

un-

transformation

of

request

data.

%1

The transformed request data could not be converted into the format required by the server. This can occur because

of a faulty data substitution. This can also occur if you manually edit the request data and invalidate the transformed

data format.

User response: Correct the faulty substitution or the invalid data formatting.

1141

HCL OneTest Performance

1142

RPHE0115W
Unable

to

successfully

establish

a

connection

to

web-

server

'%1'

retrieving

URI

'%2'.

Web-

server

closing

the

connection

after

connection

was

just

established.

Chapter 10. Troubleshooting Guide

RPHE0117W
Unexpected

exception

occurred

during

connection

close

to

web-

server

'%1'

retrieving

URI

'%2'.

Explanation:

%3.

1143

HCL OneTest Performance

1144

RPHE0118W
HTTP

parsing

error

encountered

while

retrieving

URI

'%1'

from

web-

server

'%2'.

If

this

URI

is

the

primary

request

for

the

current

page

all

secondary

requests

will

be

skipped

and

the

next

page

will

be

attempted.

Chapter 10. Troubleshooting Guide

RPHE0119E
IP

aliasing

is

enabled

but

no

IP

address

was

found

for

virtual

user

%1.

Verify

correct

network

interface

name(s)

are

specified.

1145

HCL OneTest Performance

1146

RPHE0120E
Exception

occurred

during

attempt

to

connect

to

proxy-

server

'%1'

getting

URL

'%2'

on

host

'%3'.

Explanation:

%4.

Chapter 10. Troubleshooting Guide

RPHE0121E
Unable

to

authenticate

with

the

proxy-

server.

Possible

solution:

re-

record

test

due

to

possible

proxy-

server

'%1'

authentication

changes.

1147

HCL OneTest Performance

1148

RPHE0122W
Web-

server

'%1'

unexpectedly

closed

the

connection

while

in

the

process

of

retrieving

URI

'%2'.

The

response

body

MAY

be

incomplete

due

to

a

missing

"chunk".

If

missing

chunk

was

last

(zero

length)

chunk,

data

is

complete.

Chapter 10. Troubleshooting Guide

RPHE0123W
Infinite

redirection

loop

detected

getting

URL

'%1'.

If

this

is

expected

and

understood

increase

RPT_VMARGS

rptMaxRedirection

parameter.

Redirected

history

%2

1149

HCL OneTest Performance

1150

RPHE0124W
Unexpected

server

redirection

occurred

getting

URL

'%1'.

We

were

redirected

to

the

same

URI

which

issued

this

request.

Redirected

history

%2

RPHE0125W
An error occurred during the log of the request content. Explanation message: '%1'.

Something went wrong while logging an HTTP payload with a content-type that might not be supported by the

underlying log system (cisterna). Such an attachment will simply not be logged with the other events and won't be

available in the Test Log explorer.

No system action.

In case the content type is a commonly used one, consider creating a feature request to get this content-type

supported by the product.

RPIB0007E
%1

Chapter 10. Troubleshooting Guide

RPKG0090E
Exception

thrown

while

creating

connection

variables

Exception thrown while creating connection variables

System action: Can not create the connection variable

User response: None required

RPKG0100E
Exception

thrown

by

the

launch

configuration

core

Exception thrown by the launch configuration

System action: None required

User response: None required

RPKG0101E
Exception

thrown

during

an

update

to

a

launch

configuration

Exception thrown during an update to a launch configuration

1151

HCL OneTest Performance

1152

System action: None required

User response: None required

RPKG0110E
The

data

source

type

%1

is

not

expected

The data source type %1 is not expected

System action: None required

User response: None required

RPSE0014W
SAP

Calendar

dialog

could

have

unpredictable

behavior

during

playback,

set

the

date

directly

in

the

field

using

string

format.

SAP Scripting Calendar object is not safe, in hide mode replay could fail.

Chapter 10. Troubleshooting Guide

System action: No specific action during test generation. Recorded actions are kept.

User response: Date should be set in corresponding field as String value, ex: 10.25.2021

RPSF0114E
SAP

GUI

Application

creation

failed

SAP GUI is not installed with recommended scripting options.

System action: Recording is stopped.

User response: Install SAP GUI with scripting options as recommended by SAP.

RPSF0172E
HCL

OneTest™

Performance/SAP:

Unable

to

start

SAP

GUI,

please

check

SAP

GUI

installation.

SAP GUI can't be reached.

System action: The test is stopped.

User response: Install SAP GUI with scripting options as recommended by SAP.

1153

HCL OneTest Performance

1154

RPSF0195E
Connection

with

SAP

GUI

existing

session

or

shortcut

not

allowed

during

schedule

execution.

Connection on existing SAP GUI session or shortcut are impossible in a performance schedule execution, these are

reserved for test or coumpound test.

System action: The test is stopped.

User response: Connection string or SAP logon must be used for schedule mode.

RPTA0000W
%1

RPTA0001I
Setting

the

log

verbosity

left

me

with

%1

users

Chapter 10. Troubleshooting Guide

RPTA0002E
A

Test

cannot

be

launched

on

the

specified

Driver

RPTA0003E
%1

1155

HCL OneTest Performance

1156

RPTA0004E
A

Test

could

not

be

launched

on

Driver:

%1.

The

Test

Execution

Framework

was

not

able

to

deliver

an

Executor.

This

is

an

internal

error,

please

contact

support.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

Chapter 10. Troubleshooting Guide

The Test and Performance Tools Platform (TPTP) infrastructure did not produce an executor for the test. This error

message might display if firewalls are active on the local computer or the agent computer.

User response: Disable firewalls on both the local computer and the agent computer. If you do not want to disable

firewalls, you can instead enable a firewall-aware connection. For more information on enabling a firewall-aware

connection, see Running with a workbench behind a firewall. On the local computer, check the properties of the

location that represents the agent computer. This error can occur if the deployment root directory is not specified

correctly in the location that represents the agent computer. Check the Error Log for further information on the error.

To open the Error Log, click Window > Show View > Error Log. Restart the Agent Controller. Restart the application.

RPTA0009E
A

Test

could

not

be

launched

on

Driver:

%1

due

to

an

internal

error.

Please

see

Problem

Determination

Log.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

1157

HCL OneTest Performance

1158

An exception was thrown during an attempt to obtain the operating system attribute of the location asset.

User response: Check the Error Log for further information on the error. To open the Error Log, click Window > Show

View > Error Log. Open the location asset representing the agent computer in the Test Navigator, and verify that

all information and properties are correct. Delete the location asset representing the agent computer in the Test

Navigator, and create a new location asset. You might need to delete the location and create a new one, if the location

asset representing the agent computer asset is corrupted.

RPTA0010E
An

error

has

been

encountered

while

launching

a

Test

on

Driver:

%1.

Please

see

Problem

Determination

Log.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

An exception was thrown while starting the test. The exception did not contain an error message.

User response: Check the Error Log for further information on the error. To open the Error Log, click Window > Show

View > Error Log. Restart the Agent Controller. Restart the application.

Chapter 10. Troubleshooting Guide

RPTA0011E
An

error

has

been

encountered

while

launching

a

Test

on

Driver:

%1.

An

Executor

was

not

returned

and

neither

was

an

error

message.

This

is

an

internal

error,

please

contact

support.

The Test and Performance Tools Platform (TPTP) infrastructure produced neither an executor for this test nor error

messages.

User response: Check the Error Log for further information on the error. To open the Error Log, click Window > Show

View > Error Log. Restart the Agent Controller. Restart the application.

1159

HCL OneTest Performance

1160

RPTA0012E
An

error

has

been

encountered

while

launching

a

Test

on

Driver:

%1.

There

are

no

Data

Processors

present.

This

is

an

internal

error,

please

contact

support.

Chapter 10. Troubleshooting Guide

RPTA0013E
An

error

has

been

encountered

while

launching

a

Test

on

Driver:

%1.

Data

Processors

have

not

been

configured

correctly.

This

is

an

internal

error,

please

contact

support.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

1161

HCL OneTest Performance

1162

The test application was unable to configure the Data Processor for either the test log or the statistics portion of the

test infrastructure.

User response: Check the Error Log for further information on the error. To open the Error Log, click Window > Show

View > Error Log. Restart the Agent Controller. Restart the application.

RPTA0014E
A

Test

could

not

be

launched

on

Driver:

%1.

The

Test

Execution

Framework

encountered

an

Exception.

This

is

an

internal

error,

please

contact

support.

Chapter 10. Troubleshooting Guide

RPTA0015E
An

error

was

encountered

while

launching

a

Test

on

%1.

\nPlease

examine

your

Deploy

Directory:

%2,

the

error

could

be

caused

by

one

of

the

following:

\n

\n1.

The

Deploy

Directory

path

must

be

absolute

(start

with

Drive

Letter

or

"/").

\n2.

The

Deploy

Directory

path

must

be

valid

for

the

Target

Operating

System.

\n3.

The

HCL

Agent

Controller

must

have

authority

to

this

directory.

\n4.

An

error

was

encountered

while

deploying

to

this

directory.

1163

HCL OneTest Performance

1164

RPTA0016E
An

error

has

been

encountered

while

launching

the

test.

A

required

dataset

%1

is

missing

or

invalid

in

your

project.

Chapter 10. Troubleshooting Guide

RPTA0017E
An

error

has

been

encountered

while

launching

the

test.

A

required

dataset

%1

has

been

replaced.

One

or

more

test(s)

are

referencing

a

different

version

of

the

dataset.

RPTA0018E
ready

RPTA0019E
not

ready

on

port

1165

HCL OneTest Performance

1166

RPTA0020E
Check

Agents

Failed

RPTA0021E
%1

deployment

directory

%2

format

not

compatible

for

operating

system

%3.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

The deployment directory that is specified in the location asset representing the agent computer is incorrect for the

operating system that is specified in the location asset.

User response: Open the location representing the agent computer in the Test Navigator, and edit the deployment

directory or the operating system.

Chapter 10. Troubleshooting Guide

RPTA0023E
Virtual

users

have

exited

prior

to

stage

completion.

At

the

end

of

stage

%1

there

were

%2

users

running

when

%3

were

expected.

A

common

reason

for

this

is

a

schedule

which

has

assigned

an

insufficient

amount

of

work

(for

one

or

more

User

Groups),

to

keep

the

associated

virtual

users

active

for

the

full

amount

of

time

specified

by

the

stage

duration(s).

Review

the

schedule

for

sufficient

workload.

When

using

multiple

stages

it

is

strongly

recommended

to

use

infinite

loops

to

ensure

that

virtual

users

always

have

enough

work

scheduled

regardless

of

the

total

duration

of

all

the

stages.

Another

possible

reason

is

that

one

or

more

virtual

users

exited

upon

encountering

a

serious

error;

consult

the

Test

Log

or

Common

Base

Event

XML

log

on

the

agent

for

more

information.

Also

see

the

Troubleshooting

section

of

the

online

help.

1167

HCL OneTest Performance

1168

During schedule execution, at the end of the current stage, the actual number of users running did not match the

expected number of users. For example, if the current stage specifies that 100 users should run for 1 hour and only

90 users are running at the end of the hour, this message is displayed.

User response: Check the Error Log for further information on the error. To open the Error Log, click Window > Show

View > Error Log. Typically, this message is displayed when virtual users did not have enough work to do for the

duration of the stage. For schedules that contain more than one stage, verify that the workload under each user

group is contained inside an infinite loop. Use infinite loops because the stage duration is controlled by the time when

users stop. If virtual users have sufficient workload, look in the test log for more information about why virtual users

stopped. The virtual users that stopped might have encountered errors. By default, this message is displayed when

the number of expected users does not match the number of actual users running at the end of a stage. You can

change this setting to specify the percentage of users that may stop during a stage without being considered an error.

To change the error condition, create the -DrptStopTolerance property in the eclipse.ini file in the installation directory.

For example, -DrptStopTolerance=80 specifies that 80% of the users may stop unexpectedly during stage execution

without being considered an error.

RPTA0024E
Exception

encountered

adding

or

removing

users.

This error message is displayed when a dataset reference between a test and a dataset is broken. Whenever a

dataset is used, a reference is created in the test. The reference is a link that points to the physical dataset file in the

test project. This link can break if the test is copied or imported into another project without copying or importing the

associated dataset file. This link can also break if the dataset file is deleted.

System action: None.

User response: Do not copy or import individual test assets. Instead, copy or import entire projects. If you have

already copied or imported individual test assets, copy the dataset from the previous project or create a new dataset

that contains the same information. Open the test with the broken reference and link the dataset to the test. \nDo not

delete dataset files.

Chapter 10. Troubleshooting Guide

RPTA0025E
The

schedule

has

no

user

group.

1169

HCL OneTest Performance

1170

RPTA0026E
The

RPT_VMARGS

option

rptPre811PageResponseTimes

is

specified

on

at

least

one

location

and

is

missing

from

at

least

one

other

location.

Please

ensure

that

either

all

locations

include

this

option

or

none

do.

See

"adjusted

page

response

time

for

increased

accuracy"

in

the

help

for

more

information.

Chapter 10. Troubleshooting Guide

RPTA0025I
Run

Completed

(%1)

RPTA0026I
Run

Terminated

(%1)

RPTA0027I
%1:

%2

RPTA0031E
Location

template

file

%1

is

not

found

(referenced

from

location

file

%2)

A location template file referenced by a location file is missing or inaccessible.

User response: Create a location template file with the given name. If the location template file exists but is in a

closed project, open the project.

1171

HCL OneTest Performance

1172

RPTA0032I
Found

location

template

[%1]

for

[%2]

(instances

found:

%3)

RPTA0033I
%1

remote

location(s)

associated

with

location

template

[%2]

RPTA0034E
Cannot

change

stage

duration

if

Until

Finished

specified

Chapter 10. Troubleshooting Guide

RPTA0035E
Duration

time

specified

is

less

than

what

has

already

elapsed

RPTA0036E
Schedule

must

be

in

the

Running

state

to

change

stage

duration

RPTA0037E
Agent

%1

not

ready,

time

of

last

contact:

%2

The specified agent is not in contact with the workbench. The schedule cannot run until all agents that are used in the

schedule are actively connected.

System action: Install and configure the HCL OneTest™ Performance load generation agent on the agent computer.

1173

HCL OneTest Performance

1174

User response: Ensure that the specified agent has a HCL OneTest™ Performance load generation agent installed

and is properly configured to this workbench. Restart the schedule. See the online help for information about how to

install and configure the load generation agent.

RPTA0038E
No

successful

contact

RPTA0039E
Unknown

host

'%1'

The specified agent name is not resolving in the Domain Name System (DNS).

User response: Ensure that the agent name is spelled correctly in the location.

RPTA0040E
Unable

to

complete

deployment

to

agents

because

of

an

unexpected

error

in

the

publish

phase.

%1

A deployment error occurred that is likely a low-level I/O error or an unrecoverable internal error.

User response: Check the exception messages for possible causes such as a lack of hard-disk space.

Chapter 10. Troubleshooting Guide

RPTA0041E
%1

The specified agent is not in contact with the workbench. The schedule cannot run until all agents that are used in the

schedule are actively connected.

System action: Install and configure the HCL OneTest™ Performance load generation agent on the agent computer.

User response: Ensure that the specified agent has a __PT_RR_SHORTNAME__ load generation agent installed and is

properly configured to this workbench. Restart the schedule. See the online help for information about how to install

and configure the load generation agent.

RPTA0042E
Agent

version

%1

incompatible

on

host

%2.

Minimum

agent

version

%3

required.

The version of the __PT_AGENT_ACRONYM__ is not compatible with a feature in the schedule.

System action: The schedule cannot be launched so schedule execution ends.

User response: Upgrade the __PT_AGENT_ACRONYM__ on the machine specified to match the workbench version.

RPTA0043E
Error

encountered

An unexpected error occurred.

User response: Look for more details about the error in the message posted.

1175

HCL OneTest Performance

1176

RPTA0100W
Failed

to

delete

file

%1

RPTA0518E
An

error

has

been

encountered

while

launching

the

test.

A

required

dataset

%1

is

missing

or

invalid

in

your

project.

A test contains a link to a dataset that cannot be found or that is corrupted. This can happen when a project is not

imported completely, or when a file is deleted.

System action: The test run does not start.

User response: Open the test. On the Common Options page, fix the broken link so that it points to a valid dataset file

or delete the link.

Chapter 10. Troubleshooting Guide

RPTC0003E
Wrong

type

of

project

'%1'.

RPTC0004E
Unable

to

access

test

variable

initialization

file.

Make

sure

the

specified

file

path

is

accessible:

%1

1177

HCL OneTest Performance

1178

RPTC0005E
Error

while

processing

XML

file

containing

variable

initializations.

Make

sure

the

file

contains

valid

XML

of

the

expected

format:

%1

RPTC0006E
Error

while

gather

test

variable

initializations.

No

variable

initializations

will

be

honored

for

this

run.

Chapter 10. Troubleshooting Guide

RPTC0008I
Setting

Variable

[name='%1',

value='%2',

source='%3',

user

group='%4',

location='%5']

RPTC00020E
Unexpected

I/O

error

while

communicating

with

workbench

%1

During test-log transfer a network error occurred on the agent communicating to the workbench.

System action: The agent re-attempts to communicate with the workbench.

User response: If the problem persists, inspect error and take corrective action.

RPTC1001W
The

file

path

specified

for

the

Zip

Utility

is

invalid.

1179

HCL OneTest Performance

1180

RPTC1002W
Could

not

get

the

classpath

for

project

'%1'.

RPTC1009I
Undefined

RPTC1011I
%1:

Request

delivered

RPTC1012I
%1:

successfully

added

%2

to

the

configuration

file

RPTC1013I
%1:

successfully

removed

%2

from

the

configuration

file

Chapter 10. Troubleshooting Guide

RPTC1014I
%1:

%2

is

already

in

the

configuration

file

RPTC1015I
%1:

Request

timed

out

RPTC1016I
%1:

Agent

not

ready

RPTC1017I
%1:

Agent

not

known

RPTC1018I
%1:

Unknown

host

exception

RPTC1019I
%1:

%2

1181

HCL OneTest Performance

1182

RPTC1020I
License

type:

%1

Lists the brand of licensing being used (either HCL or IBM).

System action: License checkouts will attempt to acquire a license of the corresponding type.

User response: No action required.

RPTC1021I
License

valid:

%1

Indicates whether a valid license was successfully acquired (true/false).

System action: If true, the functionality associated with the acquired license will be enabled.

User response: If false, check your license configuration.

RPTC1030E
Unable

to

replace

dataset

'%1'

with

'%2':

%3.

An error occurred attempting to replace datasets.

System action: Execution will complete with error.

User response: Refer to the error message for more details, change the command line options related to replacing

datasets.

Chapter 10. Troubleshooting Guide

RPTC1031E
The

dataset

'%1'

doesn't

exist.

Unable to locate the specified dataset referenced in the dataset command line option.

System action: Command line execution will be cancelled.

User response: Change the command line options related to replacing datasets.

RPTC1032E
The

dataset

'%1'

is

incompatible

with

existing

dataset

'%2'.

The specified replacement dataset does not have compatible columns, type, etc.

System action: Execution will complete with error.

User response: Ensure the dataset has the same columns of the dataset it is replacing.

1183

HCL OneTest Performance

1184

RPTD0011W
The

regular

expression

you

provided

does

not

find

the

highlighted

string.

\nThe

string

found

was:

%1

You have provided a regular expression that does not match the string you want to extract.

System action: None. We will let you use that regular expression but at execution time you might not get the string

you are expecting.

User response: Fix the regular expression so that it matches the highlighted string. You can use external tools to help

you.

Chapter 10. Troubleshooting Guide

RPTE0005W
Unable

to

attach

requirements

report

into

RQM

result,

because

the

default

requirements

report

has

been

deleted.

You

can

recreate

the

default

reports

by

click

restore

defaults

button

on

the

Default

Reports

preference

page.

When a test run started by __QM_NAME__ completes, the default report is attached to the __QM_NAME__ execution

results. This error occurs when the report selected as the default report on the Default Report preferences page does

not exist.

System action: No report is attached to the __QM_NAME__ execution results.

1185

HCL OneTest Performance

1186

User response: Click Window > Preferences > Test > Performance Test Reports > Default Report to open the Default

Report preferences page. Check that the selected report exists. Click Restore Defaults to reset the default reports.

RPTE0011W
Unexpected

error

while

releasing

system

resources

for

test

log

export.

This

may

cause

an

increased

memory

footprint,

until

HCL

OneTest™

Performance

is

restarted.

Test log export has completed (possibly with errors described earlier in the workspace log), but when releasing

assets used during the export operation, there was an unexpected error.

System action: Memory allocated to this operation may not have been freed. Previous errors are likely to be present

explaining the root cause.

User response: It is advisable to restart the application to free memory allocated during this operation. The exported

test log file may be available but there may be errors.

Chapter 10. Troubleshooting Guide

RPTE0147E
The

password

saved

for

an

encrypted

column

in

dataset

"%1"

was

invalid.

Set

a

new

password

in

the

Automation

Security

preference

page.

The value saved in the Automation Security preference page for the specified dataset was not correct. It will be

ignored.

System action: The password in the preference is ignored. If running from the workbench, it will prompt for a

password before execution. Otherwise, execution will fail.

User response: Update the password in the Test - Test Execution - Automation Security preference page.

1187

HCL OneTest Performance

1188

RPTE0150E
The

feature

%1

used

in

test

%2

is

not

supported

in

the

current

installation/

platform.

The execution failed because the specified feature is not supported in the current installation of the product.

System action: Ensure feature is selected during installed. Ensure feature is supported on the given architecture/

operating system.

User response: No user action is required.

RPTH0130I
No

sample

time

closely

matches

request

at

time=

%1

Chapter 10. Troubleshooting Guide

RPTH049E
A

statistical

adapter

is

missing

reference

to

the

target

result.

This is an internal error when loading results files. It could indicate that the result is corrupted, or it could only be a

timing issue.

System action: The result cannot be opened.

User response: Close all reports and restart the workbench. If the result still does not open, kill any CPU-intensive

processes running in the background.

RPTI0069E
Local

on

premise

agent

%1

not

in

contact

with

this

workbench.

RPTI0070E
See

Error

Log

for

more

details.

1189

HCL OneTest Performance

1190

RPTI0071I
There

was

an

error

while

updating

the

workspace

after

downloading

remote

files.

RPTI0072E
Modify

majordomo.config

on

%1

and

configure

it

to

poll

this

workbench.

RPTI0072I
Remote

Launch

Status:

%1

RPTI0073E
Project

is

NULL

Chapter 10. Troubleshooting Guide

RPTI0074E
Exception

occurred

while

creating

and

unzipping

project:

%1

RPTI0075E
Error

running

schedule.

Could

not

find

schedule

%1

in

project

%2.

RPTI0110I
Provision

time

(MM:SS):

%1

RPTI0111I
Launch

time

(MM:SS):

%1

1191

HCL OneTest Performance

1192

RPTI0112I
Execution

time

(MM:SS):

%1

RPTI0113I
Results

transfer

time

(MM:SS):

%1

RPTI0141E

\nError

Dialog

\n

%1:

%2\nConsult

workspace

error

log

({workspace}/.metadata/

.log)

for

further

information.

\n------------------------------------

\n

This message is displayed to the command-line output when an error occurs during execution. It displays details

about the error and directs the user where to find additional information.

System action: None.

User response: This message occurs as a generic way to display errors during command-line execution. Consult the

workspace log for further details including additional error messages.

Chapter 10. Troubleshooting Guide

RPTI0142E
The

Usage

Metrics

version

%1

required

by

the

licensed

component

%2

is

not

available.

The license that you are using requires Usage Metrics reporting for a later version of the product.

System action: The execution will not start.

User response: Update the product to a newer version, or obtain a license that is applicable to the current version of

the product.

RPTI0143E
The

licensing

system

failed

to

return

Usage

Metrics

enablement

for

component

%1.

An error occurred while determining if the license requires Usage Metrics reporting.

System action: The execution will not start.

User response: Verify that the license is not meant for a newer version of the product. Otherwise, contact support.

1193

HCL OneTest Performance

1194

RPTI0144W
No

RTCP

instance

is

available

to

report

Usage

Metrics.

No

Usage

Metrics

will

be

reported

for

this

execution.

The license enables Usage Metrics reporting, but either the preference for the Usage Metrics server is not set, or it is

set but the server is not active or reachable.

System action: The execution will be done normally, but the Usage Metrics will not be logged. This is allowed by the

license you are using.

User response: If you have set up __QUALITY_SERVER__, go to Preferences > Test > __QUALITY_SERVER__, and fill

in the server details for Usage Metrics reporting. Verify that the server can be reached from this machine by going to

http://servername:7828 in a browser on the local machine.

Chapter 10. Troubleshooting Guide

RPTI0145E
No

RTCP

instance

is

available

to

report

Usage

Metrics.

Per

license

policy,

execution

cannot

happen

unless

a

RTCP

is

defined

and

running.

The license requires Usage Metrics reporting, but either the preference for the Usage Metrics server is not set, or it is

set but the server is not active or reachable.

System action: The execution will not start.

User response: Install __QUALITY_SERVER__ (if not done already), then go to Preferences > Test >

__QUALITY_SERVER__, and fill in the server details for Usage Metrics reporting. Verify that the server can be reached

from this machine by going to http://servername:7828 in a browser on the local machine.

1195

HCL OneTest Performance

1196

RPTI0146E
TPTP

Datapools

and

Datasets

cannot

coexist

in

the

same

test.

Test

run

aborted.

A legacy datapool and a new dataset were both detected in the same test.

System action: Test execution will be aborted and will not be successful until the test contains only one of the two

asset types (dataset or datapool).

User response: With the latest version of this product, convert the datapool to a dataset, then open the test

containing the legacy datapool in the test editor and save it. Then, restart test execution.

RPTJ0063E
An

IOException

was

encountered

while

creating

the

Annotation

File

on

Driver:

%1

Chapter 10. Troubleshooting Guide

RPTJ0075E
An

IOException

was

encountered

while

creating

the

Execution

Log

File

on

Driver:

%1 ::

%2

RPTJ1002E
Driver

%1

returned

an

unrecognized

response:

%2.

The

last

command

sent

was:

%3

1197

HCL OneTest Performance

1198

RPTJ1003E
While

waiting

for

an

acknowledgement

from

the

Driver,

an

unrecognized

response

was

received.

RPTJ1004E
The

workbench

was

waiting

for

an

Acknowledgement

from

the

HCL

Agent

Controller

on

Driver

%1

and

none

was

received.

A required response from an agent was not received.

System action: Execution ends because the required acknowledgement from the agent was not received.

Chapter 10. Troubleshooting Guide

User response: Monitor resource usage on the agent. Add additional agents if memory or CPU usage is high on a any

agent.

RPTJ1005E
Error

while

processing

a

message

from

the

HCL

Agent

Controller.

An unexpected error occurred while handling a command from a load generating agent.

System action: Execution ends because of an unexpected error while communicating with an agent.

User response: Check the workbench Error Log for more information.

1199

HCL OneTest Performance

1200

RPTJ1006E
Execution

failure.

No

status

received

from

location

%1

in

%2

seconds.

Workbench

memory

usage

at

%3

percent

of

the

configured

JVM

heap.

Possible

location

or

workbench

overload.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

The workbench cannot communicate with the agent computer.

Chapter 10. Troubleshooting Guide

User response: Try running the schedule again, using default values for all parameters and running at reduced user

load levels. It is possible one agent computer is overloaded. If you can run successfully with the default values, make

changes to the schedule settings or user load incrementally to determine the cause of failure. Increase the statistics

interval to 60 seconds and try running the schedule again. Check the error log for messages that might indicate the

cause of the failure. Click Window > Show View > Error Log to open the error log.

RPTJ1007E
The

Driver:

%1

has

encountered

a

communication

error.

Please

refer

to

Problem

Determination

Log

for

more

details.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

The agent computer that the message specifies encountered a problem when trying to run a command sent from the

workbench.

1201

HCL OneTest Performance

1202

User response: Check the error log for messages from the agent computer that the error message specifies. Click

Window > Show View > Error Log. Check the test log for any failures from virtual users. This message might be

displayed when you add or remove users manually or by means of schedule stages.

Chapter 10. Troubleshooting Guide

RPTJ1008E
The

Driver:

%1

has

become

unresponsive,

possibly

due

to

an

out-

of-

memory

condition.

At

last

notification

this

Driver

was

using

%2

percent

of

its

allocated

memory.

Please

refer

to

the

"Increasing

memory

allocation"

Help

topic

for

information

on

how

to

increase

memory

allocation.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

1203

HCL OneTest Performance

1204

The workbench cannot communicate with the agent computer. The agent computer might have a memory allocation

problem.

User response: Try running the schedule again, using the default values for Test Log and Problem Determination

log levels. Follow the instructions in Increasing memory allocation. Set the memory allocation to the size of physical

memory minus 256 megabytes, up to a limit of 1500 megabytes. For example, on an agent computer with one

gigabyte of physical memory, set the memory allocation to 756 megabytes.

RPTJ1009E
The

Driver:

%1

is

running

%2,

however

the

user

selected

%3

as

the

Drivers

operating

system.

RPTJ1010E
Error

while

transferring

file

on

Driver:

%1.

Transfer

FROM:

%3

TO:

%2

Chapter 10. Troubleshooting Guide

RPTJ1011E
The

'%1'

Protocol/

Feature

is

not

supported

on

the

%2

platform,

so

the

Test

%3

can't

be

executed

on

location

%4.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

The test includes a feature or protocol that is not supported on one of the agent computers where it is scheduled to

run.

User response: Edit the schedule and associate the user groups that include the problem test with agent computers

that support the feature or protocol.

1205

HCL OneTest Performance

1206

RPTJ1012E
The

operating

system

(%1)

for

location

%2

is

not

recognized.

Please

use

an

operating

system

that

matches

or

begins

with

the

name

of

one

of

the

recognized

platforms:

%3

Chapter 10. Troubleshooting Guide

RPTJ1013E
No

valid

license

key

for

%1

Protocol/

Feature

found.

The

Test

%3

cannot

be

executed.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

The test includes a feature or protocol that requires a license for the number of virtual users that are included in the

run.

System action: The test run stops.

User response: Run the HCL License Key Administrator and check for available license keys for the feature or

protocol and number of users that you want. To learn more about license keys, see the installation guide.\nAdd the

required license key or point to a server that has the required license key.

1207

HCL OneTest Performance

1208

RPTJ1015E
The

specified

operating

system

(%1)

for

location

%2

is

inconsistent

with

the

actual

platform

(%3)

running

at

that

location.

Please

update

the

operating

system

to

match

and

then

try

again.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

Chapter 10. Troubleshooting Guide

The operating system that is specified in the agent computer asset does not match the operating system that is

running on the computer at the specified address.

User response: 1. Open the schedule in the test editor. 2. Select the user group that runs on the location mentioned in

the error message. 3. In the Schedule Element Details, click the Locations tab, and then select the location mentioned

in the error message. 4. Click Edit. 5. Select the appropriate value from the Operating system list. 6. Click OK.

RPTJ1016E
After

deploying

File:

%2

to

Driver:

%1,

%3

Byte(s)

where

found

on

the

socket.

Please

refer

to

the

Problem

Determination

Log

for

more

details.

1209

HCL OneTest Performance

1210

RPTJ1017E
An

IOException

ocurred

while

deploying

File:

%2

to

Driver:

%1.

Please

refer

to

the

Problem

Determination

Log

for

more

details.

Chapter 10. Troubleshooting Guide

RPTJ1018E
A

SocketException

ocurred

while

deploying

File:

%2

to

Driver:

%1.

Please

refer

to

the

Problem

Determination

Log

for

more

details.

1211

HCL OneTest Performance

1212

RPTJ1019E
An

UnsupportedEncodingException

ocurred

while

deploying

File:

%2

to

Driver:

%1

Please

refer

to

the

Problem

Determination

Log

for

more

details.

Chapter 10. Troubleshooting Guide

RPTJ1020E
An

IOException

ocurred

while

deploying

File:

%2

to

Driver:

%1.

\nA

possible

cause

is

that

the

HCL

Agent

Controller

was

started

by

a

non-

root

user.

\nThe

Agent

Controller

needs

to

be

started

by

the

root

user.

Deployment of test assets to an agent failed.

1213

HCL OneTest Performance

1214

System action: Execution ends because required test assets could not be copied to an agent.

User response: Ensure that the Majordomo process is started by the root user.

RPTJ1021E
An

InactiveAgentException

has

occurred

while

deploying

to

Driver:

%1.

Please

refer

to

the

Problem

Determination

Log

for

more

details.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

The Test and Performance Tools Platform (TPTP) infrastructure threw an InactiveAgentException when the TPTP

infrastructure attempted to communicate with the Agent Controller.

User response: Check the Error Log for further information on the error. To open the Error Log, click Window > Show

View > Error Log. Restart the Agent Controller on the agent computer.

Chapter 10. Troubleshooting Guide

RPTJ0121I
Send

RATEGENERATORS

to:

%1,

string

'%2'

RPTJ1022E
The

workbench

received

notification

that

the

execution

process

on

Driver

%1

has

terminated.

The process running on the agent computer ended unexpectedly.

User response: Ensure that there is at least one successful test run, possibly with fewer virtual users, so that the

maximum memory value for the agent is set correctly. Check the javacore* file on the agent computer or the logs in

the deployment directory for further information on the process failure.

1215

HCL OneTest Performance

1216

RPTJ1023E
Communication

with

Driver

%1

has

been

lost,

possibly

due

to

an

out-

of-

memory

condition.

At

last

notification

this

Driver

was

using

%2

percent

of

its

allocated

memory.

Please

refer

to

the

"Increasing

memory

allocation"

Help

topic

for

information

on

how

to

increase

memory

allocation.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

Chapter 10. Troubleshooting Guide

RPTJ1024E
Error

during

initialization

of

annotation

transfer

progress

listener.

RPTJ1025I
Run

Completed

(%1)

RPTJ1026I
Run

Terminated

(%1)

RPTJ1030E
Non-

fatal

internal

exception

occurred

during

code

generation

optimization.

Code

generation

will

not

use

meta-

cache.

1217

HCL OneTest Performance

1218

RPTJ1041E
The

'%1'

Protocol/

Feature

is

disabled

due

to

a

licensing

configuration

error.

RPTJ1042E
%1

Failure

checking

out

license

for

'%2'

Protocol/

Feature

and

%3

virtual

users.

The

Test

%4

cannot

be

executed.

Chapter 10. Troubleshooting Guide

RPTJ1043E
%1

The

'%2'

Protocol/

Feature

is

not

supported

on

the

%3

platform,

so

the

Test

%4

can't

be

executed

on

location

%5.

1219

HCL OneTest Performance

1220

RPTJ1044E
Timed

out

after

%1

seconds

while

waiting

for

the

license

server.

Ensure

that

network

connectivity

to

the

license

server

exists

and

that

the

license

server

is

running.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

Chapter 10. Troubleshooting Guide

RPTJ1100I
A

hang

has

been

avoided

during

execution

history

receipt

with

%1

by

a

forceful

load

test

executor

state

change

RPTJ1101E
A

session

on

driver

%1

did

not

release

promptly.

Please

check

the

agent

controller.

1221

HCL OneTest Performance

1222

RPTJ1102W
The

testLog

event

loader

thread

in

the

workbench

has

ended

before

processing

all

testLog

events

from

%1.

The

testLog

may

be

incomplete.

Chapter 10. Troubleshooting Guide

RPTJ1103W
The

test

executor

for

%1

has

been

artificially

set

to

HISTORY_COMPLETE

because

the

testLog

event

loader

thread

is

not

longer

running.

A monitoring process indicates that the test log loader stopped prematurely. This is not a definite indication of a

problem.

User response: Check that the expected events exist at the end of the test log. If so, no further action is necessary.

RPTJ1104E
Remote

debug

never

received

event

%1,

process

exit

value

%2

1223

HCL OneTest Performance

1224

Expected remote debug event was not received

User response: Check the Error Log for remote process failure reason

RPTJ1141E
Temporary

dataset

file

%1

not

created.

Temporary dataset file can't be created on the system.

System action: Original dataset is used.

User response: Check corresponding file properties on the system.

RPTJ1142E
Temporary

dataset

data

are

not

generated:

%1

Error reached during data generation.

System action: Original dataset is used.

User response: Check corresponding connection information.

RPTJ1200W
Failed

to

delete

file

%1

Chapter 10. Troubleshooting Guide

RPTJ1220E
An

InactiveAgentException

has

occurred

attempting

to

send

[%1]

to

driver

%2

RPTJ1221E
The

CommandHandler

for

%1

has

encountered

an

exception

while

processing

%2

1225

HCL OneTest Performance

1226

RPTJ1240E
Driver

%1

has

reported

a

NOK.

The

last

command

sent

to

that

driver

was:

%2

A schedule command sent from the workbench to the agent computer could not be run by the agent computer.

User response: Run the schedule using the default settings. Look for unusual assignments of numbers of virtual

users to agent computers at stage transitions.

Chapter 10. Troubleshooting Guide

RPTJ1241E
Driver

%1

has

reported

a

NOK

with

the

message:

%2.

The

last

command

sent

to

that

driver

was:

%3

RPTJ1242E
Driver

%1

has

reported

a

%2

status

1227

HCL OneTest Performance

1228

RPTJ1244E
The

AgentCommandListener

for

%1

has

encountered

an

exception

while

processing

%2

Chapter 10. Troubleshooting Guide

RPTJ1245E
Driver

%1

has

reported

that

it

is

no

longer

receiving

messages

from

the

workbench.

The

previous

message

received

from

this

driver,

%2

milliseconds

ago,

was

%3.

At

present

no

commands

have

been

sent

to

this

driver.

Schedule commands sent from the workbench to the agent computer were not received by the agent computer.

1229

HCL OneTest Performance

1230

User response: Ensure that there is at least one successful test run, possibly with fewer virtual users, so that the

maximum memory value for the agent is set correctly. Use more agent computers to run the schedule.

RPTJ1261E
The

ResponseHandler

for

%1

has

encountered

an

exception

while

processing

%2

RPTJ1270E
Failure

attempting

to

launch

test

execution.

RPTJ1271E
The

process

executing

the

test

has

ended

unexpectedly.

The process that runs tests could not start, or it stopped before the test run ended.

System action: The test run stops.

User response: Check the core files or the logs for further information on the process failure. If you are using Java

Virtual Machine (JVM) arguments, check the argument syntax and try running tests without the arguments. Run the

test inside a schedule.

Chapter 10. Troubleshooting Guide

RPTJ1280E
The

communication

path

for

returning

test

results

from

%1

has

not

been

established.

Check

network

connectivity

between

that

machine

and

the

workbench

including

any

firewalls.

RPTJ1400I
%1%

%2/%3

files

%4/%5

bytes

deployed

RPTK0000I
%1

1231

HCL OneTest Performance

1232

RPTK1001E
HCL

OneTest™

Performance

has

detected

the

presence

of

an

invalid

Virtual

Tester

license

key.

If

you

have

recently

upgraded

HCL

OneTest™

Performance,

note

that

this

is

a

new

check

performed

by

release

7.0.1

or

later,

and

instructions

for

replacing

invalid

Virtual

Tester

license

keys

should

have

already

been

sent

to

you.

You

must

replace

all

invalid

Virtual

Tester

license

keys

before

HCL

OneTest™

Performance

will

allow

execution

of

a

schedule

run

that

requires

a

Virtual

Tester

license.

If

you

need

further

assistance,

please

contact

your

HCL

sales

representative

or

Technical

Support

to

replace

the

invalid

Virtual

Tester

license

key(s).

Chapter 10. Troubleshooting Guide

Invalid Virtual Tester license key(s).

System action: System will not execute schedule run(s) that require a Virtual Tester license if one is not available.

User response: You must replace all invalid Virtual Tester license keys. If you need further assistance, please contact

your sales representative or Technical Support.

RPTK1016E
The

specified

license

server's

version

level

is

not

compatible

with

this

version

of

HCL

OneTest™

Performance.

The specified license server's version level is not compatible with this version.

System action: Incompatible version.

User response: Check the license server's version.

RPTK1019E
Unable

to

verify

system

time.

The system time has been tampered with since the last successful license check.

System action: Future license checks will automatically fail.

User response: Contact Technical Support.

1233

HCL OneTest Performance

1234

RPTK1020E
Unable

to

locate

license

directory.

Unable to locate license directory.

System action: Stop execution.

User response: Please verify that the license directory exists.

RPTK1021E
License

has

expired.

An expired license was found.

System action: Request a license key from user.

User response: Enter a new license key.

RPTK1022E
Invalid

license

file.

A valid license was not found.

System action: Request a license key from user.

User response: Enter a valid license key.

Chapter 10. Troubleshooting Guide

RPTK1023E
Unable

to

find

a

license

supporting

%1

virtual

users.

The currently installed license key(s) do not support enough VUs for this operation.

System action: Request a license key from user.

User response: Enter another license key to enable more VUs.

RPTL0001W
Unable

to

retrieve

data

from

the

test.

RPTL0002W
Failed

to

store

test

data

into

annotations.

1235

HCL OneTest Performance

1236

RPTL0003W
Failed

to

attach

the

annotation

to

the

test.

RPTL0004W
Unable

to

open

test

annotation

to

read

data.

The test appears to be corrupted.

System action: Attempts to open the test fail.

User response: Make sure your disk has enough space. If it does, try recreating the test from the recording.

RPTL0005W
Failed

to

create

a

temporary

file

to

save

test

data.

Chapter 10. Troubleshooting Guide

RPTL0006W
Failed

to

load

test.

Path

%1

is

invalid.

RPTL0007W
Failed

adding

element

from

an

un-

registered

feature

%1.

RPTL0008E
Cannot

load

a

test

created

by

a

future

version

%1.

Please

upgrade

your

install.

1237

HCL OneTest Performance

1238

RPTL0009I
Test

%1

is

of

an

older

version

%2.

RPTL0010E
Error

creating

metadata

cache.

RPTL0011E
Error

reading

metadata

cache

for

%1.

RPTR0000W
%1

RPTR0001W
Failed

to

add

annotation

to

execution

history

for

file

%1

Chapter 10. Troubleshooting Guide

RPTR0002W
Unexpected

error

in

data

validity

check

of

LoadTimeEObjectConsumer

RPTR0003W
Failed

to

add

properties

to

parent

id

%1

RPTR0004W
Failed

to

delete

temp

file

%1

RPTR2001E
Unexpected

exception

in

container

complete

loader.

Heap

growth

likely.

1239

HCL OneTest Performance

1240

RPTR2003W
Execution

Variables

-

Output

RPTS1000E
Unable

to

start

the

agent

communication

service

because

of

an

error:

%1.

RPT

will

not

be

able

to

execute

schedules.

The agent communication service could not start. This service is a lightweight web server that agents use to

communicate with the workbench and to serve web reports. Typically, this error occurs when a server process on

the workbench computer is listening on the same port that HCL OneTest™ Performance requires. This error can also

occur when two instances of HCL OneTest™ Performance run on the same workbench.

User response: If multiple instances of the HCL OneTest™ Performance workbench are running on the same

computer, close all but one instance. These instances include HCL OneTest™ Performance workbenches that are

running on multiple user desktop systems. If the error message RPTS1002E_PORTS_CONSUMED is also displayed in

the error log, see the message for that error. After the error is resolved, restart HCL OneTest™ Performance.

Chapter 10. Troubleshooting Guide

RPTS1002E
RPT

is

unable

to

execute

a

schedule

because

one

of

the

ports(%1)

it

uses

to

communicate

with

the

agents

has

been

taken

by

another

RPT(or

other

server)

process.

Ensure

only

one

RPT

instance

is

running.

Typically, this error occurs when a server process on the workbench computer is listening on the same port that HCL

OneTest™ Performance requires. This error can also occur when two instances of HCL OneTest™ Performance run on

the same workbench.

1241

HCL OneTest Performance

1242

User response: Identify and stop the other process or service on the workbench that is using the ports that HCL

OneTest™ Performance requires. Restart HCL OneTest™ Performance. You can also change the ports that HCL

OneTest™ Performance uses by configuring the workbench and all agent computers. To change the ports, click

Window > Preferences > Test > Server, and click Preferences > Test > Performance Test Reports > Web Reports.

RPTS1510E
Unable

to

stop

the

agent

communication

service

because

of

an

error:

%1

RPTS1001I
Agent

communication

service

listening

on

ports(%1)

The agent communication service requires these local server ports to communicate with agents.

System action: No system action is required.

User response: This message is for informational purposes only.

Chapter 10. Troubleshooting Guide

RPTS1004I
The

dataset

service

failed

to

shutdown

cleanly.

Please

shutdown

the

java

process

that

contains

dataset-

service

in

its

command

line.

Sometimes the dataset service does not shutdown cleanly due to java.

System action: No system action is required.

User response: Check in the task manager to make sure the dataset service is not still running when the workbench

shuts down. If it is running kill the process before restarting the workbench.

1243

HCL OneTest Performance

1244

RPTX0001E
The

combination

of

transformer

and

feature

you

have

selected

is

invalid.

Transformer

(%1)

was

not

expecting

data

type

(%2).

Chapter 10. Troubleshooting Guide

RPTX0002E
The

combination

of

feature

and

transformer

you

have

selected

is

invalid.

Feature

(%1)

was

not

expecting

data

type

(%2)

to

be

returned

by

transformer

(%3).

RPTX0003E
Transformer

(%1)

has

experienced

a

fatal

error.

Additional

information

(%2).

1245

HCL OneTest Performance

1246

RPTX0004E
Feature

(%1)

has

experienced

a

fatal

error.

Additional

information

(%2).

RPTX0005E
No

class

can

be

found

for

the

specified

transformer

id

(%1).

Please

check

to

make

sure

you

have

installed

this

transformer.

Chapter 10. Troubleshooting Guide

RPTX0006E
Class

definition

missing.

Please

add

jar

that

contains

definition

of

(%1)

to

the

classpath

of

the

test

project.

Some requests or responses contain data that is encoded for Google Web Toolkit (GWT). To decode the data, HCL

OneTest™ Performance requires access to the class definition.

User response: Add the JAR file that contains the class definitions to the classpath of the test project.

RPTX0007E
The

transformation

raised

a

GWT

serialization

exception:

%1

The Google Web Toolkit (GWT) transformation could not be applied because of the indicated reason.

User response: Verify that the test elements containing the GWT encoded or decoded data are correct

1247

HCL OneTest Performance

1248

RPTX0008E
The

Silverlight

decoder

raised

an

exception:

%1

The Microsoft Silverlight decoder did not work because of the indicated reason.

User response: Verify that the test elements containing the Silverlight encoded data are correct

RPTX0009E
The

Silverlight

encoder

raised

an

exception:

%1

The Microsoft Silverlight encoder did not work because of the indicated reason.

User response: Verify that the elements containing the Silverlight decoded data are correct

RPTX0010E
The

GraniteDS

transformer

made

an

error

when

encoding

or

decoding:

%1

The GraniteDS encoder did not work because of the indicated reason.

Chapter 10. Troubleshooting Guide

User response: Verify that the elements containing the GraniteDS encoded or decoded data are correct.

RPXD0022W
The

time

to

extract

references

seems

excessive.

It

was

%1

milliseconds.

It is taking a long time to extract data from your response for your references.

System action: None.

User response: Examine each of the regular expressions for your references. Make sure they don't have .* with no

qualifiers or other poorly formed constructs. When you write the regular expression in the test you can click verify to

get an idea of how long it is taking to execute.

RPXE0061I
Loop

iteration

started

late

by

%1

millseconds

A scheduled loop iteration started execution later than expected given the specified rate.

System action: Execution continues along with attempt to catch up in order to maintain desired rate.

User response: Add additional users or agents to increase capacity in order to maintain desired rate.

1249

HCL OneTest Performance

1250

RPXE5502E
An

exception

occurred

while

logging

an

event

to

Jaeger.

An error occurred when attempting to log an event to Jaeger. The event will not be available in Jaeger traces.

System action: Jaeger logging will continue for the next events.

User response: Contact support.

RPTX1010I
Start

of

OT-

Performance

project

resolve.

Repository=<

%1>,

Bootstrap=<

%2>

RPTX1011I
Attempting

to

resolve

asset=<

%1>

Chapter 10. Troubleshooting Guide

RPTX1012I
End

of

OT-

Performance

project

resolve.

No

detected

errors

RPTX1017I
Downloaded

asset

%1

from

remote

repository,

local

asset

created.

RPTX1018I
Using

local

cached

version

of

asset

%1.

1251

HCL OneTest Performance

1252

RPTX1019I
OT-

Performance

testsuite=<

%1>

found

the

following

dependencies=<

%2>

RPTX1081E
Exception

occurred

while

uploading

Mobile

report.

A low-level exception occurred uploading the mobile report. It is unexpected.

System action: The RQM report will fail to upload.

User response: If possible take corrective action, otherwise contact support.

RPTX1082E
An

error

occurred

when

generating

the

HTML/

zip

report.

The HTML generator for the Execution Report has failed.

System action: No execution report uploaded into RQM results

User response: Ensure that the temporary directory is accessible on your file system.

Chapter 10. Troubleshooting Guide

RPTX2001E
Adapter

unable

to

start

test

because

HCL

OneTest™

Performance

is

already

executing

a

test.

The adapter received a request to start a test while another test on the adapter is in-progress.

System action: The adapter ignores the request to launch another test.

User response: Wait for the test which is currently executing on the adapter to complete, then re-initiate the launch.

1253

HCL OneTest Performance

1254

RPTX2002E
Error

encountered

parsing

RQM

adapter

preferences:

%1.

Please

enter

proper

credentials

in

the

Eclipse

Quality

Adapter

preference

page

(Windows-

>Preferences).

RPTX2003E
Project

<

%1>

could

not

be

found

during

RQM

import.

Chapter 10. Troubleshooting Guide

RPTX2004E
Test

log

is

unavailable,

no

test

results

returned

to

RQM.

RPTX2005E
Statistics

log

is

unavailable,

no

statistic

results

returned

to

RQM:

%1

1255

HCL OneTest Performance

1256

RPTX2006W
Display

unavailable,

no

HCL

OneTest™

Performance

HTML

reports

will

be

attached

to

RQM

execution

results.

The adapter requires access to a virtual display to generate HTML reports. The adapter was unable to successfully

create a display so HTML reports may be unavailable.

System action: HTML reports are not generated at the end of execution.

User response: If HTML reports are required, start the adapter with display access. Refer to documentation on how to

start the adapter with a display.

RPTX2007I
Start

RQM

Execution

Request

Project=

%1

Name=

%2

Chapter 10. Troubleshooting Guide

RPTX2008I
Start

RQM

Import

Request

Project=

%1

RPTX2009I
End

RQM

Execution

Request

RPTX2010I
End

RQM

Import

Request

1257

HCL OneTest Performance

1258

RPTX2011E
Unable

to

interpret

RQM

configuration

file

%1.

If

file

was

hand

edited

make

sure

parameters

are

the

correct

format.

If

you

are

unable

to

get

this

file

into

the

correct

format,

please

erase

and

re-

configure.

Chapter 10. Troubleshooting Guide

RPTX2012E
Invalid

RQM

connection

parameter:

%1.

Adapter

was

not

launched.

RPTX2013E
Adapter

was

stopped

while

a

test

was

executing.

The

results

of

this

test

may

be

unreliable.

1259

HCL OneTest Performance

1260

RPTX2014E
Adapter

was

stopped

while

preparing

to

run

an

RQM

script.

There

are

no

results

for

the

attempted

test

script

run.

RPTX2015E
Testsuite

'%1'

or

project

'%2'

does

not

exist.

Ensure

workspace

started

by

adapter

contains

project

and

testsuite.

Chapter 10. Troubleshooting Guide

RPTX2016I
%1

RPTX2017E
%1

Reason:

%2

RPTX2018W
%1

RPTX2019I
The

RQM

Adapter

has

been

disconnected.

RPTX2020I
The

RQM

Adapter

has

stopped.

RPTX2021E
Unexpected

error

occurred

while

executing

RQM

test

script.

1261

HCL OneTest Performance

1262

RPTX2022E
Unexpected

error

occurred

while

processing

an

import

request

from

RQM.

RPTX2023W
Error

occurred

while

update

the

run

status

back

to

the

RQM

server.

This

may

cause

the

RQM

test

progress

page

to

contain

inaccurate

data.

Chapter 10. Troubleshooting Guide

RPTX2024E
Unable

to

attach

the

following

file

to

the

RQM

results.

This

may

cause

the

attached

HTML

report

not

to

render

correctly.

File

name:

%1

RPTX2025E
Error

occurred

while

registering

the

adapter:

%1.

1263

HCL OneTest Performance

1264

RPTX2026E
Error

occurred

setting

the

default

adapter

name.

Please

set

the

name

in

the

Eclipse

Quality

Adapter

preference

page

(Windows-

>Preferences).

RPTX2027W
Multiple

test

runs

were

detected

when

the

stop

request

was

received

from

RQM.

Chapter 10. Troubleshooting Guide

RPTX2029W
Was

unable

to

perform

stop

request

from

RQM.

Likely

the

run

was

already

shutting

down

when

the

request

came

in.

RPTX2030I
Request

to

stop

the

test

is

being

delayed

until

the

appropriate

run

state

is

reached.

1265

HCL OneTest Performance

1266

RPTX2031I
A

request

to

stop

the

currently

running

test

has

been

received

by

RQM.

RPTX2032I
Successfully

issue

a

stop

command

to

the

running

test.

Please

wait

for

the

test

to

end.

Chapter 10. Troubleshooting Guide

RPTX2033E
Error

attempting

to

stop

a

test.

RPTX2034E
Unable

to

create

directory

%1

no

further

information.

Ensure

user

has

permission

to

create

directory

in

that

location.

1267

HCL OneTest Performance

1268

RPTX2035E
Error

occurred

while

attempting

to

automatically

update

pre-8.0

asset

%1

for

RQM

execution.

RPTX2036E
RQM

remote

resource

access

is

not

supported

for

pre-8.0

SOA

assets.

Please

update

your

entire

SOA

project

to

8.0

or

greater

before

sharing.

Chapter 10. Troubleshooting Guide

RPTX2037E
Launch

was

aborted:

%1

RPTX2050E
Unable

to

download

remote

asset

%1

into

local

workspace.

Remote

repository

%2.

Ensure

RQM

system

has

connectivity

to

the

remote

repository

and

the

file

exists.

1269

HCL OneTest Performance

1270

RPTX2051E
Unable

to

browse

%1

in

remote

repository

%2.

Ensure

RQM

system

has

connectivity

to

the

remote

repository

and

the

directory

exists.

RPTX2055E
Error

occurred

reading

the

adapter

connection

file.

Chapter 10. Troubleshooting Guide

RPTX2056E
Error

occurred

saving

the

adapter

connection

file.

RPTX2057E
Unable

to

complete

import

operation

because

the

specified

path

is

not

in

the

adapters

workspace.

Try

specifying

the

only

the

project

name.

1271

HCL OneTest Performance

1272

RPTX2058E
The

specified

script

<

%1>

is

not

in

the

workspace

currently

being

used

by

the

adapter.

You

can

only

execute

scripts

which

are

in

the

adapters

workspace.

Chapter 10. Troubleshooting Guide

RPTX2060E
The

script

path

specified

by

RQM

does

not

seem

to

be

valid.

Please

ensure

the

RQM

test

script

has

a

script

path

which

contains

the

project

and

script

name.

1273

HCL OneTest Performance

1274

RPTX2061W
Run

verdict

is

inconclusive

because

no

performance

requirements

exist

in

the

last

user

stage

for

the

associated

VU

Schedule.

Chapter 10. Troubleshooting Guide

RPTX2062W
Run

verdict

is

inconclusive

because

there

are

zero

performance

requirements

in

the

last

user

stage

of

the

associated

VU

Schedule.

1275

HCL OneTest Performance

1276

RPTX2063W
No

time

range

was

generated

for

the

user

stage

of

the

associated

VU

Schedule.

Performance

requirements

reported

to

RQM

will

be

based

on

the

default

time

range.

Chapter 10. Troubleshooting Guide

RPTX2070E
Error

occurred

while

setting

the

RQM

project

area.

Make

sure

a

valid

project

area

is

specified

on

the

Quality

Manager

Adapter

preference

page.

The

adapter

is

attempting

to

connect

to

RQM

using

the

default

project

area.

1277

HCL OneTest Performance

1278

RPTX2071E
Error

occurred

while

retrieving

list

of

project

areas.

Please

verify

Quality

Manager

connection

information.

See

error

log

for

more

details.

RPTX2072E
Error

occurred

calling

for

the

web

analytics

dash-

board

link.

HCL OneTest™ Performance could not open the external URL for the dashboard that references Rational Quality

Manager records. This error occurs when a problem exists with the classpath for the result analysis.

User response: Ensure that Rational Quality Manager is version 4.0 or later and HCL OneTest™ Performance is

version 8.3 or later. If the error log contains startup errors, resolve the errors and check whether the problem is

resolved.

Chapter 10. Troubleshooting Guide

RPTX2073E
Error

occurred

while

translating

RQM

server

execution

variables

to

HCL

OneTest™

Performance.

An unexpected error occurred while setting up execution variables.

System action: Execution variables are unavailable during execution.

User response: Contact support if this error persists.

1279

HCL OneTest Performance

1280

RPTX2074E
Error

connecting

OT-

Studio

adapter

and

successful

connecting

OT-

Performance

adapter.

This

suggest

RQM

does

not

support

OT-

Studio

script

type

introduced

in

4.0.3.

If

OT-

Studio

adapter

is

not

required

it

can

get

disabled

by

adding

-DrtwStartAdapter=false

in

eclipse.ini.

Chapter 10. Troubleshooting Guide

Error connecting OT-Studio adapter and successful connecting OT-Performance adapter. This suggest RQM does not

support OT-Studio script type introduced in 4.0.3. If OT-Studio adapter is not required it can get disabled by adding

-DrtwStartAdapter=false in eclipse.ini.

User response: Use a RQM system supporting OT-Studio script type. Add -DrtwStartAdapter=false in eclipse.ini to

disable OT-Studio script type. To import and execute OT-Studio assets under the OT-Performance adapter script type

also add -DrptAvoidRQMImportFiltering in eclipse.ini

RPTX2075E
Unable

to

interpret

expression

<

%1>

from

RQM

control

file

<

%2>.

Ignoring.

Reason

<

%3>

The RQM control file is of an invalid format.

System action: The control file instruction will be ignored.

User response: Change the file so it follows the specified format supplied by support.

1281

HCL OneTest Performance

1282

RPTX2077E
Unable

to

browse

to

<

%1>.

Make

sure

it

exist

on

the

shared

location.

The project referenced does not exist on the shared location.

System action: The RQM execution will stop.

User response: Ensure all required projects exist on the shared location.

Chapter 10. Troubleshooting Guide

RPTX2079W
Errors

attempting

to

load

available

SmartCard

aliases.

See

documentation

on

how

to

configure

your

system

to

use

SmartCard

to

authenticate

to

Quality

Manager.

An error occurred while attempting to load SmartCard aliases.

System action: User is unable to configure SmartCard using the preference UI.

User response: Ensure com.ibm.security.capi.IBMCAC is listed as provider 1 in file {install}\\SDP\\jdk\\jre\\lib\

\security\\java.security. See documentation on manual steps required to configure adapter for SmartCard usage.

Contact support if issues persist.

RPWF0011E
Error

occurred

while

completing

test

generation

1283

HCL OneTest Performance

1284

RPWF0012E
Error

occurred

while

processing

a

packet

at

test

generation

RPWF0021E
WSDL

Exception

raised

while

processing

WSDL

source

RPWF0032E
Error

while

generating

test

from

Axis

recording

RPWF0051E
Error

occurred

while

setting

classpath

entry

for

recorder

Chapter 10. Troubleshooting Guide

RPWF0052E
I/O

exception

occurred

while

resolving

keystore

or

truststore

path

RPWF0056E
Error

occurred

while

launching

web

services

HTTP

proxy

RPWF0066E
Error

occurred

while

launching

axis

client

recorder

agent

1285

HCL OneTest Performance

1286

RPWF0071E
Exception

thrown

while

creating

a

wizard

page

control

RPWF0072E
Exception

thrown

while

parsing

URL:

%1

RPWF0074E
Exception

thrown

while

finishing

the

axis

recording

wizard

RPWF0075E
Exception

thrown

while

looking

for

an

available

port

Chapter 10. Troubleshooting Guide

RPWF0076W
Exception

thrown

while

adding

SOA

Tester

certificate

to

the

trustore

%1

RPWF0081W
A

proxy

authorization

%1

is

used

without

any

proxy

RPWF0082W
No

free

name

can

be

found;

reusing

%1

1287

HCL OneTest Performance

1288

RPWF0083E
Resource

file

%1

not

found

in

workspace

%2

RPWF0084E
Workspace

location

cannot

be

determined

RPWF0085E
Cannot

retrieve

the

operation

name

from

the

envelope

%1

RPWF0101E
Core

exception

thrown

using

org.eclipse.debug.core

plugin

Chapter 10. Troubleshooting Guide

RPWF0102E
Exception

thrown

during

launch

configuration

update

RPWF0103E
Exception

thrown

while

resolving

a

bundle

entry

path

RPWF0104E
Exception

thrown

while

identifying

localhost

IP

address

RPWF0111E
Exception

thrown

while

creating

a

substitution:

%1

1289

HCL OneTest Performance

1290

RPWF0112E
Exception

thrown

while

creating

a

reference:

%1

RPWF0121W
Unknown

format.

Skipping

the

test

generation

for:

%1

RPWF0122W
Skipped

call:

%1

RPWF0123W
Skipped

request:

It

could

be

that

provided

password

was

not

ok

Chapter 10. Troubleshooting Guide

RPWF0124W
Attachments

not

generated.

RPWF0130W
Could

not

find

project

for

URI:

%1

RPWF0131W
Loading

XSD

Schema

failed:

%1

RPWF0132E
Error

while

generating

test

from

Generic

Service

Client:

Can't

show

wizard

1291

HCL OneTest Performance

1292

RPWF0140E
An

error

has

occurred:

%1

RPWH0007W
Unhandled

Security

Algorithm

'%1'

RPWH0009W
Unable

to

serialize

data

RPWH0010W
Unable

to

deserialize

data

RPWH0012E
Unable

to

open

editor

for

'%1'

RPWH0014E
Parse

Error

in

'%1'

Chapter 10. Troubleshooting Guide

RPWH0015E
Unable

to

create

resource

'%1'

RPWH0016E
Failed

to

export

source

text

'%1'

RPWH0017E
A

connection

error

occurred

on

'%1',

please

check

the

URL

or

the

network

configuration

A connection error occurred.

System action: URL can not be reached, action is aborted.

User response: Check the URL or the network configuration.

1293

HCL OneTest Performance

1294

RPWS0001E
Exception

raised

during

data

harvest

execution

Reference can't be performed.

System action: Reference is not performed: get empty data.

User response: Check the corresponding reference.

RPWS0002E
Exception

raised

during

data

substitution

execution

Substitution can't be performed.

System action: Substitution is not performed: write recorded data.

User response: Check the corresponding substitution.

RPWS0003E
Exception

raised

on

harvest

data

management

Reference can't be performed.

System action: Reference is not performed: get empty data.

User response: Check the corresponding reference.

Chapter 10. Troubleshooting Guide

RPWS0004E
Exception

raised

on

substitution

data

management

Substitution can't be performed.

System action: Substitution is not performed: write recorded data.

User response: Check the corresponding substitution.

RPWS0005E
Exception

raised

during

WebSocket

read

action

Read action can't be performed.

System action: No data are receive.

User response: Check the application side, may be the server closes the connection.

RPWS0006E
Exception

raised

during

WebSocket

write

action

Write action can't be performed.

System action: No data are sent.

User response: Check the application side, may be the server closes the connection.

1295

HCL OneTest Performance

1296

RPWS0007E
Unable

to

get

WebSocket

connection

WebSocket connection information is wrong.

System action: No data will be receive or sent on this connection.

User response: Check the WebSocket connection, may be the test is corrupted.

RPWS0008E
Unable

to

read

from

a

closed

connection

WebSocket connection is closed.

System action: No data will be sent on this connection.

User response: Check why the WebSocket server closed connection.

RPWY0002E
An

exception

occurred

in

%1

An exception was detected.

System action: Current action is aborted.

User response: Check the cause of the exception.

Chapter 10. Troubleshooting Guide

RPWY0003I
Information:

%1

(%2)

RPWY0004W
Warning:

%1

(%2)

RPWY0005E
An

error

occurred

while

importing

external

schema

%1

RPWY0006E
Unable

to

correlate

automatically

RPWY0007E
An

exception

%1

occurred

in

%2

An exception was detected.

System action: Current action is aborted.

User response: Check the cause of the exception.

1297

HCL OneTest Performance

1298

RPWZI0002E
Exception

raised

during

WebSocket

connection

creation.

The workbench could not create a connection for WebSocket elements in split test.

System action: No connection are created by the workbench.

User response: The user need to create manually the connection, or to get the upgraded HTTP request in the split

selection.

RPXD0001E
Unknown

Segment

Offset/

Length

for

Segmented

Dataset:

%1

RPXD0002E
Bad

Dataset

Mode:

%1

RPXD0003E
Dataset

not

initialized:

%1

Chapter 10. Troubleshooting Guide

RPXD0004E
End

of

non-

wrapped

dataset

reached:

%1

RPXD0005E
Dataset

with

multiple

Equivalence

Classes

cannot

be

segmented

RPXD0006E
segmented

DatapoolMap

null:

%1

RPXD0007F
No

registered

data

correlation

handler

for

this

IKAction

1299

HCL OneTest Performance

1300

RPXD0017W
Pattern

matching

failed

for:

regex

(%1)

str

(%2)

RPXD0018E
Skipping

substitution,

reference

value

was

null.

original

string:

(%1)

offset:

(%2)

Chapter 10. Troubleshooting Guide

RPXD0019E
Data

Correlation:

Failed

Substitution

\nReference[%1]\nSubstitution[%2]\n

\nDetails:

\n

\nA

failed

reference

occurred

in

a

prior

request.

Since

the

reference

named

[%3]

was

null,

we

were

unable

to

substitute

a

new

value

for

the

substituter

named

[%4],

original

string

[%5]

at

offset

[%6]

and

this

request

may

have

failed.

Please

inspect

prior

requests

for

the

reference

failure

and

corrective

guidance

to

avoid

this

in

the

future.

\n

\nFor

more

information

search

the

help

for

the

data

correlation

topics.

1301

HCL OneTest Performance

1302

A reference for an expected data substitution is null.

System action: None.

User response: To find the failed reference, open the test and go to the substitution site. Right-click the substitution

site and select Go To > Reference. When troubleshooting failed references, start with the first error message. The

first failed reference can cause subsequent failed references. Search the test log "for unable to extract" to find the

first error message.\n\nExamine the request that generated the response. The request contains a value that might

need to be correlated. For example, the request might contain a username that must be unique to play back the test

successfully. In that case, use a dataset to provide a list of unique username values. You might need to manually

correlate a value by using the Test Data Sources view. Values that typically are correlated include timestamps, dates,

ids, and other alphanumeric strings.\nIf you no longer need the data correlation mentioned in the message, remove

that data correlation from the test.

Chapter 10. Troubleshooting Guide

RPXD0020E
Data

Correlation:

Failed

Extraction

\nReference[%1]\n

\nDetails:

\n

\nWe

were

unable

to

extract

the

value

for

the

reference

named

[%2],

with

the

regular

expression

[%3].

This

could

mean

a

later

request

will

fail.

Please

compare

the

response

in

the

test

log

to

the

corresponding

response

in

the

test

to

look

for

differences

that

could

cause

this

failure.

These

differences

are

often

due

to

problems

with

the

request

and

may

be

caused

by

missing

or

incorrect

correlations.

\n

\nFor

more

information

search

the

help

for

the

data

correlation

topics.

1303

HCL OneTest Performance

1304

The response received during playback is different from the response received when the test was recorded. The data

correlation code was unable to use the regular expression expected value.

System action: None.

User response: Examine the request that generated the response. The request contains a value that might need to be

correlated. For example, the request might contain a username that must be unique to play back the test successfully.

In that case, use a dataset to provide a list of unique username values. You might need to manually correlate a value

by using the Test Data Sources view. Values that typically are correlated include timestamps, dates, ids, and other

alphanumeric strings. \nIf you no longer need the data correlation mentioned in the message, remove that data

correlation from the test.

RPXD0021E
Dataset

%1

is

accessed

using

different

dataset

modes

by

different

tests.

RPXD0021W
Setting

variable

%1

to

value

%2.

RPXE0001W
%1

Chapter 10. Troubleshooting Guide

RPXE0010W
Engine

shutdown

problem

joining

workers

RPXE0011W
Failed

to

report

exception

RPXE0012W
Schedule

failed

to

load

RPXE0013W
Unable

to

create

test

RPXE0014W
Setting

log

level

to

%1

1305

HCL OneTest Performance

1306

RPXE0015W
Attempt

to

add

object

to

Schedule

which

is

not

a

UserGroup

RPXE0016W
Virtual

User

%1

experienced

error

%2

RPXE0017W
Connect

timeout

for

action

%1

(%2)

user

%3

Chapter 10. Troubleshooting Guide

RPXE0018W
Read

timeout

for

action

%1

(%2)

user

%3

RPXE0019W
Connect

exception

for

action

%1

(%2)

user

%3

RPXE0021W
Read

exception

for

action

%1

(%2)

user

%3

RPXE0023W
Iterating

over

keys

exception

RPXE0024W
CancelledKeyException

1307

HCL OneTest Performance

1308

RPXE0025W
NullPointerException

RPXE0027W
UserGroup

exception

RPXE0028W
User

Group

%1

does

not

implement

createTesterWorkload()

RPXE0029W
Worker

caught

throwable

RPXE0030W
Connection

leak,

I/O

state

%1

RPXE0031W
Exception

finishing

connection

for

action

%1

(%2)

user

%3

Chapter 10. Troubleshooting Guide

RPXE0033W
Finish

read

get

buffer

interrupted

for

action

%1

(%2)

user

%3

RPXE0035W
Finish

read

exception

for

action

%1

(%2)

user

%3

RPXE0036W
Engine

thread

startup

exception

RPXE0037W
Engine

request

to

report

exception

1309

HCL OneTest Performance

1310

RPXE0038W
Exception

creating

cache

file,

cacheFileName:

%1,

extension:

%2,

dir:

%3

RPXE0039W
User

%1

experienced

exception

%2

RPXE0040W
User

%1

caught

exception

trying

to

report

severe

error.

RPXE0041W
Engine

hard

stop

after

%1

second

timeout

Chapter 10. Troubleshooting Guide

RPXE0042I
%1

received

request

to

stop

RPXE0043I
Forced

stop

of

action

%1

RPXE0044W
No

IP

address

was

found

for

the

local

host

RPXE0045W
Ignoring

invalid

network

interface

%1

1311

HCL OneTest Performance

1312

RPXE0046W
Could

not

find

any

usable

network

interfaces

RPXE0047E
SyncPointSubsystem

Unknown

sync

point:

%1

RPXE0048W
%1

STOPUSERS

users=

%2

stagger=

%3

timelimit=

%4

active

users=

%5

Chapter 10. Troubleshooting Guide

RPXE0049W
%1

had

%2

non-

sampled

users

asked

to

stop

active

users=

%3

RPXE0050W
%1

had

%2

sampled

users

asked

to

stop

RPXE0051W
%1

after

wait

for

compliance

active

users=

%2

target=

%3

1313

HCL OneTest Performance

1314

RPXE0052W
%1

abandon

user

%2

RPXE0053W
%1

abandoned

%2

users

RPXE0054W
%1

end

stop

%2

users

SUCCESS

active

users=

%3

RPXE0055W
%1

end

stop

%2

users

FAIL

active

users=

%3

Chapter 10. Troubleshooting Guide

RPXE0056W
%1

occurred

in

%2.

Message:

%3

RPXE0057E
Exception

while

reading

test

variable

initialization

file:

%1

RPXE0058E
Exception

while

initializing

virtual

users

test

variables.

RPXE0059E
Unable

to

get

Kerberos

ticket

from

KDC

for

server

%1.

1315

HCL OneTest Performance

1316

RPXE0060E
Failed

to

load

test

from

'%1'

due

to

exception:

%2

While trying to find and load class files required to execute the test a problem was encountered.

User response: See exception description for failure reason.

RPXE0100W
%1

terminated

due

to

exception:

%2

RPXE0102W
IKAction:

%1

(%2)

caught

Exception

in

preFinish()

for

%3

(%4)

Chapter 10. Troubleshooting Guide

RPXE0103W
IKAction:

%1

(%2)

caught

Exception

in

postFinish()

for

%3

(%4)

RPXE0104W
KernelChannel

connect(),

exception

while

trying

to

bind

to

local

address

%1:

%2

1317

HCL OneTest Performance

1318

RPXE2501E
An

error

occurred

while

attempting

to

handshake

with

the

server

using

protocol

%1

and

cipher

suite

%2.

This

type

of

failure

is

often

related

to

a

mismatch

between

the

requested

protocol

or

cipher

suite

and

the

ones

the

server

is

expecting

or

may

be

related

to

a

server's

request

for

a

client

digital

certificate.

If

the

server

is

configured

to

accept

only

256-

bit

ciphers,

contact

HCL

Support

for

information

on

US

export

restrictions

related

to

the

exportation

of

strong

encryption.

Playback

of

tests

utilizing

these

ciphers

is

not

supported.

Chapter 10. Troubleshooting Guide

An SSL connection between a client and server is set up by a handshake, the goals of which are: To satisfy the client

that it is talking to the right server (and optionally visa versa). Also, for the parties to have agreed on a cipher suite,

which includes which encryption algorithm they will use to exchange data. These goals were not achieved.

System action: Execution ends because a secure connection cannot be established with the server.

User response: If the server requires a client digital certificate work with the server administrator to obtain one. If the

server requires strong ciphers work with customer support to obtain the required and restricted ciphers.

RPXE2550E
The

digital

certificate

RCS

file

'%1'

was

not

found

or

was

corrupt:

%2

RPXE2552I
digital

certificate

alias

RPXE2900E
The

server

rejected

the

client's

digital

certificate.

1319

HCL OneTest Performance

1320

RPXE2901W
The

server

closed

the

connection

abruptly.

This

is

probably

due

to

an

overloaded

server

or

to

a

problem

negotiating

a

digital

certificate

or

cipher

suite.

Check

the

web

server's

SSL

error

log

for

more

details.

Chapter 10. Troubleshooting Guide

RPXE4000W
Schedule

or

Test

not

found.

May

not

have

compiled.

-

%1

RPXE4001E
Runner

Exception

occurred

RPXE4002E
Communications

Error:

Invalid

Logging

Level

RPXE4003E
Communications

Error:

Invalid

TestLog

Level

for

%1

events

1321

HCL OneTest Performance

1322

RPXE4004E
Communications

Error:

Invalid

Statistics

Level

or

Interval

RPXE4005E
Runner

Exception

occurred

-

See

problem

determination

log

RPXE4006E
Communications

Error:

Invalid

Dataset

information

Chapter 10. Troubleshooting Guide

RPXE4007E
Communications

Error:

No

communication

from

the

workbench

in

%1

milliseconds.

For

more

information,

see

the

Troubleshooting

section

of

the

online

help.

RPXE4008E
Attempt

to

change

statistic

interval

ignored.

1323

HCL OneTest Performance

1324

RPXE4008I
Think:

requested

time

%1

milliseconds,

actual

time

%2

milliseconds

RPXE4009I
Delay:

requested

time

%1

milliseconds,

actual

time

%2

milliseconds

Chapter 10. Troubleshooting Guide

RPXE4010I
Schedule

completed.

See

Performance

Report,

Verification

Points

Report,

and/

or

Percentile

Report

to

further

evaluate

the

results

of

this

run

according

to

your

success

criteria.

RPXE4011E
Communications

Error:

Invalid

Stop

timeout

RPXE4013I
Additional

events

from

%1

1325

HCL OneTest Performance

1326

RPXE4014E
Communications

Error:

Invalid

RunStagger

information

for

%1

(pairCount)

RPXE4015E
Communications

Error:

Invalid

RunStagger

information

for

%1

(pair

%2)

RPXE4016E
Failed

to

start

users

for

user

group:

%1.

Chapter 10. Troubleshooting Guide

RPXE4017I
Additional

execution

history

events

from

%1

are

available,

but

they

have

been

stored

separately

upon

user

request.

See

file

%2.

Refer

to

the

most

current

version

of

the

product

release

notes

for

information

on

how

to

access

and

view

them.

1327

HCL OneTest Performance

1328

RPXE4018E
Failed

to

write

message

to

workbench

[%1]

RPXE4019E
Failed

to

remove

users

for

user

group:

%1.

RPXE4020E
Failed

to

add

users

for

userGroup:

%1

numUsers=[%2]

startId=[%3]

Chapter 10. Troubleshooting Guide

RPXE4021E
Failed

to

add

users

because

the

runner

is

not

in

a

runnable

state.

RPXE4022E
failed

to

add

desired

number

of

users

RPXE4023E
failed

to

reach

target

number

of

users

ramping

down

1329

HCL OneTest Performance

1330

RPXE4024E
not

runnable

or

command

failed

RPXE4025E
failed

to

set

the

DataView

state

of

user

%1[%2]

to

%3.

RPXE4026E
DataView

command

%1

is

not

yet

implemented.

RPXE4027E
DataView

command

%1

is

not

recognized.

Chapter 10. Troubleshooting Guide

RPXE4028E
MessageEventFilter

command

parsing

error

in

token

%1[%2]

of

command

[%3]

RPXE4029E
The

testLog

message

event

filter

specified

by

[%1]

cannot

be

constructed.

This

filter

element

will

be

ignored.

1331

HCL OneTest Performance

1332

RPXE4050I
Operating

System

Info:

name

[%1]

architecture

[%2]

version

[%3]

RPXE4100W
Cannot

open

execution

history

cache

file

[%1],

execution

history

will

not

be

cached

RPXE4101E
Error

closing

execution

history

cache

file

[%1]

Chapter 10. Troubleshooting Guide

RPXE4102E
Error

reading

%1

bytes

from

execution

history

cache

file

[%1]

RPXE4103E
Error

writing

%1

bytes

to

execution

history

cache

file

[%2]

RPXE4104E
Error

opening

execution

history

cache

file

[%1]

for

reading

1333

HCL OneTest Performance

1334

RPXE4105E
Error

testing

execution

history

cache

file

[%1]

for

available

input

RPXE4106E
Unexpected

EOF

reading

%1

bytes

from

execution

history

cache

file

[%2]

RPXE4107E
Exception

processing

execution

history

event

Chapter 10. Troubleshooting Guide

RPXE4108E
Error

reading

execution

history

cache

file

[%1]

RPXE4109E
Error

writing

to

TestLog

cache

file

[%1]

RPXE4110E
Error

closing

TestLog

cache

file

[%1]

1335

HCL OneTest Performance

1336

RPXE4111W
Cannot

open

testLog

cache

file

[%1]

for

random

access

writing,

the

testLog

may

contain

bad

data.

RPXE4112W
Error

removing

testLog

event

from

cache

file

[%1].

Writing

%2

bytes

at

offset

%3.

Chapter 10. Troubleshooting Guide

RPXE4120E
Error

writing

to

TestLog

[%1]

RPXE4150E
Error

opening

execution

history

annotation

file

[%1]

RPXE4151E
Error

writing

%1

bytes

to

execution

history

annotation

file

[%2]

RPXE4152E
Error

flushing/

closing

history

annotation

file

[%1]

1337

HCL OneTest Performance

1338

RPXE4153E
Error

deleting

history

annotation

file

[%1]

RPXE4200W
Warning:

Statistics

delivery

thread

running

behind

statistics

interval

by

%1

milliseconds

RPXE4201W
Warning:

Statistics

delivery

thread

over

slept

by

%1

milliseconds

Chapter 10. Troubleshooting Guide

RPXE4202E
Error:

Statistics

delivery

thread

over

slept

by

%1

milliseconds

RPXE4203E
Error:

Statistics

collection

time

too

long:

%1

bytes

%2

milliseconds

RPXE4204W
Warning:

Statistics

collection

time

too

long:

%1

bytes

%2

milliseconds

1339

HCL OneTest Performance

1340

RPXE4205E
Error:

Statistics

write

time

too

long:

%1

bytes

%2

milliseconds

RPXE4208E
Error:

Could

not

create

agent

measurements

file

%1.

It is not possible to create a file on the file system.

System action: Unable to create a file. The agent measurements will not be available.

User response: You do not have the permissions on your file system or it is full.

RPXE4209I
Error:

Statistics

collection

thread

was

interrupted

An error occurred which caused the interruption of the statistics collection.

System action: Statistics may be incomplete.

User response: Run the test again.

Chapter 10. Troubleshooting Guide

RPXE4210E
Error:

A

severe

error

occurred

when

processing

statistics.

An exception occurred on the agent while processing statistics and/or sending them to the server.

System action: Statistics will be incomplete.

User response: Contact support.

RPXE4211E
Error:

A

severe

error

occurred

when

sending

statistics.

An exception occurred on the agent while sending statistics to the server.

System action: Statistics will be incomplete.

User response: Contact support.

RPXE4212E
Error:

A

severe

error

occurred

when

closing

statistics.

1341

HCL OneTest Performance

1342

An exception occurred on the agent while completing the statistics processing.

System action: Statistics may be incomplete.

User response: Contact support.

RPXE4213E
Statistics

sub-

system

error:

%1

A severe error occurred during writing to the agent measurements file.

System action: The agent detailed measurements will not be available.

User response: Start a test execution again.

RPXE4214W
Statistics

sub-

system

warning:

%1

Warning message to the user during writing to the agent measurements file.

System action: The agent detailed measurements may be affected by a problem.

User response: Fix the problem given by the message or contact support.

RPXE4215E
Statistical

counter

descriptors

file

not

found:

%1.

Unable to find the counter descriptors file in the deployment directories.

Chapter 10. Troubleshooting Guide

System action: Statistics will not be available.

User response: Start the test again, contact support if the problem persists.

RPXE4215I
Statistics

sub-

system

message:

%1

This message is displayed in debug mode.

System action: No action.

User response: You can report this message to the support.

RPXE4216E
Problem

in

statistical

counter

descriptors

file:

%1.

The counter descriptors file has a problem.

System action: Statistics will not be available.

User response: Start the test again, contact support if the problem persists.

1343

HCL OneTest Performance

1344

RPXE4217E
Submitted

value

%1

is

out

of

range

of

allowed

values

for

the

counter

type

%2.

The value is out of the limits of the counter.

System action: Measurements and statistics for the specified counter will not be available.

User response: If you are a protocol developer, fix the problem. Otherwise, contact support.

Chapter 10. Troubleshooting Guide

RPXE4218E
In

order

to

use

this

method,

the

runtime

type

of

the

counter

must

be

either

STATIC

or

RATE.

A protocol is using a legacy API to change the value of a counter.

System action: Measurements and statistics for the specified counter will be inaccurate.

User response: If you are a protocol developer, use a runtime counter type to STATIC or RATE. Otherwise, contact

support.

RPXE4219E
Mismatch

between

runtime

type

%1

and

static

counter

type

%2.

The type of the counter in runtime and in the statistic definition do not match.

1345

HCL OneTest Performance

1346

System action: The runtime type will be applied.

User response: If you are a protocol developer, change the declared counter type, or the runtime type. Otherwise,

contact support.

RPXE4220E
No

static

declaration

found

for

counter

%1.

Unable to find a definition for the counter.

System action: The counter values will be ignored.

User response: Add a definition for the counter, or use an undeclared counter.

RPXE4221E
Attempt

to

create

an

undeclared

counter

%1

(type

%2)

over

a

declared

counter

of

a

different

type

(%3).

An attempt to create an undeclared counter was made, but a counter declaration with another type already exists.

Chapter 10. Troubleshooting Guide

System action: The undeclared counter values will be ignored.

User response: Use another path for the undeclared counter that does not conflict with the existing declared counter.

RPXE4900I
Test

execution

completed

with

no

reported

problems

RPXE4901I
%1

ERROR

verdicts

reported

RPXE4902I
%1

FAIL

verdicts

reported

RPXE4903I
%1

INCONCLUSIVE

verdicts

reported

RPXE4904I
All

reported

verdicts

PASSed

1347

HCL OneTest Performance

1348

RPXE4905I
%1

ERROR

verdict

reported

RPXE4906I
%1

FAIL

verdict

reported

RPXE4907I
%1

INCONCLUSIVE

verdict

reported

RPXE4908I
%1

FAIL

verdict

roll-

up

RPXE4909I
%1

ERROR

verdict

roll-

up

RPXE4910I
%1

INCONCLUSIVE

verdict

roll-

up

Chapter 10. Troubleshooting Guide

RPXE4911I
%1

PASS

verdict

roll-

up

RPXE4912I
%1

ERROR

verdicts

reported

from

driver

%2

RPXE4913I
%1

FAIL

verdicts

reported

from

driver

%2

RPXE4914I
%1

INCONCLUSIVE

verdicts

reported

from

driver

%2

1349

HCL OneTest Performance

1350

RPXE4915I
%1

ERROR

verdict

reported

from

driver

%2

RPXE4916I
%1

FAIL

verdict

reported

from

driver

%2

RPXE4917I
%1

INCONCLUSIVE

verdict

reported

from

driver

%2

RPXE4918I
duration

Chapter 10. Troubleshooting Guide

RPXE4920I
%1

was

successfully

invoked.

This

does

not

indicate

the

pass/

fail

verdict

of

the

test

itself,

only

that

the

invocation

of

the

test

was

successful.

Expand

to

inspect

verdicts.

1351

HCL OneTest Performance

1352

RPXE4921I
%1

was

invoked.

This

does

not

indicate

the

pass/

fail

verdict

of

the

test

itself,

only

that

the

invocation

of

the

test

was

successful.

No

verdicts

will

be

reported

from

the

test.

Chapter 10. Troubleshooting Guide

RPXE4930I
The

%1

testLog

level

was

pushed

from

%2%3

to

%4%5.

RPXE4931I
The

%1

testLog

level

was

popped

from

%2%3

to

%4%5.

RPXE4932I
The

%1

testLog

level

was

changed

from

%2%3

to

%4%5.

1353

HCL OneTest Performance

1354

RPXE4940I
Transaction

[%1]

started

%2

milliseconds

after

start

of

test

run.

RPXE4941I
Transaction

[%1]

stopped

%2

milliseconds

after

start

of

test

run.

Elapsed

time:

%3

milliseconds.

RPXE4942I
Transaction

[%1]

aborted.

RPXE4944W
Transaction

[%1]

is

already

started.

Chapter 10. Troubleshooting Guide

RPXE4945W
Transaction

[%1]

has

not

been

started.

RPXE4948W
Execution

Variables

-

Input

RPXE4950I
Null

user

group

name.

RPXE4952E
Unable

to

find

target

loop

named

'%1'.

Error

handler

did

not

complete

properly.

The loop name specified in the loop handler does not exist.

System action: The user will not follow the loop error handler and will continue execution at the next action.

User response: Change the loop handler to point to an existing loop.

1355

HCL OneTest Performance

1356

RPXE5301E
Error

encountered

while

loading

Native

Library:

%1

RPXE5305E
A

required

customer-

supplied

file

was

not

found.

Please

check

the

"external_files"

folder

and

your

installation

instructions

for:

%1

RPXE5330E
Unable

to

apply

dataset

swap:

%1

An error occurred attempting to parse the data set swap command-line option.

Chapter 10. Troubleshooting Guide

System action: The data set swap will not occur.

User response: See the command-line usage to ensure the command syntax is correct.

RPXE5500W
Unable

to

apply

Open

Tracing

context.

The

root

Jaeger

span

will

be

unparented.

%1

An error occurred when attempting to create an Open Tracing span context from the properties starting with

OPENTRACING_CTX_.

System action: Jaeger logging will still occur but the root span will be linked to a parent span.

User response: Make sure the content of properties starting with OPENTRACING_CTX_ is correct.

1357

HCL OneTest Performance

1358

RPXE5501W
Transaction

times

for

this

run

do

not

include

failing

transactions,

according

to

workbench

Test

Execution

preferences.

A failing transaction will not be added to stats. This will only be logged once per transaction, but multiple instances

may have failed.

System action: Execution will continue as normal. This is not an error condition.

User response: If this behavior is not desired, uncheck preferences at Test > Test Execution.

Chapter 10. Troubleshooting Guide

RRIT0001E
Environment

variable

INTEGRATION_TESTER_AGENT_HOME

not

set

to

HCL

OneTest™

API

Agent

installation

location,

or

does

not

contain

expected

RunTests(.exe)

program.

The test execution cannot find the HCL OneTest™ API Agent.

System action: None.

User response: Set the environment variable INTEGRATION_TESTER_AGENT_HOME to point the root installation

directory of the HCL OneTest™ API agent. This must be done on each location used in a schedule.

RRIT0002E
Error

unzipping

__IT_PRODUCT_NAME__

project.

The __IT_PRODUCT_NAME__ project cannot be deployed.

System action: None.

User response: Verify that there is enough disk space on the executing location.

1359

HCL OneTest Performance

1360

RRIT0003E
__IT_PRODUCT_NAME__

library

not

found.

The library required to communicate with the __IT_PRODUCT_NAME__ agent is missing in the installation.

System action: None.

User response: Contact your support.

RRIT0004E
Error

processing

messages

received

form

the

__IT_PRODUCT_NAME__

client.

A communication error has occurred with the __IT_PRODUCT_NAME__ agent.

System action: None.

User response: Try again, contact your support if problem persist.

RRIT0005E
Some

tag

values

are

missing.

A value cannot be assigned to a tag defined in an __IT_PRODUCT_NAME__ test during execution.

System action: None.

User response: Verify that each tag of each __IT_PRODUCT_NAME__ test maps to a variable in the schedule or

compound test.

Chapter 10. Troubleshooting Guide

RRITUI1002W
Open

__IT_PRODUCT_NAME__

resources

has

been

disabled

in

Test

>

__IT_PRODUCT_ACRONYM__

Integration

preferences

User as disabled __IT_PRODUCT_NAME__ resource but want to open this kind of resource.

System action: None.

User response: Open Test > __IT_PRODUCT_ACRONYM__ Integration preference and enable open resources by

checking __IT_PRODUCT_NAME__ is installed on this machine .

DCRC0001E
Missing

message

for

log

entry

'{0}'

in

class:

{1}

DCRC0002E
Cannot

get

Log

key

'{0}':

SecurityException

raised

1361

HCL OneTest Performance

1362

DCRC0003E
Cannot

initialize

Log

key

'{0}'

DCRC0008W
Warning:

field

'{0}'

is

not

defined

in

class:

{1}

DCRC0009W
Warning:

cannot

get

check

message

versus

log

key

mapping

for

'{0}'

of

class

{1},

SecurityException

raised

Chapter 10. Troubleshooting Guide

DCRC0010E
Unexpected

exception,

please

check

Error

Log

view:

{0}

DCUI0001E
unexpected

exception

An exception that could not be handled occurs during processing.

User response: Close rule editor and report exception to product support.

DCUI0003E
Error

getting

persistent

property

'{0}'

DCUI0004E
Error

setting

persistent

property

'{0}'

DCUI0006E
Cannot

reload

resource

'{0}'

1363

HCL OneTest Performance

1364

DCUI0007W
Failed

to

encode

model

to

clipboard.

DCUI0008W
Failed

to

decode

model

from

clipboard.

DCUI0009E
None

of

the

attribute

providers

own

attribute

id

'{0}'.

Rule file refer to an unknown rule attribute id. File may be edited on a system having more protocol extension rather

than current one.

User response: Rule file should not be edited on this product installation.

DCUI0010E
Missing

IRuleUIProvider

extension

point

for

'{0}'

Chapter 10. Troubleshooting Guide

Rule file refer to a rule that is unknown on this product installation.

User response: Rule editor is able to display that rule on the tree but not able to edit it contents.

DCUI0011E
Missing

IConditionUIProvider

extension

point

for

'{0}'

Rule file refer to a rule condition that is unknown on this product installation.

User response: Rule editor is able to display that rule condition on the tree but not able to edit it contents.

DCUI0012E
Cannot

save

editor

'{0}'

DCUI0013E
Missing

IRulePassUIProvider

extension

point

for

'{0}'

Rule file refer to a rule pass that is unknown on this product installation.

User response: Rule editor is able to display that rule pass on the tree but not able to edit it contents.

1365

HCL OneTest Performance

1366

DCUI0014E
Missing

IRuleArgumentUIProvider

extension

point

for

'{0}'

DCUI0015E
Missing

IRuleArgumentContainerUIProvider

extension

point

for

'{0}'

DCUI0016E
Try

rule

failed

DCUI0017E
Try

rule

failed:

'{0}'

DCUI0998E
Cannot

load

file

'{0}'

Additional error messages
You can find the additional error messages.

Chapter 10. Troubleshooting Guide

Address already in use
Address

already

in

use.

Typically, this error message is displayed when all available TCP/IP ports have been exhausted.

System action: None.

User response:

• If the schedule, in this context, is used to refer to both VU Schedule and Rate Schedule contains loops, move

the loops into tests. If a schedule, in this context, is used to refer to both VU Schedule and Rate Schedule

contains loops, at the beginning of a loop iteration each virtual user closes existing connections and opens

new connections. This can cause the agent computer to exhaust all available TCP/IP ports. If a test contains

loops, virtual users attempt to re-use existing connections. Re-use of existing connections can take advantage

of keep-alive connections.

• Increase the number of TCP/IP ports available. The number of TCP/IP ports on a Windows™ computer is

limited to 5000 by default. To increase the number of TCP/IP ports available on a Windows™ computer:

1. Create the following Registry key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip

\Parameters\MaxUserPort. This key does not exist by default.

2. Specify the type as DWORD.

3. Set the value to 65000.

4. Reboot the computer.

1367

HCL OneTest Performance

1368

Browser profile in use
Your

browser

profile

is

already

in

use.

You

must

close

the

browser

or

select

another

browser

from

Application

to

Record

in

Preferences.

The browser configured for recording is already running, or a lock file exists that prevents the browser from running.

System action: The test run does not start.

User response:

• Close the browser configured for recording, and record again or select another web browser in the Test From

Recording wizard.

• Search for and remove any lock files from the browser profile directory.

Chapter 10. Troubleshooting Guide

Cannot open test
Cannot

open

the

test

testname

because

it

contains

the

following

features

that

are

not

installed:

featurename.

The test that you are attempting to open requires the installation of one or more protocol extensions.

System action: The test is not opened.

User response:  To install a protocol extension: 

1. Close the product.

2. Launch IBM® Installation Manager.

3. Click Modify.

4. Navigate to the Modify Packages window.

5. Select the required protocol extensions.

6. Follow the steps in the wizard to complete the installation of the protocol extensions.

 A protocol license key is required to use protocol extensions other than HTTP. See the installation guide for more

information on managing protocol license keys. 

1369

HCL OneTest Performance

1370

Connection closed
Web

server

computername

unexpectedly

closed

the

connection

while

in

the

process

of

retrieving

URI

URIname

This message is displayed when the HTTP server being tested has become too busy and has closed the connection

without completing the response.

System action: None.

User response:  If you receive this error message multiple times for a particular HTTP request or when the server is

not under load, contact the administrator of the server under test to determine potential causes of the behavior. 

Dataset accessed using different modes
Dataset

datapoolname

is

accessed

using

different

dataset

modes

by

different

tests.

Two tests are accessing the same dataset. These two tests use different access methods for the dataset.

System action: None.

Chapter 10. Troubleshooting Guide

User response:  Examine your tests to find the dataset mentioned. Check the access mode for the dataset by double-

clicking the dataset name in the test. The access mode will be Random, Shuffled, or Sequential. Ensure that the

access mode is the same for all tests that use the dataset. 

Error binding to port
Error

Binding

to

Port:portnumber

Exception:

java.net.SocketTimeoutException:

Accept

timed

out.

The listener port for HTTP recording is in use by another application.

System action: None.

User response:  Change the listener port for HTTP recording to a port that is not in use by another application. See

Changing HTTP recording preferences on page 1070 for more information. On the Browsers Recording preferences

page, edit the value of the Proxy Recorder Local Port field. 

Error connecting to license server
Error

connecting

to

license

server.

The computer could not connect to the license server.

System action: None.

User response:  HCL OneTest™ Performance version 8.2 or later requires IBM® Rational® License Server version

8.1.1 or later. If you have used a previous version of HCL OneTest™ Performance with a license server, this error

message can be displayed when the IBM® Rational® License Key Administrator points to an incompatible version

of the license server. Ensure that the IBM® Rational® License Key Administrator has been configured to point to the

correct version of the license server. Use Rational® License Key Administrator version 8.1.1 or later. On Microsoft™

Windows™, Rational® License Key Administrator 8.1.1 is installed in the IBM® Rational® program group. For more

information on licensing, see the Installing and upgrading section of the product documentation. If the error message

persists, specify the port on which the license server is listening as the Port ID value. By default, the Port ID on the

1371

HCL OneTest Performance

1372

license server is 27000.  HCL OneTest™ Performance comes with a compatible version of Rational® License Server. If

you install another version of Rational® License Server on the same computer, this error can occur. Use the version of

Rational® License Server provided with HCL OneTest™ Performance. 

No local agent controller
Local

computer

is

not

running

the

Agent

Controller.

The agent controller coordinates schedule playback between the workbench and agent computers. The agent

controller is not running on the local computer.

System action: No tests run.

User response:  Make sure that the agent controller is installed and running on the workbench computer. On

Windows™ computers, the agent controller is a process called ACWinService. On Linux™ computers, the agent

controller is a process called RAServer. 

To start the agent controller, do one of the following steps:

• On Windows™, at a command prompt, enter this command:

net start "IBM Rational Agent Controller"

• On Linux™, change to the directory AgentController/bin in the product installation directory; then enter

this command:

./RAStart.sh

Performance Test Errors were found in the project
Performance

Test

Errors

were

found

in

the

project.

Chapter 10. Troubleshooting Guide

This error can occur when workspaces are shared on different computers or when the installation location of the

product has changed since the project was created.

System action: None.

User response:  To work around this error, clean up the Java™ build path and the generated Java™ source files. 

1. Click Window > Open Perspective > Resource to open the Resource perspective.

2. Select the project in the Project Explorer view, and then right-click and select Properties to view the project

properties.

3. Select the Java Build Path property.

4. Click the Libraries tab.

5. Select each entry that is displayed with a red X and remove that entry from the build path. If a referenced

library is pointing to user-specific libraries that have moved or are not present, edit the entry so that it points to

the correct location. Do not remove entries for user-specific libraries.

6. Click OK.

7. Expand the src folder in the project.

8. Remove all generated Java™ source files that are displayed with a red X. If the source file is user-specific, then

edit the build path to point to the correct dependent libraries.

Test run aborted
Execution

failure.

No

status

received

from

location

computername

in

interval

seconds.

The workbench has lost communication with one or more agent computers.

System action: The test run stops.

User response:  For each agent computer: 

• Check that the playback Java™ process is running. If it is still running, the problem might be on the workbench

computer. Stop the Java™ process and all related typeperf and vmstat processes.

• Examine the problem determination log for error messages or exception messages.

1373

HCL OneTest Performance

1374

• If the playback Java™ process is not running, search for javacore.* files. The contents of these files might

help you determine the cause of the problem.

• Run tests again and monitor the memory size of the playback Java™ process. If the playback Java™ process is

consistently running at its maximum heap size, the process might not have enough memory.

 If the problem is not on an agent computer, check that the workbench computer has sufficient memory. To increase

the available memory, either increase the workbench heap size or reduce the level and amount of execution history. 

Test run aborted due to error
Virtual

users

have

exited

prior

to

stage

completion.

In a schedule with multiple stages, at the end of a stage that is configured with n virtual users, there were fewer than

n virtual users running. The schedule did not assign enough work to the virtual users to keep them active for the

duration of the stage, or the virtual users stopped because of an a different error. The workload problem can occur if

you use multiple stages but do not enclose the workload in an infinite loop.

System action: The test run stops.

User response:  On the workbench computer, examine the workload for each user group in the schedule. Check that

the entire workload is inside an infinite loop, so that the virtual users always remain active regardless of the stage

duration.  If the tests already use infinite loops, then the agent computers might have encountered errors while running

tests. To determine why virtual users stopped before the stage completed: 

• Examine the test log for error or exception messages.

• Increase the test log level and decrease the number of users. Try running the schedule again. Examine the test

log for error or exception messages.

• Simplify the workload by running one user in one stage. Check to see whether the single user takes the

expected amount of time to complete all actions. If not, examine the test log and problem determination log

for error or exception messages.

Chapter 10. Troubleshooting Guide

Testgen completed with warnings
Testgen

completed

with

warnings.

The response data has been truncated according to the setting in the HTTP Test Generation preferences.

System action: None.

User response:  To adjust how response data is truncated, click Window > Preferences > Test > Test Generation >

HTTP Test Generation > Test Generation Options, and edit the value of the Save only the first 4KB of responses

larger than field. 

Variable not initialized
Variable

variablename

has

not

been

initialized

for

this

test.

A variable was used in a test, but the variable had never been initialized to a value.

System action: Depending on the value of the Run-time error if variable not initialized setting, the system will either

do nothing, issue a warning, issue a test log error, or exit the test.

User response:  Check the variable to determine where the initialization should have happened. Make sure that the

test that contains the initialization of the variable occurs before the test trying to use the variable. 

1375

1376

Chapter 11. Reference Guide
This guide describes, additional topics to gain more knowledge about HCL OneTest™ Performance.

Accessibility features
Accessibility features help users who have physical disabilities, such as visual and, hearing impairment, or limited

mobility, to use the software products successfully.

Accessibility features are product dependent and might include one or more of the following aspects:

• Keyboard-only operation

• Screen reader usage

• Color and typeface preferences

Note: The accessibility features mentioned here apply to the Windows operating system. Some of these

features might also work on Linux, but are not officially supported.

Accessibility compliance

The product documentation is published by using Oxygen XML WebHelp Responsive. To understand the accessibility

compliance status for Oxygen XML WebHelp Responsive, refer to WebHelp Responsive VPAT Accessibility

Conformance Report.

Accessing UI elements

HCL OneTest™ Performance supports navigation in the UI by using different methods such as a mouse, keyboard, or

touchpad.

You can use the keyboard keys such as Tab, arrow keys such as UP, DOWN, LEFT, and RIGHT to navigate to the

different pages in the Navigation pane or to the different action labels in the right pane on the UI.

Keyboard shortcuts for performance and service testing
The keyboard shortcuts for performance and service testing are available when you record or edit a test or a

schedule.

Key combination Description

Ctrl+S Save the test or schedule.

Alt+Shift+T, G Generate a test from the selected recording (.recmodel) file.

Alt+Shift+T, R Create a report (the test must be selected in the Test Navigator).

Alt+Shift+T, T Test connection (a location must be selected in the Test Navigator).

https://www.oxygenxml.com/doc/versions/22.1/ug-author/topics/whr-vpat.html
https://www.oxygenxml.com/doc/versions/22.1/ug-author/topics/whr-vpat.html

Chapter 11. Reference Guide

Key combination Description

Alt+Shift+X, B Run the test (a test must be selected in the Test Navigator).

Alt+Shift+X, C Run the schedule (a schedule must be selected in the Test Navigator).

Del Delete the selection

Ctrl+Del Delete the selection

Insert Insert a new element (same as the Insert push button).

Ctrl+Insert Add a new element (same as the Add push button).

Ctrl+Up Arrow Move the element up.

Ctrl+Down Arrow Move the element down.

Ctrl+Alt+<, Ctrl+Alt+> Resize the test editor and schedule editor windows. The new size is retained

when you reopen the window.

Ctrl+Shift+F1 During HTTP recording, insert a comment.

Ctrl+Shift+F2 During HTTP recording, insert a screen capture.

Ctrl+Shift+F3 During HTTP recording, insert a synchronization point.

Ctrl+Shift+F4 During HTTP recording, start a transaction.

Ctrl+Shift+F5 During HTTP recording, end a transaction.

Ctrl+Shift+F6 During HTTP recording, insert a split point.

Ctrl+Shift+F7 During HTTP recording, set the name of the current page.

The following keyboard shortcuts are available when you record Citrix performance tests:

Key combination Description

Tab or Shift+Tab Cycle the focus through the UI elements

Arrows Select a push button

Space Click a push button or toggle between selections

When you record Citrix performance tests and you work in image synchronization mode, you can use these keys:

Key Description

Space Set the origin of selection area

Arrows Move the cursor

Enter Select the image synchronization area and set the syn­

chronization area (press twice)

Esc Cancel the selection

1377

HCL OneTest Performance

1378

General reference for performance testing
See these performance testing topics for general reference.

Data correlation rules
You can customize how data is correlated by using data correlation rules.

Rules that create elements

Create a built in data source

Inserts a built-in data source in the test.

Create a custom code

Inserts a custom code element in the test.

Create a dataset column

Creates a dataset column that can be used by substitution sites.

Create a reference

Creates a reference in data that matches a specified regular expression.

Create a substitution

Creates a substitution site in data that matches a specified regular expression.

Create a variable assignment

Inserts a variable assignment in the test.

Create a variable declaration

Creates a variable that can be used by substitution sites.

Rules that change elements

Encode a substitution

Specifies whether substitution fields are encoded or decoded.

Rename a data source site

Changes the name of a data source that matches a regular expression.

Rename a substitution site

Changes the name of a substitution site that matches a regular expression.

Replace reference regular expression

Changes the regular expressions that are used by references.

Unlink a substitution

Removes the links between substitution sites and references and other data sources.

Chapter 11. Reference Guide

Rules that find elements

Find a reference

Returns a reference. Add child conditions to specify the reference to find.

Find a substitution

Returns a substitution site. Add child conditions to specify the substitution site to find.

Find a variable

Returns a variable. Add child conditions to specify the variable to find.

Rules that remove elements

Remove a built in data source

Deletes data sources from the test. Add child conditions to specify the data sources to delete. If you do

not add child conditions, this rule deletes all data sources in the test.

Remove a custom code

Deletes custom code elements from the test. Add child conditions to specify the custom code elements

to delete. If you do not add child conditions, this rule deletes all custom code elements in the test.

Remove a reference

Deletes references from the test. Add child conditions to specify the references to delete. If you do not

add child conditions, this rule deletes all references in the test.

Remove a substitution

Deletes substitution sites from the test. Add child conditions to specify the substitution sites to delete.

If you do not add child conditions, this rule deletes all substitution sites in the test.

Remove a variable assignment

Deletes variable assignments from the test. Add child conditions to specify the variable assignments to

delete. If you do not add child conditions, this rule deletes all variable assignments in the test.

Remove a variable declaration

Deletes variables from the test. Add child conditions to specify the variables to delete. If you do not add

child conditions, this rule deletes all variables in the test.

Error conditions
Error conditions include verification point failures, connection failures, server timeouts, custom code alerts, custom

code exceptions, and problems with data correlation. You can specify an action to take when the error condition

occurs. The Errors report displays the error conditions and error behavior that occurred in a test or schedule.

Page Title Verification Point Failure [HTTP]
The returned title for the primary request for an HTTP page does not match the expected title. The default value of the

expected page title is what is returned between the <title></title> tags during recording. See Specifying the expected

page title on page 461 for more information.

1379

HCL OneTest Performance

1380

Response Code Verification Failure [HTTP]
The returned response code does not match the expected response code. You can specify an exact match or a

relaxed match. See Specifying the expected response code on page 462 for more information.

Response Size Verification Failure [HTTP]
The number of bytes returned does not match the expected number of bytes. You can control how closely the

returned response size must match the recorded response size. See Specifying the expected response size on

page 463 for more information.

Content Verification Point Failure
The received data does not match the expected data. Content verification point controls are protocol-specific.

Connection Failure
The workbench or agent computers cannot connect to the server under test.

Authentication Failure
An attempt to log in to the server under test failed.

End of Dataset reached
The last row of the dataset is reached. See Dataset overview on page for more information.

Reference Extraction Failure
The response received during playback is different from the response received when the test was recorded. Data

correlation failed because the regular expression that is associated with the reference did not match the expected

value.

Substitution Failure
A reference for an expected data substitution is a null reference.

Server Timeout
The server under test does not respond before the timeout interval elapses.

Custom Verification Point Failure
A custom verification point did not return a Pass status after performing a verification written in Java™ code. See

Reporting custom verification point failures on page 873.

Custom Code Alert
Custom code reported an RPTCondition.CustomCodeAlert condition. The following code reports a custom code

alert:

tes.getTestLogManager().reportErrorCondition(RPTCondition.CustomCodeAlert);

See the ITestLogManager Javadoc for more information.

The Javadoc for the test execution services interfaces and classes can be accessed from the product by clicking

Help > Help Contents > HCL OneTest Performance API Reference.

../topics/cdatapool.html
../topics/cdatapool.html
../topics/cdatapool.html
../topics/cdatapool.html

Chapter 11. Reference Guide

Custom Code Exception
The custom code in a test has an exception. By default, HCL OneTest™ Performance exits the user whenever there is

an exception in custom code. For information on setting different actions, see Error-handling behavior on page

Related information

Specifying error-handling behavior on page 466

Resource monitoring data sources
Resource monitoring data can be captured or imported from a number of sources.

IBM® Tivoli® Monitoring
IBM Tivoli® Monitoring monitors and manages system and network applications on a variety of platforms and keeps

track of the availability and performance of all parts of your enterprise network. IBM® Tivoli® Monitoring provides

reports that you can use to track trends and troubleshoot problems.

Not all IBM® Tivoli® Monitoring agents are supported. Over 100 IBM® Tivoli® Monitoring agents are available from

IBM® and non-IBM vendors. The following IBM® Tivoli® Monitoring agents are supported for resource monitoring

data collection:

• Operating system agents

◦ Monitoring Agent for Linux™ OS

◦ Monitoring Agent for UNIX™ OS

◦ Monitoring Agent for Windows™ OS

◦ Monitoring Agent for z/OS®

• Application agents

◦ Monitoring Agent for Citrix

◦ Monitoring Agent for IBM® DB2®

◦ Monitoring Agent for IBM® Tivoli® Composite Application Manager for WebSphere®

◦ Monitoring Agent for IBM® WebSphere® Application Server

◦ Monitoring Agent for IBM® WebSphere® MQ

◦ Monitoring Agent for Oracle Database

◦ Monitoring Agent for SNMP-MIB2 (only)

IBM® DB2® Monitoring
IBM DB2® collects information from the database manager, its databases, and any connected applications. The

snapshot monitor captures the state of database activity at a particular point in time.

IBM® WebSphere® Performance Monitoring Infrastructure
IBM WebSphere® Application Server collects performance data and provides interfaces so that external applications

can monitor that performance data. To help identify performance problems and help tune an environment that runs

web applications, data is collected through the Performance Monitoring Infrastructure (PMI). The Performance

Monitoring Infrastructure is the underlying framework in WebSphere® Application Server that gathers performance

1381

../topics/terrorhandle.html
../topics/terrorhandle.html
../topics/terrorhandle.html
../topics/terrorhandle.html

HCL OneTest Performance

1382

data from various runtime resources, such as Java™ Virtual Machine (JVM) and Thread Pools, and application

components, such as servlets and Enterprise JavaBeans™ (EJB) components.

Java™ Management Extensions
Java Management Extensions (JMX) can monitor performance characteristics of application servers and

applications that are run on application servers. The following application servers support JMX monitoring:

• Apache HTTP Server

• Apache Tomcat

• JBoss Application Server

• Oracle WebLogic Server

• SAP NetWeaver

Java™ Virtual Machines also support JMX monitoring.

Oracle Database Metrics
Oracle Database collects metrics that are related to database health and workload.

UNIX™ rstatd
With the rstatd daemon, users can collect performance statistics remotely from networked UNIX™ (or Linux™)

computers. The rstatd daemon collects statistics that are related to network, virtual memory, interrupt, disk, and

processor usage.

Simple Network Management Protocol (SNMP) agents
The Simple Network Management Protocol (SNMP) is typically used to monitor network health, performance, and

hardware. SNMP agents are software components that are installed on managed devices and collect management

information.

Windows™ Performance Monitor
Windows Performance Monitor (PerfMon) collects data from performance objects. The Microsoft™ Windows™

operating system provides performance objects for the major hardware components: memory, processors, and so on.

Each performance object provides specific performance counters. For example, the Memory object provides a Pages/

sec counter that tracks the rate of memory paging. Other programs on the computer, including Internet Information

Services (IIS) and Microsoft™ SQL Server, can install their own performance objects. For example, a mail server

program might install a mail performance object. The specific counters depend on the version of the Windows™

operating system and on the additional programs that are installed on the computer.

Response time breakdown data sources
Response time breakdown data can be imported from a number of sources.

IBM® Tivoli® Composite Application Manager for Application Diagnostics
IBM Tivoli® Composite Application Manager for Application Diagnostics enables users to view the health of web

applications and servers, then drill down to diagnostic information for specific application requests to identify the root

cause of problems.

Chapter 11. Reference Guide

IBM® Tivoli® Composite Application Manager for Response Time Tracking
IBM Tivoli® Composite Application Manager for Response Time Tracking measures the level of service that the

application delivers to users. It does this by monitoring the availability and response time that users experience at the

client desktop. It works with a wide range of web-based, e-business, and Microsoft™ Windows™ applications that run

in many different environments.

IBM® Tivoli® Composite Application Manager for WebSphere®
IBM Tivoli® Composite Application Manager for WebSphere® provides immediate problem determination, availability

monitoring, and performance analysis for enterprise WebSphere® applications running on Windows™, UNIX™,

OS/400®, and z/OS® environments. IBM® Tivoli® Composite Application Manager for WebSphere® monitors

heterogeneous environments consisting of both mainframes and distributed systems.

IBM® Tivoli® Monitoring for Transaction Performance
IBM Tivoli® Monitoring for Transaction Performance is a centrally managed suite of software components that

monitor the availability and performance of web-based services and Windows™ applications.

Related information

IBM Tivoli Composite Application Manager for Applications

UI preferences
Read the UI preferences topics.

HTTP preferences
You can change the product behavior by changing these HTTP-related settings.

HTTP protocol data view preferences
Preference settings control how protocol data is displayed when tests run.

Access the preference settings for the HTTP protocol data view. Click Window > Preferences > Test > HTTP

Protocol Data View.

Render binary response data

Typically, you leave this box unchecked, because the data is generally unreadable and can cause

temporary high processor usage when converted into text. If enabled, the Response and Browser pages

of the Protocol Data view display unrecognized binary data.

Replay delay

During test debugging, when you replay one virtual user after the run is completed, specify the number

of seconds that the Protocol Data view pauses between showing each page.

1383

https://www.ibm.com/support/knowledgecenter/SS3JRN_7.2.1/com.ibm.itcama.doc_7.2.1/welcome_apps721.html

HCL OneTest Performance

1384

Enable real-time protocol data support for HTTP test

Typically, you leave this box checked and select whether you want to display the Browser tab or the

Event Log tab by default; you can switch between these pages during playback.

Show the following page when launching HTTP test

Specifies which page is displayed when an HTTP test runs.

• Browser: Click to view rendered HTTP pages during playback, thus verifying that a test is

behaving as expected. Because the protocol data is used, the Browser page might not render the

contents exactly as a web browser would.

• Event Log: Click to see a line of summary information for each defined page of the currently

running test. This summary includes a count of verdicts that did not pass, unexpected response

codes, and other items of interest. Click an event to drill down for more detailed information.

Highlight Substitutions in Protocol Data View

This option visibly highlights substituted data in the Request, Response Headers and Response Content

pages of the Protocol Data View when viewing test log or test editor elements that use data correlation.

HTTP recorder preferences
Preference settings control the behavior of the recording wizard.

Access the preference settings. Click Window > Preferences > Test > Recording > HTTP Recording. After changing a

setting, click Apply.

Enable the HCL OneTest™ Performance toolbar in browsers

Click to install the annotation toolbar. This enables you to add comments and transactions, and to

change page names during recording.

Verify annotation toolbar is installed before recording

Click to verify that the annotation toolbar is installed in the web browser before recording.

HTTP test editor preferences
The preference settings on the HTTP page of the test editor control how URLs are displayed in a test and how content

verification occurs.

To access the preference settings for HTTP test editor, click Window > Preferences > Test > Test Editor > HTTP

Test.

You can set the following preferences for the HTTP test editor:

Display decoded URLs whenever possible

Select to decode any encoded element in a URL. Decoding improves readability.

Chapter 11. Reference Guide

Hide HTTP request/response content larger than (kB)

Select to hide data larger than a specific size. The Content area in a response indicates the size of the

hidden data and whether it is binary. To display hidden data, press Ctrl+Shift+Spacebar.

Show in all requests

Select to display the host and port information in every request in the Test Contents area of the test

editor. A test often contains many server connections. When you clear this preference, it is easier to

read a test.

Show on primary requests only

Select to display the host and port information in only the primary request for each HTTP page in the

Test Contents area of the test editor.

Show when different from primary request

Select to display the host and port information in the Test Contents area of the test editor for requests

that use a different connection than the primary request.

Skip responses with binary contents

Select to skip binary response data when you enable content verification points in a test. Content

verification points verify whether specified strings are present in response data.

Create only in primary responses

Select to limit the creation of content verification points to primary responses when you enable content

verification points in a test.

HTTP test generation preferences
Preference settings control how performance tests are generated, such as how tests will process verification points,

data correlation, and generic protocols.

Test generation options

To access the preference settings for test generation options, click Window > Preferences > Test > Test Generation

> HTTP Test Generation, and click the Test Generation Options tab.

Do not generate a new page if think time is less than

Enter the shortest time, in milliseconds, that the generator uses as a delay to emulate user think time for

an HTTP page. If your tests contain fewer pages than expected, try a shorter interval.

Create a new page if delay between requests is greater than

Enter the longest delay, in milliseconds, that the generator allows between page requests. If this time is

exceeded, a new page is generated. If your tests contain more pages than expected, try a longer interval.

1385

HCL OneTest Performance

1386

Maximum request delay

Enter the longest delay, in milliseconds, that the generator allows before truncating HTTP requests. The

requests are truncated on the generated test. The recorded test still contains the original values, and

you can get them back by generating a new test.

Save only the first 4KB of responses larger than

Enter the limit of response data, in KB, that the generator saves. If a response is larger than the specified

limit, only the first 4 KB of data is saved.

Suppress NSLookup() and use numeric IPs

Select this option to shorten test generation time. The disadvantage is that IP addresses in a test are

less user-friendly than web page format (www.example.com).

Disable Page Cache Emulation during test generation

Select this option to disable page cache emulation. When page cache emulation is enabled, caching

information in server response headers is honored. Additionally, requests are not submitted to the

server for content that is confirmed by the client as fresh in the local cache. Page cache emulation is

enabled by default.

Enable domain review before test generation

Clear the check box to not show the test generation page to select specific domains to be added to the

test. By default, in addition to the domain that you intend to record, other domains linked to the original

domain are also recorded.

Remove HTTP request delays from page response times

To not include the client delays in the page response times for the test or schedule, in this context,

is used to refer to both VU Schedule and Rate Schedule, select this check box. By default, the page

response times include delays to represent processing time caused by clients such as a web browser.

Sometimes this delay could exceed the logical limit causing page response times to increase

drastically.

Use Legacy Test Generator

Select this option if you have been instructed to use the legacy HTTP test generator.

Automatically include verification point of

Click to specify the types of verification points to be automatically included. If a check box for a

verification point is selected, the code and edit controls for this type of verification point are generated

in all tests. Verification points can also be enabled or disabled within specific tests.

Relaxed

Response codes that are in the same category (for example, 200, 201, 203, 209) are considered

equivalent. An error is reported if the response code is not in the same category.

Exact

An error is reported if the response code does not match the recorded value exactly.

Chapter 11. Reference Guide

Accept sizes for primary request within

If you are automatically generating response size verification points, click to specify the acceptable size

range for primary requests. No error is reported if a response is within the specified percentage above

or below the expected size. By default, for primary requests, HTTP response size verification points use

range matching.

Data correlation

To access the preference settings for data correlation, click Window > Preferences > Test > Test Generation > HTTP

Test Generation, and click the Data Correlation tab.

Automatically correlate host and port data

By default, host and port data is correlated automatically. If tests in a previous release have significant

manual correlations, or you are using proxies, the migration of the replace-host functionality feature is

likely to fail during playback. In this situation, clear the check box. When you reopen your tests, they will

not have the automatic correlation feature in them.

Automatically correlate URL pathname if redirected by response

Specifies whether URL path names are correlated if they are redirected by a selected response code. If

a check box for a response code is selected, the test generator performs correlations for that response

code. This option applies only to responses that are redirects, with a status code between 300 and 399.

Automatically correlate Referers

By default, the Referer field in an HTTP request header is correlated automatically. Clear the check box

if you plan to correlate Referers manually. If you run tests against servers that do not require a Referer

field, clearing this check box reduces the number of correlations performed when the test runs, and can

increase user throughput.

Enable all other data correlation

By default, request and response data is correlated automatically. Clear the check box to disable

automatic data correlation of request and response data. Consider clearing the check box if you create

your own data correlation rules in the rules editor.

Create substitutions for empty strings

Select this check box to correlate empty strings. For example, strings such as spouse name or middle

initial sometimes become important to correlate. However, correlating empty strings increases the time

to generate a test.

Optimize automatic data correlation for execution

Specifies the characteristic that tests are automated for.

• With the Accuracy setting (the default), many references with an identical session ID value are

created and the value of each session ID is substituted from the nearest previous reference.

• To make a test run faster by reducing the number of references that are created during

automatic data correlation, change the optimization to Efficiency. For example, consider a

1387

HCL OneTest Performance

1388

test where a session ID, which is assigned when a user logs in, is included in every subsequent

request in the test. With the Efficiency setting, all session IDs are substituted from a single

previous reference. The downside of this setting is that it can result in incorrect correlations.

For example, a request that contains the Joe Smith string might be incorrectly correlated with a

request that contains the Joe Brown string.

URL rewriting for execution

Specifies how web addresses (URLs) are rewritten during test execution. When correlating data, the test

generator replaces part of a URL request string with a value that the server returned in response to a

previous request.

• Automatic (default): The test generator automatically determines when rewriting the entire URL

during substitution will facilitate test execution.

• On: Select to rewrite URLs in every instance of data correlation. This produces larger tests that

take longer to run. Try this setting if your tests fail unexpectedly.

• Off: Select to manually correlate the instances where URL rewriting is needed. This setting might

cause execution errors.

URL encoding for execution

With this option, you can control the encoding of the URLs. If you set it to Automatic, the tool detects the

encoding that already exists in the test and applies it to the substitution site. If you set it to ON, the tool

always encodes the substitutions according to the encoding standards. If you set it to OFF, no encoding

occurs.

Note: To turn data correlation off entirely or to set whether names are automatically generated for data

correlation references, click Window > Preferences > Test > Test Generation > HTTP Test Generation, and

click the Data Correlation tab.

Data correlation types

To access the preference settings for types of data correlation, click Window > Preferences > Test > Test Generation

> HTTP Test Generation, and click the Data Correlation Types tab.

Data Correlation Types

Specify when to generate data correlation constructs. With the Automatic setting, the test generator

creates the required constructs where needed. If the test does not contain the required constructs,

change the setting to On, which will always perform data correlation. If tests do not require a specific

construct, select Off, which has the additional benefit of improving performance on subsequent test

generation.

Jazz Foundation Services

The On and Automatic options enable data correlation for Jazz applications that use REST storage or

query APIs from Jazz Foundation Services. An example of such an application is Rational DOORS Next

Chapter 11. Reference Guide

Generation. Although data correlation does not typically apply to browser-based Jazz web clients, it

may be useful for other HTTP client-server applications that use REST services and the Atom Publishing

Protocol for updating web resources.

Jazz Web Applications

The On and Automatic options enable data correlation for Jazz web applications that use the Jazz

Foundation web UI framework Examples of these web applications are the web interfaces for Rational

Quality Manager and Rational Team Concert. Data correlation can also be useful for other web

applications that contain javascript that employs JSON for client-server data exchange. This is a

common practice with DOJO- and AJAX-based applications.

JSON

To perform data correlation on web applications that uses JSON framework, ensure that Automatic or

ON is set to the JSON entry.

Prioritize correlation based on ID

Select On to correlate HTML response code based on its ID attribute. Generally, the HTML response

code after the recording would appears as <input type="username" name="User" id="aaa" value="John"/

>. Some applications dynamically update the name attribute. Therefore, when you play back the test, the

HTML response code would appear as <input type="username" name="idt020" id="aaa" value="John"/>.

Because the name attribute is changes dynamically, data correlation does not occur and the playback

fails. When this option is turned on, the ID attribute is considered as the basis to correlate the name

attribute in the request and to locate the value attribute.

SAP test preferences
You can change the product behavior by changing these SAP-related settings.

SAP test editor preferences
The SAP test editor preferences control the specific behavior of the test editor with SAP test suites.

To access the SAP test editor preferences, click Window > Preferences, expand Test, expand Test Editor, and click

SAP Test Editor. After changing a setting, click Apply.

SAP Protocol Data View

These settings specify how the SAP Protocol Data view is displayed.

SAP GUI object highlight color

This setting specifies the color of the frame that highlights selected objects on the SAP

GUI Screen page of the SAP Protocol Data view. By default, the highlight color is red.

Automatically set focus on SAP Protocol Data view

When enabled, this option automatically ensures that the SAP Protocol Data view is

displayed each time an element is selected in the test editor. Disable this option if

1389

HCL OneTest Performance

1390

you want to hide the SAP Protocol Data view or remove it from the Performance Test

perspective. This option is enabled by default.

SAP recording preferences
Test recorder preferences control the default settings for recording SAP tests.

To access the SAP Test Recorder preferences, click Window > Preferences, expand Test, expand Recording, and click

SAP Recording. After changing a setting, click Apply.

Screen capture options

These settings specify how the test recorder handles the screen captures that are shown in the SAP

Protocol Data view.

None

No screen captures are recorded. This saves disk space, but disables the ability to create

events or verification points from the SAP Protocol Data view.

On SAP screen entry

Screen captures are recorded each time a new screen is displayed in the SAP GUI. The

recorded screen capture shows the initial state of the screen, before user input. This

option is enabled by default.

On SAP screen exit

Screen captures are recorded each time a request is sent to the SAP server. The recorded

screen capture shows the final state of the screen, after user input.

Both

Screen captures are recorded when a new screen is displayed in the SAP GUI and when

the request is sent to the SAP server. The SAP Data Protocol view displays the final state

on the send request elements and the initial state on all other events.

Select a SAPLOGON configuration file

The saplogon.ini configuration file provides a list of SAP system names that are displayed in the

SAP recorder wizard. Use this setting to change the location of the saplogon.ini file.

SAP test generation preferences
Test generation preferences control how SAP tests are generated, such as how tests will process verification points,

data correlation, and the default settings for generated test elements.

To access the SAP Test Generation preferences, click Window > Preferences, expand Test, expand Test Generation,

and click SAP Test Generation. After changing a setting, click Apply.

Automatic Generation

The following settings specify test elements that are automatically generated after recording the test.

Chapter 11. Reference Guide

Use connection by string

When enabled, tests are generated with the connection by string launch method instead of

using the SAP Logon program. This option is enabled by default.

Verification points for SAP screen titles

When enabled, this option generates verification points on screen titles with each SAP

screen. This option is disabled by default.

Verification points for SAP request response time threshold

When enabled, this option generates verification points on the response time of the SAP

server. If the server response time is above the specified threshold, the test produces a

failed verification point. This option is disabled by default.

Calculate threshold from recorded (%)

This specifies the default response time threshold that is calculated when response time verification

points are generated. The threshold value is calculated as a percentage of the actual response time that

was measured during the recording. By default, the response time threshold is generated with a value of

120% of the recorded response time.

Default request timeout [ms]

Specify a timeout value for a request to ping the server. When the request is timed out, it no longer pings

the server for that request.

GUI on execution

During test execution, it might not be desirable to display the SAP GUI. Hiding the SAP GUI improves the

performance of the virtual users. This setting specifies the default behavior when the test is generated.

However, you can change this setting in the test editor by selecting the SAP test element.

Hide GUI during execution

When selected, all instances of the SAP GUI are hidden. In some cases, modal dialog

boxes from the SAP GUI can flash briefly on the screen. This is the default setting.

Note: If you run a test in the hidden mode and the test fails due to modal dialog

boxes or pop-up windows in transactions, you must add the RPT_VMARGS property

with value set to rptSapForceShowNone=true in the Location property.

1391

HCL OneTest Performance

1392

Show GUI for only one virtual user

When selected, the SAP GUI is displayed only for the first virtual user. All other instances

of the SAP GUI are hidden. This allows you to monitor the execution.

Show GUI for all virtual users

When selected, the SAP GUI is displayed for all virtual users.

Password prompt

Specifies behavior of the password request.

Prompt me for password when generating test

When enabled, a password is requested at the end of the recording session. If disabled,

the password is recorded with an empty string. The recorder cannot record the password

during the test. Therefore, if this option is disabled, the test uses an empty string for the

password.

Citrix recorder preferences
Citrix recorder preferences control the behavior of the recording wizard.

To access the Citrix Recorder preferences, click Window > Preferences, expand Test, and click Citrix Recording. After

changing a setting, click Apply.

Screen capture options

These settings specify how the test recorder performs screen captures of the Citrix desktop during

recording.

No automatic screen capture

Select this option if you do not want the test recorder to record screen captures

automatically. When this option is selected, you can still record screen captures manually.

This option is selected by default.

Capture screen every

Select this option to automatically record a periodic screen capture and specify the time

between captures.

Chapter 11. Reference Guide

Capture screen on window creation

Select this option to record a screen capture each time a window object is created in

Citrix.

Exclude tooltips

When Capture screen on window creation is selected, enable this option to prevent

creating a screen capture each time a tooltip event is displayed during the recording. If this

option is disabled, screen captures are recorded when tooltips are displayed.

Capture screen on image synchronization

Select this option to ensure that a screen capture is recorded each time an image synchronization is

recorded.

Citrix test editor preferences
Citrix test editor preferences control the test editor for Citrix performance tests.

To access the Citrix Test Editor preferences, click Window > Preferences, expand Test, expand Test Editor, and click

Citrix Test Editor. After changing settings, click Apply.

Image Previews

These settings specify how screen captures are displayed in the test editor.

Fit screen to visible area

Select this option to automatically fit screen captures to the available area in the test

editor. If disabled, the screen capture will be the actual size, which might require scrolling.

This option is enabled by default.

Draw only last window

Select this option if you want to display only the current window in mouse sequence

actions. When disabled, all recorded windows are displayed. This option is disabled by

default.

Mouse Sequence

These settings specify how mouse sequences are displayed in the test editor.

Display mouse sequences for

This option specifies how you want to display previous, current, or all mouse sequences in

the current mouse sequence.

Current® sequence

Only the current mouse sequence is displayed in the test editor. This option

is selected by default.

1393

HCL OneTest Performance

1394

Previous and current sequences

The current mouse sequence is displayed with any previous mouse

sequences of the current window.

All sequences

All mouse sequences of the current window are displayed simultaneously.

Current® mouse sequence color

This option specifies the color of the currently selected mouse sequence.

Current® mouse sequence bold

Select this option if you want to display the current mouse sequence in bold. This option is

selected by default.

Mouse move sequence color

This option specifies the color of mouse-move sequences when previous or all sequences

are displayed.

Mouse drag sequence color

This option specifies the color of mouse-drag sequences when previous or all sequences

are displayed.

Window color (when screen capture is not available)

This option specifies the color of a rectangle that represents the current window if there is

no screen capture.

Citrix test generation preferences
Test generation preferences control how Citrix performance tests are generated, such as how tests will process

verification points, data correlation, and options of the generated test elements.

Recording Optimization Options

These settings specify how mouse and window events are interpreted in the generated test.

Window activate recording

Specify whether to record no, last, or all window-activate actions when a sequence of

similar actions is detected.

• none disables recording of window-activate events.

• last records only the last of an uninterrupted sequence of window events. This

eliminates redundant window-activate actions from the recording.

• all records all events of the sequence.

Chapter 11. Reference Guide

Mouse move recording

This setting specifies which mouse move events are recorded. Relevant is the default

setting.

• All records an uninterrupted sequence of mouse movements in the generated test.

• Relevant records only the mouse movements that generate a response, such as

hover text.

• First and last records a simplified mouse-move action.

Automatic Generation

These settings specify test elements that are automatically generated after recording the test.

Verification point on every window title change

When enabled, this option generates a window title verification point whenever the caption

changes. If this option is disabled, the window title is verified only when a new window is

created. This option is disabled by default.

Response times for main windows

When enabled, this option generates response time measurements for all recorded main

window-create events. A main window is a window that is created at the top level of the

test contents tree and contains user actions. The generated response time measurement

starts with the keyboard or mouse action that immediately precedes the window-create

event. This option is enabled by default.

Window event synchronization criteria

Use this option to disable window recognition on the window position, size, or title. Disable any of these

options if the test produces synchronization timeouts because a window changes its position, size, or

title between or during test runs.

Default Test Execution Delays

This page specifies the default keyboard and mouse delays for the test client. Do not change these

settings unless you are experiencing problems with events that do not run correctly.

Synchronization timeout delay

This is the delay after which a timeout error is produced when a window event or an image

synchronization element is not recognized during test runs. The default value is 15000

milliseconds. The specified delay is for synchronizations that are set as conditional.

Mandatory synchronizations use a delay of three times the specified delay. Optional

synchronizations use a fixed delay of 2 seconds.

1395

HCL OneTest Performance

1396

Note: In the generated test, the Override synchronization timeout for a particular

window creation event will be enabled with the corresponding recorded time only

if it is greater than what is specified in this preference.

If think time is under x ms, then replace with

If the delay between two events is above the specified limit, then it is handled as a think

time. If the delay is below the limit, then the test generator replaces the think time with

one of the following delays. The think time is the delay spent by a virtual user before

performing an action. The default limit is 20000 milliseconds.

Note: In the generated test, the think time for a particular user action will be

enabled only when the recorded think time is greater than the value specified for

this preference.

Delay between mouse down and mouse up in a click

This is the default delay used to generate a mouse click action using a mouse down and a

mouse up action. The default value is 20 milliseconds.

Delay between two mouse clicks in a double click

This is the default delay used to generate a double-click action using two mouse clicks.

The default value is 50 milliseconds.

Delay between key down and a key up in a stroke

This is the default delay used to generate a key-stroke action using a key-down and a key-

up action. The default value is 20 milliseconds.

Delay between two keyboard strokes in a text input

This is the default delay used to generate a text input action using multiple key stroke

actions. The default value is 50 milliseconds.

Default OCR settings

This page specifies the settings for text extraction by optical character recognition in image

synchronizations. You might need to experiment with various settings to obtain good results. These

settings define the default behavior for new image synchronizations. You can change the behavior for

individual image synchronization elements by changing the OCR settings in the test editor.

OCR default language

This is the language of the dictionary that is used to recognize words for the application

that you are testing. This setting defines the subset of languages that will be available in

image synchronization elements in the test editor.

Chapter 11. Reference Guide

OCR default zoom factor

This is the enlargement factor that is applied to the image. The default setting is medium

for standard font sizes. Increase the zoom factor to improve recognition of smaller fonts

or decrease for larger fonts.

OCR default brightness

This is the brightness level from 0 to 250 that is applied to the image. The default setting

is 70 for text with normal contrast. Increase the brightness setting to improve recognition

of darker images or decrease for lighter images.

OCR default recognition rate

This is the rate of recognition that is required for the extracted string to match the

expected text. Decrease the recognition rate to tolerate a proportion of mismatching

characters in the recognized text. The default is 100%, which means that an exact match

is required.

Socket Test Generation preferences
With the socket test generation preferences, you can change how the test recorder generates new socket tests.

Filters

Select connections in this list to be excluded from the generated test. Click Add Application to filter

connections from a specific program. Click Add Host to filter connections to a specific host.

Strategies

Select a change strategy or click New to add a change strategy. Click Settings to open the Socket

Strategy Settings editor.

Socket Strategy Settings Editor

Use this editor to define rules for merging and handling large numbers of send and receive elements in a socket test.

Send elements

Merge consecutive send elements

Select this option to merge together all the consecutive socket send elements that use the

same connection.

Manipulate data with custom code

Select this option to force all the selected send elements to enable the Manipulate data

with custom code setting with the specified Class name of a custom Java™ class that

uses the API to process data in the socket send element.

Receive Actions

Do not merge

Select this option to keep receive elements unmodified as they are initially recorded.

1397

HCL OneTest Performance

1398

Merge consecutive receive elements

Select this option to merge together all the consecutive socket receive elements that use

the same connection.

Keep only last receive element

Select this option to discard all multiple consecutive receive elements except the last one

recorded.

Response timeout

The maximum delay (in seconds) to receive the first byte of the response. If no data is

received before the end of the response timeout delay, the receive action produces an

error in the test log. The response timeout counter starts when the receive action starts

after the think time; the counter is interrupted when the first byte is received.

End policy

This option specifies when to stop receiving data and to move to the next test element.

• Receives exact number of bytes: The receive action stops when the recorded

number of bytes is received. Specify a Timeout (in seconds) after which the

receive action produces an error in the test log, if the correct number of bytes is

not received. If Link data size is enabled, the receive action expects the number

of bytes displayed in the Data area. If Link data size is disabled, the receive action

expects the number of bytes displayed in Bytes. This is the default setting

• Receives until end of stream: The receive action stops when the connection is

closed by the remote computer. If Accepts empty response is selected, then the

reception of a single byte is not required and the Response Timeout is ignored.

Specify a Timeout (in seconds) after which the receive action produces an error in

the test log, if the correct number of bytes is not received.

• Matches a string: The receive action stops when a specified sequence of bytes is

received. Specify a Timeout (in seconds) after which the receive action produces

an error in the test log, if the correct number of bytes is not received.

• Recognizes a regular expression: The receive action stops when a sequence

of bytes that matches a regular expression is received. Specify a Timeout (in

seconds) after which the receive action produces an error in the test log, if the

correct number of bytes is not received.

• Delegated to custom code: The receive action stops when a condition is met in a

custom Java™ class. This setting allows great flexibility, but requires coding of a

custom Java™ class following the HCL OneTest™ Performance extension API. Click

Generate Code to generate a template based on the API or View Code to open the

specified class in the Java™ editor.

Except when the Receives until end of stream policy is in force, receive actions produce

an error in the test log when the connection is closed by the remote computer.

Chapter 11. Reference Guide

Timeout

For end policies that have a Timeout setting, this setting specifies a delay (in seconds)

after which the receive action produces an error in the test log if the end policy criteria is

not met. The timeout counter starts when the first byte is received.

Citrix monitoring panel reference
The Citrix monitoring panel is an optional panel that displays detailed information and control commands for each

virtual user during the run of a schedule. When enabled, the Citrix monitoring panel is available during the run of a

schedule.

Monitoring Panel

This panel displays information about the execution of each virtual user.

Pool Name

Displays the name of the virtual user pool. There is one pool per location and user group.

Active Virtual Users

Displays the number of virtual users currently active. This value is updated permanently

during the run.

User Action Rate

Displays the number of Citrix user key or mouse actions that were simulated during the

last 5 second interval.

Total Elapsed Time

Displays the total time elapsed since the start of the schedule run.

Current® Action

Displays the last user action executed in the test.

Timeouts

Displays the number of synchronization timeouts for the virtual user. The color represents

the status of the timeout:

• Green: ok.

• Yellow: a timeout occurred on a conditional synchronization.

• Red: a timeout occurred on a mandatory synchronization.

Elapsed Time

Displays the time elapsed since the start of the virtual user run.

Status

Displays the execution status of the virtual user.

1399

HCL OneTest Performance

1400

Go To

Click to display the Citrix session of the selected virtual user.

Pause or Play

Click to pause or resume the execution of the selected virtual user. You can also pause the execution by

setting breakpoints in the test.

Step

When the test is on pause, click to execute each user input action in the test, step by step. To pause test

execution, you can either click the Pause button or set breakpoints in the test. Click Play to resume the

test.

Interact

When the test is on pause, click to allow manual actions in the virtual user session. Use this feature if

a test fails to synchronize or gets stuck in an unexpected state. To pause test execution, you can either

click the Pause button or set breakpoints in the test. Click Play again to resume the test execution at the

point where it was paused.

Stop

Click to stop the execution of the selected virtual user. When all virtual users are stopped, the schedule

ends.

Related information

Enabling and disabling the Citrix monitoring panel on page 843

Debugging tests with the Citrix monitoring panel on page 844

Proxy recording preferences
Use these preferences to specify a list of endpoints to ignore when recording a test with the proxy recorder.

To access the proxy recording preferences, click Window > Preferences, expand Test, expand Recording, and click

Proxy Recording. After changing a setting, click Apply.

Ignore traffic to the following destinations during recording

Select this option to enable filtering of HTTP or HTTPS requests to specific endpoints. Click Add to

add a hostname or IP address to the list of filtered endpoints. You can use the asterisk (*) character to

specify a wild card.

Test editor preferences
The General preferences control what happens when you move test elements, and how digital certificates are

substituted. The Colors and Fonts preferences control how the editor displays dataset and correlation data. The

Search and Replace preferences control the behavior of search and replace.

Chapter 11. Reference Guide

General

Click Window > Preferences > Test > Test Editor, and click the General tab.

Move selected items into new transactions

Controls whether selected elements are automatically moved into new transactions, or whether you are

prompted each time to move them.

Move selected items into new IF/ELSE blocks

Controls whether selected elements are automatically moved into new conditional blocks, or whether

you are prompted each time to move them.

Move selected items into new loops

Controls whether selected elements are automatically moved into new loops, or whether you are

prompted each time to move them.

Move selected items into new random selectors

Controls whether selected elements are automatically moved into new random selectors, or whether

you are prompted each time to move them.

Keep children elements

When you delete a test element that has children elements, controls whether the test element children

are also deleted, or whether you are prompted each time to delete them.

Automatically dataset certificate names

Controls whether and how digital certificate names are included in dataseted.

Automatically adjust "once per user" dataset option

Controls whether and how digital certificates in dataset return dataset rows to a particular virtual user.

Make user-defined strings available to all tests

Click to save user-defined strings for content verification points in the workspace (and thus make them

available to other tests). Click Clear saved to delete all saved strings.

Colors and Fonts

Click Window > Preferences > Test > Test Editor, and click the Colors and Fonts tab.

Here are some tips for working with these settings:

• To change a color, click the color box. From the color palette that opens, choose a different color.

• To save the current settings without closing the window, click Apply.

• To restore the settings to their factory defaults, click Restore Defaults.

• To save and close, click OK.

1401

HCL OneTest Performance

1402

Information background

Click to change the highlighting shade that distinguishes page requests that contain dataset candidates,

data in dataset, or correlated data.

Disabled Elements

Disabled Elements: Enables you to select the prefix and the color for the test elements that you

manually disable. Click Display nested to precede nested elements with a double prefix (////). If you

first disable a test element and then disable an entire test, the test element prefix is ////. Clear Display

nested to display all elements, whether nested or not, with a single prefix (//).

Use color to mark test elements with errors

Click to display in red test elements that have errors.

Appearance color options

Shows the current color settings. Select an element, and then click Foreground or background to

change the settings.

Inline highlighting preview

Enables you to inspect the settings before you actually set them.

Search and Replace

Click Window > Preferences > Test > Test Editor, and click the Search and Replace tab.

Save search text

Click to retain the search text from session to session.

Save selected search types

Click to retain the test elements to search (pages, requests, responses, loops, and so on) from session

to session.

Enable decorations on search results

Click to differentiate between visited and unvisited search results. For example, if you search for a

name, and then click the text in the search result to locate it in the test, the search result will be marked

in the color and the text that you specify.

Report preferences
Report preference settings apply to all protocols.

Test report preferences
The preference settings for test reports control such preferences as the typeface, color, and graph style of reports,

and whether a Compare report is automatically launched when a staged run completes. You can also display a

warning when changing Page Percentile report options will cause data to be lost.

Chapter 11. Reference Guide

To access the Performance Test Reports preference settings, click Window > Preferences > Test > Performance

Test Reports.

You can set the following preferences for test reports:

Default Result Action

Set the report or log viewer to be displayed after a test or schedule is run, or when a prior result is

opened from the Test Navigator view.

Default report preferences
Use this page to select the default report that opens during a run. Typically, you select Determine default report

based on protocols in test, which determines the protocols that you are testing, and automatically opens the

appropriate protocol-specific reports. Select a specific default report to display a customized report or if the default

reports do not meet your needs. Note, however, that you will have to change this setting when you record other

protocols.

Open the Default Report Preferences page. Click Window > Preferences > Test > Performance Test Reports > Default

Report.

Export report preferences
Use this page to automatically export reports to a comma-separated-values (CSV) file at the end of a run. The CSV

file is useful when you run a schedule from the command line because you can automatically export results without

opening the workbench. The CSV file contains metadata about the test run, a blank line, and the report counter data.

Simple CSV format contains only the last data value in the run. Full CSV format contains all data values for every

sample interval during a run.

Open the Export Report Preferences page. Click Window > Preferences > Test > Performance Test Reports > Export

Reports.

Web report preferences
Preference settings control access of reports from external web browser.

To access the preference setting for web report, click Window > Preferences > Test > Performance Test Reports >

Web Reports.

You can set the following preferences for the web reports:

Allow remote access from a web browser

Select this check box to allow access to reports from a web browser.

Allow control of schedule execution from the web browser

Select this check box to control schedule execution from a web browser.

No security is required to access reports

Click this option to allow access to reports without login credentials. Specify a port number.

1403

HCL OneTest Performance

1404

Security is required to access reports

Click this option to provide an authentication layer for accessing reports. Specify a port number and

provide the login credentials.

Percentile analysis preferences
Use this view to customize the percentiles that are reported in the Page Percentile report or to customize the

performance requirements on a percentile response. The defaults, 85, 90, and 95, are sufficient for most purposes.

However, if you need to report on a different percentile set, or to set a different percentile requirement, you can edit

the percentiles or add new percentiles.

Open the Percentile Analysis Targets preference page. Click Window > Preferences > Test > Percentile Analysis

Targets.

Test editor references
To understand the relevance of different UI fields in the test editor of various test extensions, read these topics.

HTTP test editor reference
In HTTP testing, the test editor information is divided into five categories. This section describes the fields in each

category that can be edited manually.

About this task

This section focuses on low-level editing tasks that experienced performance testers do. For information about

the layout of the test editor and the more commonly performed, high-level editing tasks, see Editing HTTP tests on

page 445.

HTTP test details
Test detail fields apply to the entire test.

Common options

Datasets

Lists details about each dataset that the test uses: the name of the dataset, the columns that are

used, and the location in the test where the dataset column is referenced. Click an item in the Location

column to go to that location.

Add Dataset

Click to add a reference to a dataset for test to use. Clicking this option is the same as clicking Add >

Dataset with the test selected.

Delete

Select a dataset reference, and then click to delete the reference from the test. The dataset is still

available to other tests.

Chapter 11. Reference Guide

Show Dataset Candidates

Click to open the Show Dataset Candidates window, where you can review and change data correlation.

Digital Certificates

Lists details about the certificate stores that the test uses. Click Add to add a certificate store for

the test to use. HTTP and SOA support digital certificates. Other protocols do not support digital

certificates.

Enable response time breakdown

Enables collection of response time breakdown data. With response time breakdown, you can see

statistics on any page element. The statistics show how much time was spent in each part of the

system under test. You can use response time breakdown to identify code problems. You can see which

application on which server is the performance bottleneck, and then drill down further to determine

exactly which package, class, or method is causing the problem.

This option is displayed in multiple test elements. Enabling this option in an element also enables it in

the element’s children. For example, enabling monitoring at the test level also enables monitoring at the

page and request levels. You can enable monitoring for a specific page; doing so enables monitoring for

the requests of that page, but not for other pages or their requests.

HTTP and SOA support response time breakdown. Other protocols do not support response time

breakdown.

Security

Digital Certificates

Lists details about the certificate stores that the test uses. Click Add to add a certificate store for the

test to use. Not all protocols support digital certificates.

Enable Kerberos authentication

Select to enable Kerberos authentication. The user ID, password, and realm are supplied when a

Kerberos authentication challenge occurs during playback. If you record a test using no authentication,

and then enable Kerberos authentication on the system under test, select this check box.

User ID

Type the user principal name. The user principal name format consists of the user name, the "at" sign

(@), and a user principal name suffix. Do not use the domain\username format. User IDs are case-

sensitive.

Password

Type the password for the User ID. Passwords are case-sensitive.

1405

HCL OneTest Performance

1406

Client realm

Type the realm of the client application. In Windows environments, the client realm is the Windows

domain name for the computer sending the request to the server. Typically, the client realm is all

uppercase.

Client KDC

Type the name of the client key distribution center. In Windows environments, the client key distribution

center is the hostname of the domain controller for the client realm. By default, the client key

distribution center is set to the domain controller of the computer where the test was recorded. Verify

the default value with your system administrator.

Server realm

Type the realm of the server under test. The client and server might share the same realm. Type

the server realm only if the server realm is different from the client realm. Contact your system

administrator for more information about the server realm.

Server KDC

Type the name of the server key distribution center. In Windows environments, the server key

distribution center is the hostname of the domain controller for the server domain. Type the server key

distribution center only if the server is in a different domain than the client.

Enable response time breakdown

Select to enable the collection of response time breakdown data. You can enable response time

breakdown collection at the parent or page level. Not all test elements support response time

breakdown data collection.

Performance Requirements

Requirements

The table displays the performance and functional requirements that are defined in the test. To edit a

requirement definition, double-click a table row. To return to this table, click the root name of the test in

the Test Contents area.

Clear

Select one or more requirements and click to remove the definition. The requirement is still available

and can be redefined.

Enable response time breakdown

Select to enable the collection of response time breakdown data. You can enable response time

breakdown collection at the parent or page level. Not all test elements support response time

breakdown data collection.

Chapter 11. Reference Guide

HTTP options

Timeout action

Specifies what the test does if the primary request for a page does not succeed within the Timeout

interval. If you select Log error and continue execution, the test logs the error and proceeds to the next

page. If you select Try to reload the page, the test attempts to reload the page one more time. If that

attempt fails, the test logs an error and proceeds to the next page.

Timeout

Specifies the time threshold for initiating the action that you select for Timeout action.

Clear cookie cache when the test starts

This option resets the cookie cache when looping in the schedule or when a test follows another test

in the schedule. By default, the cookie cache for a virtual user is not reset, which is consistent with

browser behavior. If you want each loop iteration to behave as a new user, select this option. Otherwise,

the cookies in the cache might alter the server responses and verification points might fail. To reset the

cookie cache from one loop iteration to the next when looping within a test, add custom code and call

an API.

Clear page cache when the test starts

This option deletes the page cache when a test starts. Typically, when a test follows another test in the

schedule or when you anticipate an out-of-memory exception due to overload, you can delete the cache.

Disable page cache emulation in this test

This option disables page cache emulation. When page cache emulation is enabled, caching

information in server response headers is honored. Additionally, requests are not submitted to the

server for content that is confirmed by the client as fresh in the local cache. Page cache emulation is

enabled by default.

Remove HTTP request delays from page response times

To not include the client delays in the page response times for the test or schedule, in this context,

is used to refer to both VU Schedule and Rate Schedule, select this check box. By default, the page

response times include delays to represent processing time caused by clients such as a web browser.

Sometimes this delay could exceed the logical limit causing page response times to increase

drastically.

Playback speed

Move the slider to increase or decrease the speed at which the HTTP requests are sent. You can specify

a range from no delays to twice the recorded length. This scale is applied to the Delay field of each

request in the test. If you speed playback up dramatically, requests might occur out of order. To fix this

problem, reduce playback speed until the test runs correctly again.

1407

HCL OneTest Performance

1408

Note: To set a maximum request delay, click Window > Preferences > Test > Test Generation >

HTTP Test Generation. Click the Protocol tab, and enter a value for Maximum Request Delay.

Secondary request behavior

Click Modify to disable or reenable requests that occur within a page. You can disable all secondary

requests, images, host-based or port-based requests, or user-defined requests.

Enable response time breakdown

Select to enable the collection of response time breakdown data. You can enable response time

breakdown collection at the parent or page level. Not all test elements support response time

breakdown data collection.

HTTP page details
Page detail fields apply to the page that is currently selected.

General tab

Page title

Specifies the display name for the page. If the primary request returned a title, the display name for

the page is the content between the <title></title> tags. If the primary request returned no title or an

empty title, a name for the page is constructed from the first node in the web address for the primary

request URL, for example, www.site.com/displayname/.... If two pages have the same page title but are

at different web addresses (for their primary request), then a number might be appended to indicate that

they are different (for example, displayname {1}, displayname {2}). The pages are included in reports as

separate pages, with their unique appended names.

Pages with the same title and web address appear in the test editor with the same page title and in

reports as the same page. Rename any pages that you want to be reported on under a different name.

Renaming a page neither changes the value (if any) between the <title></title> tags nor affects how the

test runs.

Primary request

Displays a hyperlink to the primary request for the page. This request is highlighted and is the request

from which the display name for the page is derived.

Think time

Specifies the programmatically calculated time delay that is observed for each user when this test is

run with multiple virtual users. Think time is a statistical emulation of the amount of time actual users

spend reading or thinking about a page before requesting another page from the server.

Test data

Summarizes data substitutions and potential matches in the page. Right-click a row, or select a row and

then click Options, to perform common operations. Double-click a row to navigate to the location where

Chapter 11. Reference Guide

a substitution or potential match occurs. To associate a dataset candidate with a dataset, click the

row, and then click Substitute. To remove a dataset substitution, click the row, and then click Remove

Substitution. To find more locations in the test that have the same value as the selected row, click Find

More. Click the icons to the left of the preview area to switch between an inline view and a hierarchical

view of the selected data.

URL Encode

Indicates whether a test value contains special characters such as spaces or commas. With this option,

special characters are encoded when variable data is substituted from a dataset.

Page title verification point

Indicates whether the page title verification point is enabled for this page. If so, Enable verification point

is selected.

When Enable verification point is selected, the value between the <title></title> tags, if any, is copied

to the Expected page title field on the properties page of the verification point. Click Edit Properties to

change the Expected page title. The value between the title tags is different from the display page title

(the value in the Page title field) that is used for reporting. Changing the Page title does not change the

value between the title tags, and therefore does not affect what is initially copied to the Expected page

title field.

If Enable verification point is selected, the test verifies whether the page returns the value in the

Expected page title field. An error is reported in the test log if the title returned by the primary request

for the page does not contain the expected title. Although the comparison is case-sensitive, it ignores

multiple white-space characters (such as spaces, tabs, and carriage returns).

Enable response time breakdown

Enables collection of response time breakdown data. With response time breakdown, you can see

statistics on any page element. The statistics show how much time was spent in each part of the

system under test. You can use response time breakdown to identify code problems. You can see which

application on which server is the performance bottleneck, and then drill down further to determine

exactly which package, class, or method is causing the problem.

This option is displayed in multiple test elements. Enabling this option in an element also enables it in

the element’s children. For example, enabling monitoring at the test level also enables monitoring at the

page and request levels. You can enable monitoring for a specific page; doing so enables monitoring for

the requests of that page, but not for other pages or their requests.

HTTP and SOA support response time breakdown. Other protocols do not support response time

breakdown.

Advanced tab

Enable Requirements

Select to enable the use of performance and functional requirements for this test.

1409

HCL OneTest Performance

1410

Name

Specifies the name of this set of enabled requirements. By default, it is the URL of the page. Although

you can change the name to improve readability, only the Requirements report uses the changed name.

Other reports use the default name. Click Use Defaults to reset Name to the default value.

Requirement

All performance and functional requirements are displayed in the table. Shaded requirements indicate

that they are undefined. To define a requirement, set an Operator and Value. To apply the defined

requirement to multiple pages, select the pages in the test, right-click the requirement row in the table,

and click Copy Requirements.

Operator

Click this field to display a list of mathematical operators. Select an operator for this requirement.

Value

Click this field to set a numeric time value in milliseconds.

Standard

Select to enable this requirement to be processed by the report as a standard requirement. Standard

requirements can cause a test to fail. Requirements that are not listed as standard do not cause the test

to fail.

Hide Undefined Requirements

Select to prevent undefined requirements from appearing in the table. This hides the shaded rows.

Clear

Select one or more requirements and click to remove the definition. The requirement is still available

and can be redefined.

Error Handling

Click to open the error condition table. You can use error handling to specify an action to take and a

message to log when a specific condition occurs. Conditions include verification point failures, server

timeouts, custom code alerts, and data correlation problems. All conditions are displayed in the table,

along with the action to take and the message to log when the error occurs. To define an error handler,

select a Condition, and then click Edit.

Hide unselected conditions

Click to display only the selected error handlers. Hiding a condition does not deactivate the condition.

HTTP request details
The HTTP request fields are available for a page in the HTTP Request Details pane.

The request fields are applied to the HTTP page that you selected from the Test Content pane. The following table

lists the fields that are available in the General tab of the HTTP Request Details pane:

Chapter 11. Reference Guide

Fields Descriptions

Name
You can enter a name in the Name field for the HTTP request to identify the request in the Page

Element Performance or Page Element Percentile report by using the specified name instead of

Universal Resource Locators (URLs).

If you select the Generate unique names for HTTP requests checkbox from the product pref­

erences, then the Name field has a predefined unique name for the HTTP request. You can go

to Windows > Preferences > Test > Test Generation > HTTP Test Generation to select or clear

Generate unique names for HTTP requests.

After you select Generate unique names for HTTP requests, you can rename the HTTP request

if the predefined name does not suit your requirement.

Note: When you select the Use substituted URL in performance report option from the

Advanced tab of the HTTP Request Details pane, then you must identify HTTP requests

by the URL in the Page Element Performance and Page Element Percentile reports al­

though you provide a name for HTTP requests.

Version
The Version field displays the HTTP version of the page request.

Method
The Method displays the HTTP request method that was used during the recording process.

You cannot change this value unless you add a new request to a test. The Method field includes

the following options:

• GET

• POST

• PUT

• HEAD

• DELETE

• PATCH

• OPTIONS

Primary request

for page
The Primary request for page option displays for the primary request, and you cannot be modify

it. A page can contain only one primary request.

1411

HCL OneTest Performance

1412

Fields Descriptions

Click to set as

primary
The Click to set as primary option displays for all secondary requests.

If you select this option, then the Primary request for page option is moved to the selected re­

quest, and the Click to set as primary option is moved to the original primary request.

Note: Each page can have only one primary request.

Connection
You can specify the connection of the web server in the Connection field. The connection in­

cludes the hostname, that is Fully Qualified Domain Name (FQDN), and the listener port on the

web server.

You can click the name of the Connection to navigate to the Server Access Configuration De­

tails pane where the connection is defined. You can also click Change to update the connection

used for the Request.

Total number of

requests
The Total number of requests field is applied to HTTP Secondary Request Generator.

You can specify the number of requests to send to the server. If there is an array variable as­

signed to the Request, the number of requests set in the Test editor takes precedence.

URL
You can specify the path to a resource (such as a page, graphics file, or stylesheet file) in the

URL field. When the method is GET, then the URL field includes query strings that are designated

as dataset candidates.

Data
You can specify additional content data in the Data field that might be needed to clarify a re­

quest. When the method is POST, the data frequently includes values that are designated as

dataset candidates.

Request Headers
The Request Headers field lists the header of a request and its value.

You can change the value of the header by clicking the Modify option. You can click Add to add

a new header for the request. You can also delete the header for the request by clicking the Re­

move option.

Enable response

time breakdown
You can select the Enable response time breakdown option to trigger the collection of response

time breakdown data. You can also enable the response time breakdown collection at the par­

ent or page level.

Chapter 11. Reference Guide

Fields Descriptions

Note: Some test elements do not support response time breakdown data collection.

The following table lists the fields that are available in the Advanced tab of the HTTP Request Details pane:

Fields Descriptions

Always log details You can select this checkbox to ensure that the details about the request are always logged

in test logs.

Use substituted URL

in performance re­

ports

You can select this checkbox to view the URL substitutions in the Page Element Perfor­

mance and Page Element Percentile reports.

Requirements
This section displays all the performance and functional requirements in a table. The

grayed-out requirements in the table indicate that they are undefined.

You can use the Operator and Value fields to define a requirement.

You can right-click either the Performance or Functional requirement from the table, and

then select Copy Requirements to use the defined requirement in multiple requests.

Enable requirements
You can select this checkbox to enable the selection of the performance and functional re­

quirements for the test.

Name
You can specify a name for the set of defined requirements in the Name field. The default

name is the URL of the request. Although you can change the name to improve readability,

only the Requirements report uses this name. Other reports use the default name.

You can also click the Use Defaults option to reset the value of the Name field to the default

value.

Operator
You can click this field to view the mathematical operators from the list. You can select the

operator from the list to define the Performance or Functional requirements.

Value
You can click this field to provide a value for the Performance or Functional requirements.

Standard
You can clear this field to disable the requirement to be processed by the report as a stan­

dard requirement. The standard requirements can cause a test to fail. The requirements that

are not listed as Standard do not cause the test to fail.

1413

HCL OneTest Performance

1414

Fields Descriptions

Hide Undefined Re­

quirements
You can select this checkbox to hide all the undefined requirement candidates.

Clear
You can click Clear to remove the defined requirements. The requirement is still available

and can be redefined anytime.

Error Handling
You can use Error Handling to specify an action to take and a message to log when a specif­

ic condition occurs. The error conditions in the table include verification point failures, serv­

er timeouts, custom code alerts, and data correlation problems. All error conditions are dis­

played in the table, with action to take and the message to log when the error occurs.

You can select the Condition checkbox from the table to define an error handler. The Errors

page in the report lists the number of errors and the corresponding actions that occurred in

the test or schedule.

Hide unselected con­

ditions
You can select this checkbox to display only the selected error handlers.

Applied transform on

URL
This field indicates the data transformation that is applied to the request. You can click

Change to select a data transformation to apply to the request.

Pre / Postprocessing
You can specify pre and post-processors to modify and inspect certain aspects of the action

before and after it is executed.

You can click Create to create a Java file that contains the skeleton of the Java file needed

for the pre and post-processors. You can also click Browse to navigate to a Java processor

that you have already created.

Character set
This option indicates the character set to be used for the page request. You can click

Change to view and select valid character sets.

Wait for
This option indicates the associated request that must start or finish before the request is

issued. You can click Request to select a different request. You can also click the Clear re­

quest association icon to remove the association.

Release when
You can select a value from the drop-down list to indicate when the request is issued to the

associated request.

Chapter 11. Reference Guide

Fields Descriptions

Additional delay (ms)
This field indicates the additional delay, in milliseconds, to wait before the request is issued.

The delays are statistical emulations of user behavior. You can scale this delay at the test

level to make a test playback faster (or slower) than the speed of the recording process.

Override timeout val­

ue
You can specify the time threshold to initiate the action in the Override timeout value field.

The test waits up to a specified amount of time for a request. If the request arrives before

the timeout limit, the test proceeds to the next action immediately when the request is re­

ceived.

Delay Between Re­

quests
This field applies to HTTP Secondary Request Generator. You can use the delays to control

the flow of requests to the server. You can select a value from the drop-down list in the Re­

lease when field to know when exactly to release the request.

For instance, the First Character Sent option indicates to release the second request after

the first character in the first request that is sent.

Digital Certificates
This field lists the details about the certificate stores that the test uses. You can click Add to

add a certificate store for the test to use.

The HTTP and SOA protocols support digital certificates. The other protocols do not sup­

port digital certificates.

HTTP response data details
Response data fields apply to the response data that is returned by each page request.

General tab

Status

Indicates the status code for the HTTP response, such as 200, 201, 203, or 302.

Version

Indicates the HTTP version, such as 1.1.

Reason

Indicates the code for the HTTP response, such as OK, Found, or Not Found.

Response Headers

Lists each response header and its value. To change the value of a header, click the row, and then click

Modify. To add a new header, click Add. To delete a header, click Remove.

1415

HCL OneTest Performance

1416

Content

Shows the content (such as tagged HTML, graphics files, or stylesheet files) that the web server

returned, based on the corresponding request.

Advanced tab

Applied transform

Indicates the data transform that is applied to the response. Click Change to select a data transform to

apply to the response.

Character set

Indicates the character set to be used for the response. Click Change and select the encoding to change

the character set.

HTTP server access configuration details
Server access configurations store HTTP connection information. By default, a connection does not remain open

across test boundaries. Several connections can use the same server access configuration, and the same connection

can be used by several other requests in the same test. If you change the host, port, or authentication for a server

access configuration, those changes apply to all connections in the test that use the configuration.

Configuration name

Specifies the name of the server access configuration.

Host

Specifies the name of the host for the web server. Usually, this is the fully qualified domain name, but it

can be an IP address or other name.

Port

Specifies the listener port on the web server.

Authentication and security

Indicates whether this connection uses the Secure Sockets Layer (SSL) protocol, the NT/LAN Manager

(NTLM) authentication protocol from Microsoft™, or an HTTP proxy server. A blank field indicates that

the connection is unauthenticated and not secure. To add proxy, SSL, or NTLM authentication, expand

the request, click the connection, and then click Add.

Connections that use this configuration

Lists the connections that use this configuration.

SAP test editor reference
In SAP testing, the test editor information is divided into nine categories. This section describes the fields in each

category that can be edited manually.

Chapter 11. Reference Guide

SAP test details
In the test editor, the test element is the first element in the test suite. These settings apply to the entire test.

SAP options

Display SAP GUI on execution

During test execution, it might not be desirable to display the SAP GUI. Hiding the SAP GUI improves the

performance of the virtual users. This setting specifies the behavior for the current test suite. However,

you can change the default setting for generated tests in the SAP Test Generation preferences.

Hide

When selected, all instances of the SAP GUI are hidden. In some cases, modal dialog

boxes from the SAP GUI can flash briefly on the screen. This is the default setting.

Show

When selected, the SAP GUI is displayed for all virtual users.

Show only first virtual user

When selected, the SAP GUI is displayed only for the first virtual user. All other instances

of the SAP GUI are hidden. This allows you to monitor the execution.

Common options

Datasets

Lists details about each dataset used by the test: the name of the dataset, the columns that are used,

and the location in the test where the dataset column is referenced. Click the location to navigate there.

Add dataset

Adds a reference to a dataset that you want a test to use. Clicking this option is the same as clicking

Add > Dataset with the test selected.

Remove

Removes the selected dataset. This option is not available if the dataset is in use.

SAP connection details
In the test editor, SAP connection elements are at the top of the test site and describe the connection to the SAP

server. These settings apply to the entire test.

SAP system name

This is the description normally used by SAP Logon to identify the server. If the Connection by string

option is selected this field is ignored.

Connection by string

Select this option to use the connection string that was returned by the server when recording to

connect to the server without referring to the SAP Logon program. This is safer when deploying the test

1417

HCL OneTest Performance

1418

on remote computers. Advanced users can edit the connection string if necessary. You can use data

correlation to substitute this value.

Get SAP GUI session statistics

Select this option to record session statistics from the SAP GUI client in the test results. These results

are displayed on the User Load page of the test report.

Use new visual design

Select this option to run tests with a visual design theme when using SAP GUI 7.0 or later. In most

cases, it is best to leave this option disabled, which causes tests to run with the default SAP GUI visual

design and avoids compatibility issues.

Use recorded visual design theme

If Use new visual design is selected, select this option to use the visual design theme that

was used during the recording o

Use other visual design theme

If Use new visual design is selected, select this option to use a specific visual design

theme. Ensure that the name is correct and that the visual design theme is installed on the

test computer. Unexpected results might occur if you specify a visual design theme name

that cannot be located on the test computer.

SAP screen details
In the test editor, SAP screen elements are located in transactions and are the basic performance measurement unit

for the test. These settings apply to the selected get event.

SAP element label

This is the name of the selected SAP test element as it is displayed in the Test Contents. Use this field

to rename the test element, or click Restore Default to revert to the default name.

Title

This is the recorded name of the SAP screen. This field is read-only.

Do not measure performance on this screen

Select this option if you do not want to obtain response time results for the current SAP screen. Use this

for SAP screens that are not meaningful for your test, such as the logon screen.

Optional screen

Select this option if you do not want to log an error when the current SAP screen is not displayed. Use

this for SAP screens that are not always displayed.

Data Table

Summarizes data substitutions and substitution candidates in the SAP screen. Double-click a row to

navigate to the location where a substitution or candidate occurs. To associate a dataset candidate with

Chapter 11. Reference Guide

a dataset, click the row and then click Dataset Variable. To remove a dataset substitution, click the row

and then click Remove Substitution.

Screen Title Verification Point

Enable Verification Point

When selected, the test verifies whether the SAP screen returns the value shown in the Expected screen

title field. An error is reported in the test log if the screen title returned during the test does not match

the expected title.

Expected screen title

This field allows you to specify the expected SAP screen title. By default, the expected title is the

recorded title. The expected title can optionally be expressed as a regular expression.

Recorded screen title

This field displays the recorded title of the current SAP screen. This field is read-only.

Use Regular Expression

Select this option to express the expected title using the standard regular expression syntax.

SAP set details
In the test editor, SAP sets are located in SAP screen elements and describe a user input action in the SAP GUI client.

These settings apply to the selected SAP set.

SAP element label

This is the name of the selected SAP test element as it is displayed in the Test Contents. Use this field

to rename the test element, or click Restore Default to revert to the default name.

Think Time

Specifies the programmatically-calculated time delay that is observed for each user when this test is

run with multiple virtual users. Think time is a statistical emulation of the amount of time actual users

spend reading or thinking before performing an action.

SAP Set

Property name

This is the description of the GUI object related to the current SAP set as it appears to the user in the

SAP GUI. This field is read-only.

Value

This is the value entered by the user in the current SAP set. You can use data correlation to substitute

this value.

1419

HCL OneTest Performance

1420

SAP GUI Object Information

Name

This is the recorded name of the GUI object related to the current element. This field is read-only.

Type

This is the recorded type of the GUI object related to the current element. This field is read-only.

Identifier

This is the recorded identifier of the GUI object related to the current element. This field is read-only.

SAP get details
In the test editor, SAP get events are located in SAP screen elements and provide a way to retrieve data from a SAP

GUI object to implement verification points. These settings apply to the selected get event.

SAP element label

This is the name of the selected SAP test element as it is displayed in the Test Contents. Use this field

to rename the test element, or click Restore Default to revert to the default name.

Think Time

Specifies the programmatically-calculated time delay that is observed for each user when this test is

run with multiple virtual users. Think time is a statistical emulation of the amount of time actual users

spend reading or thinking before performing an action.

SAP Get

Property name

This is the description of the GUI object related to the current event as it appears to the user in the SAP

GUI client. This field is read-only.

Value

This is the value recorded during the test or during the last execution. You can use data correlation to

reference this value. This field is read-only.

Verification Point

Enable Verification Point

When selected, the test verifies whether the screen returns the value specified in Expected Value. An

error is reported in the test log if the value returned during the test does not match the expected value.

Expected Value

This field enables you to specify the expected value for the get event. The expected value can optionally

be expressed as a regular expression. You can use data correlation to substitute this value.

Chapter 11. Reference Guide

Use Regular Expression

Select this option to express the expected value using standard regular expression syntax.

SAP GUI Object Information

Name

This is the recorded name of the GUI object related to the current element. This field is read-only.

Type

This is the recorded type of the GUI object related to the current element. This field is read-only.

Identifier

This is the recorded identifier of the GUI object related to the current element. This field is read-only.

SAP call details
In the test editor, SAP call elements are located in SAP screen elements and describe various recorded interactions

with the SAP server. These settings apply to the selected SAP event.

SAP element label

This is the name of the selected SAP test element as it is displayed in the Test Contents. Use this field

to rename the test element, or click Restore Default to revert to the default name.

Think Time

Specifies the programmatically-calculated time delay that is observed for each user when this test is

run with multiple virtual users. Think time is a statistical emulation of the amount of time actual users

spend reading or thinking before performing an action.

SAP Call

Method name

This is the internal method call used by the SAP GUI client. This field is read-only.

Parameter

If the method uses parameters, one Parameter line is displayed for each parameter. Advanced users

can modify these parameters. Refer to SAP documentation for more information about the parameters

used by SAP GUI method calls. You can use data correlation to substitute this value.

Return

If the method returns a value, a Return line is displayed, which can be used for data correlation or for a

verification point. The value displayed is not the actual return value, but only represents the type of the

parameter, for example, string for a string type or 0 for an integer. Refer to SAP documentation for more

information about the parameters used by SAP GUI method calls.

1421

HCL OneTest Performance

1422

Verification Point

Enable Verification Point

When selected, the test verifies whether the Return value of the SAP call (if any) matches the value

specified in Expected Value. An error is reported in the test log if the value returned during the test does

not match the expected value.

Expected Value

This field enables you to specify the expected value for the call. The expected value can optionally be

expressed as a regular expression. You can use data correlation to substitute this value.

Use Regular Expression

Select this option to express the expected value using standard regular expression syntax.

SAP GUI Object Information

Name

This is the recorded name of the GUI object related to the current element. This field is read-only.

Type

This is the recorded type of the GUI object related to the current element. This field is read-only.

Identifier

This is the recorded identifier of the GUI object related to the current element. This field is read-only.

SAP server request details
In the test editor, server request elements are located at the end of every SAP screen and provide information that the

server returns for the selected screen.

SAP element label

This is the name of the selected SAP test element as it is displayed in the Test Contents. Use this field

to rename the test element, or click Restore Default to revert to the default name.

SAP Screen

Name

This is the name of the current SAP transaction code. This field is read-only.

Program

This is the name of the SAP source program that is currently running. This field is read-only.

Flushes

This is the count of the number of flushes in the automation queue during server communication. This

field is read-only.

Chapter 11. Reference Guide

Response Time

This is the delay between the moment the SAP GUI client sends the request to the SAP server and the

moment the server response arrives. The units are milliseconds. This field is read-only.

Interpretation Time

This is the delay between the moment the data is received by the SAP GUI client and the moment the

screen is updated. It measures interpretation of data by the SAP GUI client, not SAP server performance.

The units are milliseconds. This field is read-only.

Roundtrips

This is the count of token switches between the SAP GUI client and the SAP server to perform the

request. This field is read-only.

Request Time Verification Point

Enable verification point

When selected, the test verifies whether the request time returned by the server is below the specified

threshold value. An error is reported in the test log if the measured request time is above the threshold.

Response time threshold (ms)

This is the request time limit above which an error is reported in the test log.

Request Timeout

Timeout value (ms)

Select this option to change the default timeout value (3 minutes) for very long transactions.

Response time threshold (ms)

The test verifies that the request time returned by the server is below the specified threshold value. An

error is reported in the test log if the measured request time is above the threshold.

SAP batch connection details
In SAP batch input tests, SAP batch connections contain the basic connection information for a batch input test to

connect to the SAP server without a SAP GUI. In most cases, these details are the same as those used when you

connect manually to SAP with the SAP GUI.

SAP element label

This is the name of the selected SAP test element as it is displayed in the Test Contents. Use this field

to rename the test element, or click Restore Default to revert to the default name.

SAP Batch Input Connection

Client

This is the SAP client number that is used by the batch input test to connect to the SAP server. You can

use data correlation to substitute this value.

1423

HCL OneTest Performance

1424

User

This is the user name that the batch input test uses to connect to the SAP server. You can use data

correlation to substitute this value.

Password

This is the password that the batch input test uses to connect to the SAP server. You can use data

correlation to substitute this value.

Language

This is the two-letter language code. You can use data correlation to substitute this value.

Host

This is the IP address or computer name of the SAP server. You can use data correlation to substitute

this value.

System Number

This is the system number of the SAP server. You can use data correlation to substitute this value.

Additional SAP Connection Properties

Use this list to specify any advanced SAP Java™ Connector (JCo) properties for advanced SAP router

setup. Select the JCo property that you want to set in the Property name list, and type the required value

in Property value. Click Add to add more properties.

Test Connection

Use this button to test the connection to the SAP server.

SAP batch input transaction details
In the SAP batch input tests, SAP batch input transactions are located in transactions and are recorded transactions

that are to be run at a low level, without a SAP GUI, in order to produce a load on the SAP server.

SAP element label

This is the name of the selected SAP test element as it is displayed in the Test Contents. Use this field

to rename the test element, or click Restore Default to revert to the default name.

SAP Batch Input Transaction

Code

This is the SAP transaction code of the recorded transaction.

Mode

This is the mode of the batch input transaction as it was recorded in the SAP GUI.

Data table

This is the data table of the batch input transaction as it was recorded in the SAP GUI. See the SAP

documentation for details on the contents of the recording.

Chapter 11. Reference Guide

Citrix test editor reference
In Citrix testing, the test editor information is divided into eleven categories. This section describes the fields in each

category that can be edited manually.

Citrix test details
In the test editor, the Citrix Test is the first element of a Citrix test. These settings apply to the entire Citrix test.

Citrix options

Synchronization timeout delay

This is the delay after which a timeout error is produced when a window event is not recognized during

test execution. The default value is 6000 milliseconds.

Delay between mouse down and mouse up in a click

This is the default delay used to generate a mouse click action using a mouse down and a mouse up

action. The default value is 50 milliseconds.

Delay between two mouse clicks in a double click

This is the default delay used to generate a double-click action using two mouse clicks. The default

value is 200 milliseconds.

Delay between key down and a key up in a key stroke

This is the default delay used to generate a key stroke action using a key down and a key up action. The

default value is 100 milliseconds.

Delay between two keyboard strokes in a text input

This is the default delay used to generate a text input action using multiple key stroke actions. The

default value is 500 milliseconds.

Common options

Datasets

Lists details about each dataset used by the test: the name of the dataset, the columns that are used,

and the location in the test where the dataset column is referenced. Click the location to navigate there.

Add dataset

Adds a reference to a dataset that you want a test to use. Clicking this option is the same as clicking

Add > Dataset with the test selected.

Remove

Removes the selected dataset. This option is not available if the dataset is in use.

1425

HCL OneTest Performance

1426

Citrix session details
In the test editor, the session is located at the top of the Citrix test. Session settings apply to connection with the

server.

Session Attributes

Session Title

This is the name of the current session. By default, it is the same as the name of the test.

Server Address

This is the address of the Citrix server. The value can be a host name or an IP address. This value can

be linked to a dataset.

Initial Program

This is the name of a published application on the Citrix server. Use this option to manually specify a

published application if no Independent Computing Architecture (ICA) file is available. If no published

application and no ICA file is specified, the session starts with the Windows™ desktop.

ICA File

If you recorded the test with an ICA file, this is the location and name of the file. The ICA file contains

connection and application information to launch directly a published application with the Citrix XenApp

client.

User name and Password

These fields allow you to specify user authentication information. These values can be linked to a

dataset.

Color Depth

This is the recorded color depth for the Citrix XenApp client. This value is read-only.

Screen Size

This is the recorded screen resolution for the Citrix XenApp client. This value is read-only.

Response Time Definitions

This table defines the response time measurements that will be performed during the test. By default, response times

are automatically generated on main create window events.

Response Time

This is the name of the response time measurement. To change a name, select a response time and

click Rename. These names appear in the performance test report.

Started by

This is the user input action that triggers the start of the response time measurement. To navigate to

the corresponding user input action in the test editor, click Go to Start.

Chapter 11. Reference Guide

Stopped by

This is the user window event that stops the response time measurement. To navigate to the

corresponding user input action in the test editor, click Go to Stop.

Add, Rename and Delete

These buttons allow you to manually create, rename or delete a response time measurement.

Citrix window details
In the test editor, the Citrix window elements contain all user input actions and window events. These settings apply

to the selected window element.

Window Title

This is the title of the window as displayed in the Citrix session. Some windows do not have titles, and

the window ID is used for identification. This field is read-only.

Window ID

This is the window ID number attributed by the Windows™ operating system when the window is created

during the recording session. This number changes each time the test is executed, but the ID remains

the same throughout a session. This field is read-only.

Locations

This field displays the X and Y coordinates of the top left corner of the window and size of the window in

pixels. This field is read-only.

Window recognition during execution uses

This option allows you to disable window recognition on window position or size. Disable any of these

options if the test produces synchronization timeouts because a window changes its position or size

between or during test runs.

Parent Window

This is a link to the window element that is the parent of the selected window.

Go to same occurrences of this window

Use these navigation buttons to navigate through the test to other occurrences of this window, for

example if during a test the user switches back and forth between windows, or if the current window is

modified in any way.

Styles

Window Styles

This area lists the style properties that are enabled for the current window. These are read-only.

Window Extended Styles

This area lists the extended style properties that are enabled for the current window. These are read-

only.

1427

HCL OneTest Performance

1428

Verification Point

Enable Verification Point

When selected, the test verifies whether the window returns the title shown in the Expected title field. An

error is reported in the test log if the title returned during the test does not match the expected title.

Use Regular Expression

Select this option to express the expected title using standard regular expression syntax.

Expected title

This field allows you to specify the expected title for the window. The expected title can optionally be

expressed as a regular expression.

Recorded title

This displays the title that was recorded for the current window. This field is read-only.

Citrix window event details
In the test editor, the Citrix window event elements are located inside window elements and describe any changes to

the location or size of a window. These settings apply to the selected window event element.

Type of Event

This is the type of window event.

Window ID

This is the window ID number attributed by the Windows™ operating system when the window is created

during the recording session. This number changes each time the test is executed, but the ID remains

the same throughout a session. This field is read only.

Window Title

This is the title of the window as displayed in the Citrix session. Some windows do not have titles, and

the window ID is used for identification. This field is read only. You can click the window title to select

the window element in the test contents.

Window Title

This is the title of the window as displayed in the Citrix session. Some windows do not have titles, and

the window ID is used for identification. This field is read only. You can click the window title to select

the window element in the test contents.

Synchronization state

This describes the behavior of the test if a synchronization timeout occurs on the window event. The

base timeout delay is specified in the Citrix test generation preferences, however the actual delay varies

with the level of synchronization.

Chapter 11. Reference Guide

Conditional

The conditional timeout delay is the base timeout delay as specified in the Citrix test

generation preferences. If the synchronization fails, the test tries to resume execution and

a timeout is logged in the Citrix performance report and the test log.

Mandatory

The mandatory timeout delay is three times the base timeout delay. If the synchronization

fails, the test exits with an error status and a timeout is logged in the test log.

Optional

The optional timeout delay is fixed at 2 seconds. If the synchronization fails, the test

ignores the timeout.

Response Time

Stop response time for

Select this option to use the current window event to stop a response time measurement. When you

select this option on an window event that is not already linked to a response time, a new response time

is created with a default name. If there are response times that do not have a stop action, then these are

also listed. Select the response time that you want to link to.

Go to response time definition

Click here to navigate to the session element to view the Response Time Definitions table.

Citrix key action details
Citrix key action fields apply to the selected key action element.

Type

This is the type of key action.

• Key Down: The key is pressed.

• Key Up: The key is released.

• Key Stroke: The key is pressed and released.

Key Code

This is the code of the key as interpreted by the Windows™ operating system.

Character

This field displays the actual key combination that is interpreted.

Modifiers

These options allow you to specify the standard keyboard modifiers: Control, Shift, Alt, or Extended.

1429

HCL OneTest Performance

1430

Think Time

Enable Think Time

Select this option to specify a think time for the current user input action.

Think Time

Specifies the programmatically calculated time delay that is observed for each virtual user when this

test is run with multiple virtual users. Think time is a statistical emulation of the amount of time actual

users spend reading or thinking about an input before performing the action.

Character edition

Enter a character

This area allows you to enter any key combination to produce Unicode characters that are not normally

available through single keystrokes. Select the input field and enter the character on your keyboard. The

Key Code and Character fields display the corresponding character.

Note: The workbench uses some key combinations as keyboard shortcuts. Such combinations

can be intercepted and cause undesirable actions instead of displaying a particular character in

the Character field.

Response Time

Start response time for

Select this option to use the current input action to trigger the start of a response time measurement.

When you select this option on an input action that is not already linked to a response time, a new

response time is created with a default name. If there are response times that do not have a start action,

then these are also listed. Select the response time that you want to link to.

Go to response time definition

Click here to navigate to the session element to view the Response Time Definitions table.

Citrix mouse action details
In the test editor, mouse action elements are located in window elements and describe mouse input. These settings

apply to the selected mouse action element.

Type of Event

This is the type of mouse action:

• Mouse Down: The mouse button is pressed.

• Mouse Up: The mouse button is released.

• Mouse Click: The mouse button is pressed and released.

• Mouse Double Click: The mouse button is clicked twice.

• Mouse Move: The mouse is moved to a new location.

Chapter 11. Reference Guide

X Position and Y Position

These are the coordinates of the mouse action. In the case of a mouse move action, these are the

coordinates at the end of the movement.

Buttons

These are the buttons that are activated, if any.

Think Time

Enable Think Time

Select this option to specify a think time for the current user input action.

Think Time

Specifies the programmatically calculated time delay that is observed for each virtual user when this

test is run with multiple virtual users. Think time is a statistical emulation of the amount of time actual

users spend reading or thinking about an input before performing the action.

Response Time

Start response time for

Select this option to use the current input action to trigger the start of a response time measurement.

When you select this option on an input action that is not already linked to a response time, a new

response time is created with a default name. If there are response times that do not have a start action,

then these are also listed. Select the response time that you want to link to.

Go to response time definition

Click here to navigate to the session element to view the Response Time Definitions table.

Citrix text input details
In the test editor, text input action elements are located under window events and describe a series of key strokes.

These settings apply to the selected text input element.

Value

Specify a string or portion of text that can be entered during the test. You can use references or dataset

variables.

Think Time

Enable Think Time

Select this option to specify a think time for the current user input action.

Think Time

Specifies the programmatically calculated time delay that is observed for each virtual user when this

test is run with multiple virtual users. Think time is a statistical emulation of the amount of time actual

users spend reading or thinking about an input before performing the action.

1431

HCL OneTest Performance

1432

Response Time

Start response time for

Select this option to use the current input action to trigger the start of a response time measurement.

When you select this option on an input action that is not already linked to a response time, a new

response time is created with a default name. If there are response times that do not have a start action,

then these are also listed. Select the response time that you want to link to.

Go to response time definition

Click here to navigate to the session element to view the Response Time Definitions table.

Citrix mouse sequence details
In the test editor, Citrix mouse sequence elements are located under window elements and describe a series of

mouse movements. These settings apply to the selected mouse sequence element.

Display mouse sequences for

This option specifies how you want to display previous, current, or all mouse sequences in the current

mouse sequence:

Current® sequence

Only the current mouse sequence is displayed in the test editor. This option is selected by

default.

Previous and current sequences

The current mouse sequence is displayed with any previous mouse sequences.

All sequences

All mouse sequences are displayed simultaneously.

Fit screen to visible area

Select this option to adjust the display of the mouse sequence to the available area in the test editor. If

disabled, the screen capture will be the actual size, which might require scrolling. This option is enabled

by default.

Screen capture area

This area represents the mouse movements on the screen. If a screen capture was recorded, it is

displayed in the background. Mouse sequences are displayed as specified.

Citrix screen capture details
In the test editor, screen captures display a graphical overview of the state of the application at a given moment in the

test, providing you with a point of reference for navigating through the test.

Screen captures are obtained by clicking the Capture screen button in the Citrix Recorder Control window during

recording.

Chapter 11. Reference Guide

Session Attributes

Locations

These are the screen coordinates and the size of the captured screen area.

Screen Capture Preview

This section displays a view of the screen or screen area that was captured during the recording.

Fit screen to visible area

Select this option to resize the screen capture to the available space in the test editor.

Citrix image synchronization details
In the test editor, the Citrix image synchronization allows Citrix performance tests to keep track of the contents of a

screen area during the replay. These settings apply to the image synchronization element that is selected.

Image synchronization attributes

Locations

These are the coordinates of the top left corner of the image synchronization area, and the size of the

image synchronization area in pixels. This field is read only.

Synchronization state

This describes the behavior of the test if a synchronization timeout occurs on the image. The base

timeout delay is specified in the Citrix test generation preferences, however the actual delay varies with

the level of synchronization.

Conditional

The conditional timeout delay is the base timeout delay as specified in the Citrix test

generation preferences. If the synchronization fails, the test tries to resume execution and

a timeout is logged in the Citrix performance report and the test log.

Mandatory

The mandatory timeout delay is three times the base timeout delay. If the synchronization

fails, the test exits with an error status and a timeout is logged in the test log.

Optional

The optional timeout delay is fixed at 2 seconds. If the synchronization fails, the test

ignores the timeout.

Image synchronization preview

This is the screen capture of the image synchronization area as it was recorded. Select Fit screen to

visible area to limit the size of the screen capture in the test editor.

1433

HCL OneTest Performance

1434

Synchronization

Bitmap hash code

This specifies that the synchronization will be evaluated on the bitmap hash code. A hash code is a

unique number that is calculated from the image of the selected area. When an image synchronization

is encountered during test execution, the test calculates the hash code on the selected area and

synchronizes the test if the hash code of the screen area matches the expected hash code before a

timeout occurs.

Optical character recognition

This specifies that the synchronization will be evaluated on a recognized text value. Optical character

recognition extracts a text string from the selected image area. When an image synchronization is

encountered during test execution, the test continually applies text recognition to the selected area

and synchronizes the test as soon as the extracted text value matches the expected text value before a

timeout occurs.

Value

This page specifies the expected value depending on the specified recognition technique. You can add

alternate values by clicking Add so that the image synchronization can succeed in multiple conditions.

Alternate values are evaluated in the same way as the main expected value.

Bitmap hash code

When Bitmap hash code is selected, this is the hash code that was calculated on

the selected image area during the recording. After executing a test, you can create

alternate hash code values by copying the resulting hash codes from the Citrix image

synchronization view.

Expected text

When Optical character recognition is selected, this is the expected text value that was

extracted by the optical character recognition from the selected image area. Click Extract

text to extract a text string from the selected image area.

If the text extraction is unsuccessful, try changing the text recognition settings on

the Options page. However, accuracy of the recognized text is not essential. It is only

important that the recognized text is consistent each time the test is executed for the test

to synchronize.

Use regular expression

Select this option to express the expected text string using standard regular expression

syntax.

Options

This page specifies the settings for text extraction by optical character recognition. You might need to

experiment with various settings to obtain good results. After changing a setting, click the Value tab

and click Extract text to see if the text recognition has improved. Note that because optical character

Chapter 11. Reference Guide

recognition is used for verification purposes, consistency of the results in more important than the

accuracy of the extracted text.

Zoom factor

This is the enlargement factor that is applied to the image. The default setting is medium

for standard font sizes. Increase the zoom factor to improve recognition of smaller fonts

or decrease for larger fonts.

Language

This is the language of the dictionary used by the text recognition synchronization. Select

the language of the application you are testing. If the language of your application is not

available in the list, change the language setting in the Default OCR settings of the Citrix

Test Generation preferences.

Brightness

This is the brightness level from 0 to 250 that is applied to the image. The default setting

is 70 for normally contrasted text. Increase the brightness setting to improve recognition

of darker images or decrease for lighter images.

Recognition rate

This is the rate of recognition required for the extracted string to match the expected text.

Decrease the recognition rate to tolerate a proportion of mismatching characters in the

recognized text. The default is 100%, which means that an exact match is required.

Verification Point

Enable verification point on synchronized element

When selected, the test verifies whether the image synchronization succeeds. If the synchronization

produces a timeout, the verification point returns a fail status in the Citrix performance test report.

Response Time

Stop response time for

Select this option to use the current image synchronization to stop a response time measurement.

When you select this option on an image synchronization that is not already linked to a response time,

a new response time is created with a default name. If there are response times that do not have a stop

action, then these are also listed. Select the response time that you want to link to.

Go to response time definition

Click here to navigate to the session element to view the Response Time Definitions table.

Citrix logoff details
In the test editor, the logoff element is located at the end of the Citrix test. The logoff element is created only when

the recording is stopped by clicking

Stop Recording

1435

HCL OneTest Performance

1436

in the Recorder Control window. Other methods of ending a recording, such as closing the Citrix XenApp client or

closing the Windows™ session, do not create a session logoff element in the generated test.

Session Logoff Attributes

Session Title

This is the name of the current session. By default, it is the same as the name of the test.

Type of Event

Select whether the logoff element performs a Logoff or a Disconnect event.

Think Time

Enable Think Time

Select this option to specify a think time for the current user input action.

Think Time

Specifies the programmatically calculated time delay that is observed for each virtual user when this

test is run with multiple virtual users. Think time is a statistical emulation of the amount of time actual

users spend reading or thinking about an input before performing the action.

VU Schedule editor reference
Most VU Schedule editor settings apply either to the entire schedule or to individual user groups.

Schedule properties
When you open a schedule, you can set its properties.

User Load page

Right-click in the table, and select Add to add a stage. To modify a stage, select the row, and then clickEdit or click the

user icon in the first column.

Users

Enter the total number of users to be active in the stage (not the number of users to add or subtract to

those currently running).

Run for specified period of time

Enter the length of time (and the time units) for the stage to run. When the specified number of users is

achieved, the users will run for up to this time. When the time expires, the users continue to run if they

are required for the next stage; otherwise, they are stopped gracefully.

Click Show Advanced to set further options to prepare the system under test before the users actually enter the

stage:

Chapter 11. Reference Guide

Change Rate

Enter a number to set a delay between adding or removing each user, rather than adding them or

subtracting them all at once. Staggering users avoids overloading the system, which can cause

connection timeouts. The User Load Preview shows this delay in black.

Settle Time

A system under test might react to a sudden change in user population. With a defined settle time,

which starts when the target number of users is reached, the system under test can settle into a steady

state so that it can accurately reflect the user population. The User Load Preview shows this time in

black.

Time limit for a user to respond to a stop request

Optionally enter a value. When a virtual user is asked to stop, it completes its current action (such as an

HTTP request) and then finishes. If a virtual user has not finished within the specified time limit, the user

is forced to finish.

User Load Preview

Previews the user population stages over time. The red line segments indicate that the total number of

users has been achieved for the state.

Think Time page

Use the recorded think time

Select to play back a test at the same rate that it was recorded. This option has no effect on the think

time.

Specify a fixed think time

Each user's think time is exactly the same value: the value that you specify. Although this does not

emulate users accurately, it is useful if you want to play a test back quickly.

Increase/decrease the think time by a percentage

Type a percentage in Think time scale. Each user's think time is multiplied by that percentage. A value

of 100 causes no change in think times. A value of 200 doubles the think times, so the schedule plays

back half as fast as it was recorded. A value of 50 reduces the think times by half, so the schedule plays

back twice as fast. A value of 0 indicates no delays.

Vary the think time by a random percentage

Each user's think time is randomly generated within the upper and lower bounds of the percentages

that you supply. The percentage is based on the recorded think time. For example, if you enter 10 in

Lower limit and enter 90 in Upper limit, the think times will be between 10 percent and 90 percent of the

original recorded think time. The random time is uniformly distributed within this range.

Maximum think time

Setting a maximum think time is useful with tests that emulate actual think times. By setting a

maximum, you do not have to search for and edit each long think time within a test. Numerous factors

1437

HCL OneTest Performance

1438

can generate long think times, for example, you might be interrupted while recording. To restore the

original think times, clear this check box.

Resource Monitoring page

Enable resource monitoring

Select to activate resource monitoring. The available data sources are captured from these sources:

• Apache HTTP Server Managed Beans

• Apache Tomcat Managed Beans

• IBM® Tivoli® monitoring agents

• IBM® DB2® snapshot monitors

• The IBM® WebSphere® Performance Monitoring Infrastructure

• JBoss Application Server Managed Beans

• Java™ Virtual Machine Managed Beans

• Oracle Database

• Oracle WebLogic Server Managed Beans

• SAP NetWeaver Managed Beans

• the UNIX™ rstatd monitor

• Simple Network Management Protocol (SNMP) agents

• Windows™ Performance Monitor

Resource monitoring data can provide a more complete view of a system to aid in problem

determination.

Ignore invalid resources when executing the schedule

Select this setting to suppress any error messages that invalid resources cause, such as unreachable

hosts or invalid host names. If you select this option, you must view logs to see error messages.

Statistics page

Statistics log level

These options are listed in order of the increasing amount of data that they collect for the test log.

None

Collects minimal statistical data. Use this option to run a schedule quickly for testing

purposes.

Schedule Actions

Reports the number of active and completed users in the run.

Primary Test Actions

For HTTP tests, this option reports page-related actions (attempts, hits, and verification

points). For SAP tests, this option reports information on SAP screens.

Chapter 11. Reference Guide

Secondary Test Actions

For HTTP tests, this option reports information that is related to page elements. This

option does not apply to SAP tests.

All

Provides statistics for all actions.

Statistics sample interval

Sets the sampling interval for reports. When you run a schedule, the reports show such information as

response time during a specific interval, the frequency of requests being transferred during an interval,

and the average response trend during an interval. You set this sampling interval here.

Note: In HCL OneTest™ Performance 9.1.1 and later, during a test or schedule run, the Elapsed

Time value is updated every 5 seconds irrespective of a value set in the Statistics sample

interval field. You can view the Elapsed Time value that is changing in the Run Summary section

on the Performance Summary tab of the report.

Only store All Hosts statistics

Select this option unless you are running a performance test over different WANs, and you are

interested in seeing the data from each remote computer.

Variable Initialization

Use this page to initialize variables at the schedule level. When you initialize variables at the schedule level, all the

user groups in the schedule use the variable initial values, except those for which a specific value is defined.

Add

Add a variable and initialize a value. The Used by column displays the test name that uses the

corresponding variable. A warning icon is displayed for a variable that overrides the value specified at

the schedule level or user group level and uses the value defined at the test level with the visibility set to

This test only. Hover the cursor over the warning icon to view the tests that override the variable initial

values.

Export

Export the variables defined at the schedule level to a file.

Use variable initial values file

Select this check box to use the variable values from a file. Click Browse to select an existing file or click

New to create a file.

Performance Requirements page

Enable Requirements

Select to enable the use of performance and functional requirements for this schedule.

1439

HCL OneTest Performance

1440

Name

Specifies the name of this set of requirements. This name is used in the Requirements report. By

default, the name is Performance Schedule -schedule_name.

Use Defaults

Click to reset Name to the default value.

Requirement

All the requirements are displayed in the table. Shaded requirements are not defined for this schedule.

To define a requirement, set an Operator and Value.

Expand the Custom section, and then double-click the row to add the counter information generated by

using the custom code to the requirement.

Operator

Click this field to display a list of mathematical operators. Select an operator for this requirement.

Value

Click this field to set a value for the requirement.

Standard

Select to mark the requirement as standard. If a standard requirement is not met, the schedule run will

have a verdict of fail, and this verdict will roll up to the entire run, like a verification point failure. Clear to

make the requirement supplemental. In general, supplemental requirements are those that are tracked

internally. A supplemental requirement cannot cause a run to fail, and its results are restricted to one

page of the Requirements report.

Hide Undefined Requirements

Select to see only the requirements that you have defined. This hides the shaded rows.

Clear

Select one or more requirements and click to remove the definition. The requirement is still available

and can be redefined.

Test Log page

The default setting, to log all errors and warnings and primary test actions, fits most purposes. However, you can log

any type of information, from no information to all information from all users, although neither is typical.

• To see only errors and warnings, set the first twoWhat to Log check boxes to All; then clear the third check

box, And also show all other types, to avoid logging successful events.

• To check the structure of a schedule, when you are not interested in the test execution results, set all three

What to Log check boxes to Schedule Actions.

Both choices and the default setting limit the size of the test log and reduce the total time to run the schedule

by significantly reducing the test log transfer time at the end of a test.

Chapter 11. Reference Guide

If you are debugging a test, you might set all three What to Log fields to All or Action Details. These settings produce

large test logs, especially if your tests are long or you are running a large number of users. Large test logs, in turn,

increase the test log transfer time, and might even cause your computer to run out of disk space.

To reduce transfer times and the likelihood of running out of disk space, sample information from a very small subset

of users; smaller even than the default of 5 users per user group. A fixed sampling rate samples the same number of

virtual users from each group. A percentage sampling rate samples a percentage of virtual users from each group,

but guarantees that at least one user is sampled from a group.

Response Time Breakdown page

Enable collection of response time data

Select to activate response time breakdown collection. This data shows you the response time

breakdown for each page element.

Detail level

Select Low or Medium to limit the amount of collected data.

Only sample information from a subset of users

If you set the detail level to High or Medium, set a sampling rate to prevent the log from getting too

large.

Fixed number of users

The number that you select is sampled from each user group. Unless you have specific reasons to

collect data from multiple users, select Fixed number of users, and specify one user per user group.

Percentage of users

The percentage that you select is sampled from each user group, but at least one user is sampled from

each user group.

Problem Determination page

Problem determination log level

In general, change the problem determination level only when asked to by IBM® Software Support.

However, under certain conditions, you might want to change the problem determination level. For

example, if problems occur when a run reaches a certain number of users, you might increase the level

to Config, which is the most detailed level to use without consulting IBM® Software Support.

Only sample information from a subset of users

Select this option to set a sampling rate.

Fixed number of users

Specify the number of users to sample from each user group.

1441

HCL OneTest Performance

1442

Percentage of users

The percentage that you select is sampled from each user group, but at least one user is sampled from

each group.

User group properties
When you open a user group, you can set these properties.

Group size

Specifies either an absolute number of users, or a percentage of users, which you control dynamically.

Locations

Run this group on the local computer

Indicates that the user group should be run on your computer.

Run this group at the following locations

Indicates that the user group should be run on one or more remote computers, at the indicated

locations. Typically, you run a user group at a remote location if you are running a large number of virtual

users.

Options

Use the Options page to override the think time behavior of your schedule for a specific user group and to specify

protocol specific options.

Override think time option

Select this check box to specify a think time behavior for the current user group.

Use the recorded think time

Select to play back a test at the same rate that it was recorded. This option has no effect on the think

time.

Specify a fixed think time

Each user's think time is exactly the same value: the value that you specify. Although this does not

emulate users accurately, it is useful if you want to play a test back quickly.

Increase/decrease the think time by a percentage

Type a percentage in the Think time scale. Each user's think time is multiplied by that percentage. A

value of 100 causes no change in think times. A value of 200 doubles the think times, so the schedule

plays back half as fast as it was recorded. A value of 50 reduces the think times by half, so the schedule

plays back twice as fast. A value of 0 indicates no delays.

Vary the think time by a random percentage

Each user's think time is randomly generated within the upper and lower bounds of the percentages that

you supply. The percentage is based on the recorded think time. For example, if you select a Lower limit

Chapter 11. Reference Guide

of 10 and an Upper limit of 90, the think times will be between 10 percent and 90 percent of the original

recorded think time. The random time is uniformly distributed within this range.

Limit think times to a maximum value

Setting a maximum think time is useful with tests that emulate actual think times. By setting a

maximum, you do not have to search for and edit each long think time within a test, if, for example, you

are interrupted during recording. No think time used will be greater than the maximum limit you set,

even if you have chosen to vary the think time by a percentage that would exceed this maximum. To

restore the original think times, clear this box.

Protocol-specific options

Click Edit options to set protocol-specific options for all tests in the user group. These settings override

the protocol-specific options of the schedule.

Variable Initialization

Use this page to initialize variables at the user group level. When you initialize variables at the user group level, all the

tests in the user group use the variables. If the same variable is defined at the schedule level, precedence is given to

the variable at the user group level.

Add

Add a variable and initialize a value. The Used by column displays the test name that uses the

corresponding variable. A warning icon is displayed for a variable that override the value specified at

the schedule level or user group level and uses the value defined at the test level with the visibility set to

This test only. Hover the cursor over the warning icon to view the tests that overrides the variable initial

values.

Export

Export the variables defined at the user group level to a file.

Use variable initial values file

Select this check box to use the variable values from a file. Click Browse to select an existing file or click

New to create a file.

WSDL security editor reference
With the Web Service Description Language (WSDL) security editor you can create and edit security configurations for

a WSDL file.

Keystores
In this page, you can edit the keystores that are used for the WSDL file. The keystore contains the public and private

keys that are required for the specified security protocol.

Defined Keystores

Click Add or Remove to add or remove keystore files from the workbench.

1443

HCL OneTest Performance

1444

Keystore Details

This specifies the location and file name of the selected keystore. Click Browse to select a different file.

Name

This specifies the name of the keystore. This name is used throughout the test instead of

the file name.

File

Click Browse to specify a keystore file containing a valid server certificate. The following

formats are supported:

• KS

• JKS

• JCEKS

• PKCS12 (p12 or PFX)

• PEM

Password

If the keystore file is encrypted, type the required password.

Security Stacks
In this page you can edit the security algorithm stacks that the security protocol uses. Security stacks are a set of

algorithms that are executed in a given order.

Security Stacks

Click Add, Remove, or Rename to add, remove, or rename the security stacks that are associated with

the WSDL file.

Security Algorithm Details

Click Add, Insert, or Remove to add or remove security algorithms in the stack. Click Up and Down to

change the order of a selected algorithm in the security stack. The following security algorithms can be

added to the security stack:

Time Stamp

The time stamp security algorithm adds time stamp information to the XML document

in the response. For details on security algorithms, refer to the web service security

specification.

Actor / Role name

Specify the name of the recipient of the algorithm header element, if

required.

Must understand

Select whether it is mandatory that the algorithm header is processed by the

recipient, if required. The recipient is either the Actor name or the server.

Chapter 11. Reference Guide

Expiration delay

Specify the delay after which the time stamp expires.

Millisecond precision

Select this option to produce a time stamp that uses millisecond precision

instead of the default (1/100th second).

User name token

The user name token security algorithm adds a user name token to the XML document

in the message. For details on security algorithms, refer to the web service security

specification.

Actor / Role name

Specify the name of the recipient of the algorithm header element, if

required.

Must understand

Select whether it is mandatory that the algorithm header is processed by the

recipient, if required. The recipient is either the Actor name or the server.

Name

Type the name of the user.

Password

Type the password of the user.

Password type

Specify the password type for the security algorithm as defined in the Web

Services Security UsernameToken profile.

Use nonce

Select this check box to add the Nonce element to the User Name Token

XML code. In most cases, the Nonce ID is required.

Use created

Select this check box to add current timestamp to the Created XML element

in the User Name Token XML.

XML Encryption

The XML encryption security algorithm specifies how the XML document is encrypted. For

details on security algorithms, refer to the web service security specification.

Actor / Role name

Specify the name of the recipient of the algorithm header element, if

required.

1445

HCL OneTest Performance

1446

Must understand

Select whether it is mandatory that the algorithm header is processed by the

recipient, if required. The recipient is either the Actor name or the server.

Identifier type

Select the type of key identifier to be used for the encryption. The following

key identifiers are available, as defined in the Web Services Security (WSS)

specification X509 profile and the OASIS WSS 1.1 specification:

• ISSUER_SERIAL

• BST_DIRECT_REFERENCE

• X509_KEY_IDENTIFIER

• SKI_KEY_IDENTIFIER

• EMBEDDED_KEYNAME

• THUMBPRINT_IDENTIFIER

• ENCRYPTED_KEY_SHA1_IDENTIFIER

User XPath part selection

This enables you to specify an XPath query that describes parts of the XML

document that can be subjects of the algorithm. By default, the body is the

subject.

Key

Select the key used for the encryption. The details of each key vary.

• x509 key: This specifies the name and password of the x509 key and

the keystore where it is located.

• Raw key: This specifies the name and the byte value of your

SecretKey in hexadecimal.

• Encrypted key: This specifies a reference to an encrypted key that

was previously defined in the security stack. Click Insert a new

encrypted key to create a new encrypted key definition block.

Encoding Algorithm Name

Specify the encryption method to be used as defined in the XML Encryption

Syntax and Processing specification.

Key Encoding Algorithm

Specify the standard algorithm for encoding the key as defined in the XML

Encryption Syntax and Processing specification.

Chapter 11. Reference Guide

XML Signature

The XML signature security algorithm specifies how the XML document is signed. For

details on security algorithms, refer to the web service security specification.

Actor / Role name

Specify the name of the recipient of the algorithm header element, if

required.

Must understand

Select whether it is mandatory that the algorithm header is processed by the

recipient, if required. The recipient is either the Actor name or the server.

Security token

Select the type of key identifier to be used for the signature. The following

key identifiers are available, as defined in the the Web Service Security (WSS)

specification X509 profile and OASIS WSS 1.1 specification:

• ISSUER_SERIAL

• BST_DIRECT_REFERENCE

• X509_KEY_IDENTIFIER

• SKI_KEY_IDENTIFIER

• KEY_VALUE

• USER_NAME_TOKEN

• CUSTOM_SYMM_SIGNATURE

In addition, the following identifiers are available when the signature is based

on a UsernameToken profile:

• USER_NAME_TOKEN

• CUSTOM_SYMM_SIGNATURE

User XPath part selection

Specify an XPath query that describes parts of the XML document that can

be the subjects of the algorithm. By default, the body is the subject. Click the

XPath Helper button to build the Xpath expression.

Key

Select the key used for the encryption. The details of each key vary.

1447

HCL OneTest Performance

1448

• x509 key: This key specifies the name and password of the x509 key

and the keystore where it is located.

• User name token key: This specifies a user name and password for

the signature.

• Encrypted key: This specifies a reference to an encrypted key that

was previously defined in the security stack. Click Insert a new

encrypted key to create a new encrypted key definition block.

Signature algorithm name

Specify the signature method algorithm as described in the XML Signature

Syntax and Processing specification.

Canonicalization

Specify the canonicalization method to be used as described in the XML

Signature Syntax and Processing specification.

Digest algorithm method

Specify which digest method to be used based on the algorithm method

used on the server side.

Inclusive namespaces

Specify whether the canonicalization is exclusive as described in the

Exclusive XML Canonicalization specification.

Custom Security Algorithm

If you want to use a Java™ class as a custom security algorithm, then use this stack

element to apply the custom algorithm to the service.

Java™ Project

If you have not implemented a custom Java™ class, select Java Project, type

a name for the new project, and click Generate to create a new Java™ class

with the default structure for custom security implementations.

Note: If you are using IBM® Security AppScan®, this field is not

available.

Implementation class

Specify the name of the class that implements the custom security

algorithm. Click Browse Class to select an existing Java™ class from the

workspace.

Properties

Use this table to send any specific properties and associated values to the

custom security algorithm.

mcdxlix

Security Considerations
This document describes the actions that you can take to ensure that your installation is secure, customize your

security settings, and set up user access controls.

• Enabling secure communication between multiple applications on page mcdxlix

• Ports, protocols, and services on page mcdxlix

• Customizing your security settings on page mcdxlix

• Privacy policy considerations on page mcdxlix

• Security limitations on page mcdxlix

Enabling secure communication between multiple applications

The workbench computer that controls the execution of the test communicates with the remote agent computers.

The agents apply load for HCL OneTest™ Performance. The communication can be secure or nonsecure. By default,

the tool use nonsecure communication. Also, if a workbench computer uses a self-signed certificate, it cannot be

changed. Agent computers are trusting.

• Configuring port numbers for agents on page 727

Ports, protocols, and services

The Majordomo service running on remote agents must run with administrator or super user credentials, which

means that the test execution it supports has full privileges on the test computer where it resides. Product

communication uses HTTP and HTTPS. Ports are configurable.

• Configuring port numbers for agents on page

Customizing your security settings

Datasets can be encrypted and access controlled by password that is difficult, but not impossible, to break.

• Encrypted datasets overview on page

Privacy policy considerations

This software offering does not use cookies or other technologies to collect personally identifiable information. For

additional information on cookies, see the Notices on page mcdl topic.

Security limitations

Passwords are stored using Eclipse mechanisms that are difficult but not impossible to break.

Workbench and agent communication is encrypted but not absolutely safe from impersonation attack.

../topics/t_config_ports.html
../topics/t_config_ports.html
../topics/t_config_ports.html
../topics/t_config_ports.html
../topics/cencryptdp.html
../topics/cencryptdp.html
../topics/cencryptdp.html
../topics/cencryptdp.html

mcdl

Notices
This document provides information about copyright, trademarks, terms and conditions for the product

documentation.

© Copyright IBM Corporation 2001, 2016 / © Copyright HCL Technologies Limited 2016, 2022

This information was developed for products and services offered in the US.

HCL® may not offer the products, services, or features discussed in this document in other countries. Consult your

local HCL® representative for information on the products and services currently available in your area. Any reference

to an HCL® product, program, or service is not intended to state or imply that only that HCL® product, program,

or service may be used. Any functionally equivalent product, program, or service that does not infringe any HCL®

intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the

operation of any non-HCL® product, program, or service.

HCL® may have patents or pending patent applications covering subject matter described in this document. The

furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing,

to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

For license inquiries regarding double-byte character set (DBCS) information, contact the HCL® Intellectual Property

Department in your country or send inquiries, in writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the publication. HCL® may make

improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time

without notice.

mcdli

Any references in this information to non-HCL® websites are provided for convenience only and do not in any manner

serve as an endorsement of those websites. The materials at those websites are not part of the materials for this

HCL® product and use of those websites is at your own risk.

HCL® may use or distribute any of the information you provide in any way it believes appropriate without incurring

any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

The licensed program described in this document and all licensed material available for it are provided by HCL®

under terms of the HCL® Customer Agreement, HCL® International Program License Agreement or any equivalent

agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.

Information concerning non-HCL® products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL® has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL® products. Questions on the

capabilities of non-HCL® products should be addressed to the suppliers of those products.

Statements regarding HCL®'s future direction or intent are subject to change or withdrawal without notice, and

represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques

on various operating platforms. You may copy, modify, and distribute these sample programs in any form without

payment to HCL®, for the purposes of developing, using, marketing or distributing application programs conforming

to the application programming interface for the operating platform for which the sample programs are written. These

examples have not been thoroughly tested under all conditions. HCL®, therefore, cannot guarantee or imply reliability,

mcdlii

serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind.

HCL® shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as

follows:

© (your company name) (year).

Portions of this code are derived from HCL Ltd. Sample Programs.

© Copyright HCL Ltd. 2000, 2017.

Trademarks
HCL®, the HCL® logo, and hcl.com® are trademarks or registered trademarks of HCL Technologies Ltd., registered in

many jurisdictions worldwide. Other product and service names might be trademarks of HCL® or other companies.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the HCL® website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices

are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof,

without the express consent of HCL®.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary

notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display

these publications or any portion thereof outside your enterprise, without the express consent of HCL®.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or

implied, to the publications or any information, data, software or other intellectual property contained therein.

HCL® reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the

publications is detrimental to its interest or, as determined by HCL®, the above instructions are not being properly

followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and

regulations, including all United States export laws and regulations.

mcdliii

HCL® MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT

LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR

PURPOSE.

Index
A

Access web reports remotely 1003
accessibility

keyboard shortcuts (testing) 1376
actions

detecting blocked actions (SDK) 949
adapters

Rational Quality Manager 216, 219, 221,
222, 223

agent
configure port numbers 727

agent computers
deleting locations 577
renaming locations 576

agent status 726
aggregation

statistical data (SDK) 957
AIX

configuring IP aliases 742
Apache HTTP Server

resource monitoring 752
Apache Tomcat

resource monitoring 753
APIs

code generation (SDK) 948
data correlation package (SDK) 914
evaluating results (SDK) 964
performance test object interfaces
(SDK) 912
runtime (SDK) 955
schedules (SDK) 941
verification points packages (SDK) 917

application servers
instrumenting for data collection 161,
164
removing instrumentation 166
removing the data collection
infrastructure 166

assets
testing shared assets 224

asynchronous calls
adding to web service tests 544

asynchronous requests
adding to web service tests 542

asynchronous service 540
attachment verification points

adding 517, 520
authentication

SSL 678
authentication folders

adding to requests 456

B
batch input transactions

SAP 493
binary content

viewing 691
binary data 645

creating transformations 653
transforming 649, 650, 650

breakpoints
setting in Citrix 846

browsers
recording preferences 1384

byte counters
types 1052

C

call counters
services 1087

callback
adding to web service tests 543

calls
web service tests 521

captured data
defining 885

Citrix
adding elements to tests 503
counters

image synchronization 1079
overview 1078
user action 1084
window 1085
window synchronization 1078

editing text inputs 506
image synchronization 508, 509

overview 1433
screen areas 506

inserting new recordings 389
key action details 1429
logoff details 1435
mouse action details 1430
mouse sequence details 1432
mouse sequences 504
performance testing

overview 47
performance testing guidelines 379
recorder preferences 1392
recording tests 381, 384, 389
reports 1036
screen capture details 1432
session details 1426
synchronization overview 498
test details 1425
test editor

preferences 1393
test editor overview 497
test generation preferences 391, 1394
test input details 1431
timer counters 1083
verification points 500, 501

overview 500
window titles 501

window events
event details 1428

windows
details 1427

Citrix breakpoints
setting 846

Citrix monitoring panel
disabling 843
enabling 843

Citrix Performance Report 1036
Citrix performance tests

response times 502
Citrix tests

custom Java code 509
debugging 843

ClearCookies class 861
clients

generated clients in service tests 400
clock skew

correcting 990
close elements

socket 546
code

generating (SDK) 944
generation (SDK) 943

code generation
extending (SDK) 943
extension points (SDK) 944
extensions (SDK) 947
HCL
OneTest
Performance
Protocol Extensibility SDK
 943
public APIs (SDK) 948
templates (SDK) 947

coexistence
product installation 84

colors
preferences 1400

command line
create config file 798
schedule runs 823

comments
adding (HTTP) 557
performance testing 557

Compare report
launching automatically 1402

Compound tests
adding tests 657
adding to Test Workbench projects 661
creating 656
modifying 658
overview 655
running 658
viewing 657

ComputerSpecific class 862, 863
conditional statements

adding to tests 557
preferences 1400

conditions
error handling 1379

configuration
SSL authentication 678
WebSphere MQ transport 672

configurations
reusing tests 478
SAP 158, 362
SAP batch input tests 159
service testing

SOAP security 397, 671
service tests 394
socket 419
TN3270 testing 420
web service

Custom security algorithms 537
SOAP security 526
WS-Addressing 539

web service security 525
web services

WS-Policy 528
configure port number for agents 727
connection details

SAP 1417
contain verification points

web service 513
conventions

installation 82
cookies

clearing during run 468
setting and clearing for virtual users 861

1454

CountAllIterations class 859
counter

manage counters 988
counters

Citrix 1078
image synchronization 1079
user action 1084
window 1085
window synchronization 1078

Citrix timers 1083
extending (SDK) 958
extending wizard (SDK) 958
HTTP 1052

byte 1052
page performance 1053
run 1063
test 1066

SAP 1070
screen (SAP) 1070
services

call 1087
overview 1087
verification points 1098

socket API 1108, 1108
standard deviation (SDK) 958
transaction 1067

CountUserIterations class 859
creating

Service stubs 663
CSV format

exporting report counters
automatically 800
exporting results 992

Custom code
debug 874

custom counters
test execution services 869

custom Java code
code execution counts 859
controlling loops 853
creating 847
custom counters 869
deleting 577
determining where a test is running 862,
863
extracting strings 865
interfaces and classes 849
migrating 881
overview 847
performance 852
printing input arguments to a file 858
renaming 576
retrieving the maximum JVM heap
size 866
retrieving virtual user IP address 858
running a program with a test 867
setting and clearing cookies for virtual
users 861
statistics 871
transactions 871
verification points 873

Custom security algorithms
web service 537

D
data collection

response time breakdown 768
data collection infrastructure

configuring 160
instrumenting 161, 164
Oracle WebLogic Application Server 163

overview 160
removing 166, 166
WebSphere Application Server 164

data correlation
automatic 613
creating references 633
custom code example 865
description 609
disabling 644
extending (SDK) 917
extending for test execution (SDK) 919
extending for test generation (SDK) 918
manual 626
multiple fields 639
overview 609, 624
packages (SDK) 914
preferences 1385, 1400
problem identification 641
regenerating tests 644
rules 1378
selecting references 634
Siebel 484
substituting 627
tests

data correlation 609
multiple-field data correlation 639

troubleshooting 643
viewing 612

data correlation rules
creating references 614
creating substitutions 616
description 613, 622
generating 622
linking references to substitutions 618
linking substitutions to built-in data
sources 620
linking substitutions to references 619
recording tests 621
recorrelating test data 620
saving 623
viewing logs 624

data sources
configuring 752, 753, 754, 758, 762,
762, 765
resource monitoring 751, 1381

data transformation
binary data 645
encoded data 645

DataAreaLockException (test execution
services) 849
datasets

creating in test 580
creating in workspace 584
deleting 577
digital certificates 601
editing 594
encrypting 600
encryption 599
navigating to tests 601
options 588
organizing 444
overview 579
removing encryption 600
renaming 576
segmented

row assignment 588
substitution modifications 1408
test references 589
test value associations 591
typical 588
viewing in tests 593

Debug custom code 874
debugging 835, 839

Citrix tests 843, 846
debugging 844

default reports
changing 988

defects
submitting 228

delays
adding to schedules 710
HTTP tests 792
performance test generation
preferences 1385

deployment directory
deleting deployment directory 728

digital certificates
authentication in tests 437
creating 432, 434
overview 429
types 430
using in tests 436
using with datasets 601

disconnect agent 726

E
Eclipse

fully-enabled
start-up 55

installing with Eclipse instance 84
streamlined 55

editing tests
generating data correlation rules 622
saving data correlation rules 623

editors
common editor framework (SDK) 927
contributing menu actions (SDK) 931
creating actions (SDK) 932
extending (SDK) 921
extending menus (SDK) 931
extension points (SDK) 933
methods to extend (SDK) 934
migrating extensibility (SDK) 922
modelObjectDescriptor extension
point 928
structure (SDK) 926
testoptions extension points (SDK) 930

element labels
batch connection details 1423
batch input transaction details 1424
get (SAP) 1420
SAP 1421
server request details 1422
set (SAP) 1419

encrypting
recording session data 442

Entrust
overview 437

equal verification points
socket tests 548, 550, 550
web service 512

error handlers
code generation (SDK) 938
defining (SDK) 934
displaying (SDK) 935, 936

error handling
conditions 1379
extending (SDK) 934
HTTP 466
run time (SDK) 939

error types
creating (SDK) 937

1455

errors
viewing 1002

ExecTest class 867
Export

Event Console Output 1005
exporting 1403

performance test assets 570
performance test projects 571
report counters

to CSV format automatically 800
reports

to .view file 998
to HTML format 991

results
to CSV format 992

extending (SDK) 931
extension points

code generation (SDK) 943
code generation behavior (SDK) 944
common editor framework (SDK) 927
modelObjectDescriptor (SDK) 928
ReportAction (SDK) 958
RPTReport (SDK) 962
schedules (SDK) 941
test editors (SDK) 933
testOptions (SDK) 930

F
field references

data correlation 633
fields

data correlation 639
file attachments

opening 694
files

printing input arguments to 858
Firefox

browser settings for recording 335
recording tests 1384

fonts
preferences 1400

functional reports
generating 968

G
generated clients

recording service tests 400
generic service client 667

overview 50
graphs

customizing 987

H
HCL
OneTest
Performance

migrating from earlier releases 157
supporting new protocols (SDK) 881

HCL
OneTest
Performance
Protocol Extensibility SDK

advanced annotation concepts 904
APIs 955
blocked action detection 949
code generation 943

APIs 948
extension points 944
extensions 943, 947
templates 947

code generation for error handlers 938
common editor framework 927

contributing error handlers 934
contributing menu actions 931
creating a script class 945
creating error types 937
data correlation

execution 919
extending 917
packages 914
test generation 918

defining captured data 885
defining clients 887
defining error handlers 934
defining packet converters 897
defining recorder abilities 888
defining recorder wizards 890
defining recorders 886
defining test generation 896
defining test-generation wizards 900
displaying error handlers 935, 936
editor extension points 933
extending counters 958
extending default reports 962
extending editor 921
extending evaluation results 957
extending report menus (SDK) 958
extending reports 962
extending test generation 895
extending test recorder 883
extending the annotation toolbar 903
extending the log viewer (SDK) 956
extending the test recorder 902, 902
generating elements from
annotations 904
generating test code 944
guidelines 882
implementing runtime error
handling 939
initialization and finalization 954
load test behavior model APIs 912
LTBM extension points 906, 911
LTBM model element registration 906
LTBM overview 905
LTBM protocol

constructs 910
extension behavior 910

LTBM required attributes 907
LTBM updates 905
menu actions 932
migrating recorder implementations 892
migrating test editor extensibility 922
migrating test generation 901
modelObjectDescriptor extension
point 928
overview 881
performance test object (SDK) 912
protocol extension structure 882
recording without a UI 889
registering LTBM elements
(example) 909
results evaluation APIs 964
run-time extensions 949
schedules

APIs 941
component extensions 940
extension points 941

statistical data aggregation 957
subsystem management 950
test editor

structure 926
test generation without a UI 899
testoptions extension points 930

headers
adding to tests 353
editing contents in tests 355

high-resolution timer
configuring 729

host names
reusing 478

HTML format
exporting reports 991

HTTP 343
counters overview 1052
performance testing

overview 46
proxy server enablement 1416
run counters 1063
test editor overview 447
test generation preferences 358

HTTP data
exporting as text 842

HTTP endpoint
service call 682

HTTP proxies
recording web service tests 398

HTTP tests
debugging 833
Kerberos protocol 438

HTTP traffic
recording for tests 336

HTTP transport
services 667

I
IARM (test execution services) 849
IBM DB2

resource monitoring 754
ICustomCode2 (test execution
services) 849
IDataArea (test execution services) 849
IEngineInfo (test execution services) 849
IF-THEN statements

adding to tests 557
common interfaces package (SDK) 913

ILoopControl (test execution services) 849
image synchronization 498

adding values to 509
Citrix 1433
counters 1079
manually adding 508
tests 506

importing
reports

to .view file 998
installation

extending an Eclipse instance 84
launchpad program 86
locations 83
terminology 82

Installation Manager
overview 82

installing packages
Installation Manager 82

installing products
coexistence 84

instrumenting
application servers for data
collection 164

integrating
Rational Team Concert 226

Internet Explorer
browser settings for recording 335

invoke

1456

HTTP service call 682
JMS service call 683
service call with a WSDL file 690

IP addresses
retrieving from virtual user 858
virtual users 740

IP aliases
configuring (AIX) 742
configuring (Linux) 741
configuring (Windows) 741

IP aliasing
enabling 705

IPDLogManager (test execution
services) 849
IScalar (test execution services) 849
IStat (test execution services) 849
IStatistics (test execution services) 849
IStatisticsManager (test execution
services) 849
IStatTree (test execution services) 849
ITCAM

response time breakdown 1382
ITestExecutionServices (test execution
services) 849
ITestInfo (test execution services) 849
ITestLogManager (test execution
services) 849
IText (test execution services) 849
ITime (test execution services) 849
ITransaction (test execution services) 849
IVirtualUserInfo (test execution
services) 849

J
Jaeger
 284
Jaeger logs

testlogs 285
Java

test execution services 847
Java code

custom code in Citrix tests 509
Java Virtual Machine

resource monitoring 758
JBoss Application Server

resource monitoring 758
JMS endpoint

service call 683
JMS transport

services 671
JVM heap size

retrieving maximum 866
JVM_Info class 866

K
Kerberos

browser configurations 439, 440
editing tests 556
generating tests 441
overview 438
recording applications 439, 440

key actions
Citrix 1429

keyboard actions
editing (Citrix) 505

keyboard shortcuts
testing 1376

L
launch configurations

default 783
test settings 795

launchpad program
installing the product 86

line speeds
delaying 708

Linux
default browser 1384
IP alias configurations 741
open file limit 333

listeners
setting for recording 1384

load test behavior model (LTBM)
data correlation package (SDK) 914
extending classes (SDK) 911
extension points (SDK) 906
overview (SDK) 905
performance test object interfaces
(SDK) 912
protocol constructs (SDK) 910
protocol extensions 910
public APIs 912
registering elements (SDK example) 909
registering model elements (SDK) 906
required attributes (SDK) 907
updates (SDK) 905
verification points packages 917

locations
deleting 577
organizing 444
remote 709, 743
renaming 576
user groups 1442

log viewer
extending (SDK) 956

logoff details
Citrix 1435

logs 1000
exporting HTTP data as text 842
exporting test events 1004
levels

overview 772
problem determination 779
sampling rates 774
SAP performance tests 362
services performance tests 394
setting for maximum
performance 333
socket performance tests 419
statistics 772
TN3270 performance tests 420

problem determination levels 831
stub server activity 666
viewing 841
viewing adjustments 1005
viewing data correlation rules usage 624
viewing test events 1001

long duration tests 785
loops

adding to schedules 733
adding to tests 561
controlling 853
iteration rates 737
preferences 1400
searching tests 568
setting up efficiently 333
virtual user memory allocation 468

LTTest packages
SDK 912

M
manage counters 988
memory

increasing 827
setting agent 333

menus
contributing actions (SDK) 931
creating actions (SDK) 932

message content
viewing 691

methods
extending common editor framework
(SDK) 934

Microsoft .NET transport
services 675

migration
custom Java code 881
LTBM updates (SDK) 905
performance testing assets 157
test editor extensibility (SDK) 922

mobile native application testing 343
modifying packages

installation manager 82
monitoring panel

debugging Citrix tests 844
mouse

actions
adding to tests (Citrix) 503
details (Citrix) 1430
test editor preferences (Citrix) 1393

sequences
Citrix 1432
viewing (Citrix) 504

Mozilla
browser settings for recording 335
recording 1384

mySAP
test support 1385

N
network traffic

emulating slower 708
notification-based services

testing 540
NT/LAN Manager (NTLM)

enabling 1416
NTLM

see NT/LAN Manager 1416

O
obfuscating

recording session data 442
OpenSSL

digital certificates 432
optical character recognition

Citrix configuration guidelines 379
Oracle Database

resource monitoring 762
Oracle WebLogic Server

resource monitoring 762
OutOfScopeException (test execution
services) 849

P
package groups

coexistence 84
installation locations 83

packages
common interfaces (SDK) 913
data correlation (SDK) 914
LTTest (SDK) 912
runtime (SDK) 955
verification points (SDK) 917

page counters
types 1053

1457

page elementspages
response time breakdown 770

page percentile reports
performance test preferences 1404
performance testing 1031

pages
error handling 466
merging in tests (HTTP) 473
performance test generation
preferences 1385
protocol data view preferences 1383
searching tests 568
splitting in tests (HTTP) 472
test report elements 1028
title specifications in tests 461
title verification points 1408
viewing test data 593, 601
viewing test request data 601

ParseResponse class 865
percentile reports

performance testing 1040
performance profiling data

data collection infrastructure 160
Performance report 1017
performance requirements

customizing percentiles 1404
defining in schedule 731
defining in tests 454
requirements

defining in schedule 731
defining in tests 454

performance test preferences 1404
performance test report export
preferences 1403
performance test report preferences 1403
performance testing

Citrix configuration guidelines 379
guidelines (SAP) 362
overview (Citrix) 47
overview (HTTP) 46
overview (SAP) 46
reports

overview (SAP) 1033
setting up efficiently 333
socket API 52
socket guidelines 419
supporting new protocols (SDK) 881
TN3270 applications 53
TN3270 guidelines 420
web service

overview 49, 662
performance testing sample Daytrader 80
performance testing sample installation 79
performance testing sample overview 78
performance testing sample Plants 79
performance testing sample Snoop 79
performance tests

socket reports overview 1050
ports

configuring for different locations 797
setting the recorder listener 1384

preferences
changing recording (Citrix) 390
changing recording (HTTP) 1070
destination filtering 1400
editor 1384
endpoint
endpoint filtering

filtering 1400
recording 1400

performance tests reports 1403

recording (Citrix) 1392
recording (HTTP) 1384
reports 1402
socket test generation 1397
test editor 1400
test editor (Citrix) 1393
test generation

changing Citrix preferences 391
changing HTTP preferences 358
changing SAP preferences 377
changing web service
preferences 418
Citrix overview 1394
overview 1385
SAP overview 1390, 1390

prerequisites
Siebel testing 482

PrintArgs class 858
problem determination levels

changes during schedule runs 831
setting 779

problem identification
data correlation 641

problems
troubleshooting 1112

profiling data
test options 1404

projects
creating 334
deleting 577
renaming 576

properties
schedules 1436

protocol data
preferences 1383

Protocol Data view
SAP

test editor preferences 1389
viewing SAP GUI data 497
viewing test in 480
watching virtual user in 836

protocol extensions
creating constructs (SDK) 910
modeling behavior (SDK) 910

protocols
supporting new (SDK) 881

proxies
enabling servers 1416
setting the local port 1384

R
Rational Application Performance Analyzer

response time breakdown 767
Rational Performance Tester Protocol
Extensibility SDK

common interfaces for extending model
elements 913
test editor 931

framework 934
verification points packages 917

Rational Quality Manager
adapter 222, 223
configuring the adapter 216
running the adapter 221
starting the adapter 219
testing shared assets 224

Rational Service Tester for SOA Quality
migrating from earlier releases 157

Rational Team Concert
defect tracking 228
integrating 226

raw transaction data
viewing 691

receive elements
merging 426
socket 547

recording
changing preferences

Citrix 390
HTTP 1070

Citrix tests
inserting new recordings 389
overview 378
web interface 384

extending (SDK) 883, 902, 902
HTTP tests 336
HTTP tests (overview) 335
SAP Portal tests 371
SAP tests

batch input tests 374
inserting new recordings 370
overview 362
procedures 365

sensitive data 442
service tests

generated clients 400
overview 394

setting preferences
Citrix 1392
HTTP 1384

socket tests
procedures 421, 424

web service tests
BPEL resources 411
creating manually 413
HTTP proxies 398

WebSphere MQ tests
creating manually 414

XML call tests
creating manually 417

recording tests
Citrix tests 381
data correlation rules 621

recordings
regenerating tests 444

recorrelating test data
data correlation rules 620

redirects
correlating URL paths 1385
HTTP tests 445

reference links
data correlation rules 618

references
creating with rules 614
data correlation 634
test datasets 601
viewing 637

regular expressions
creating data correlation rules 614, 616

Reliable messaging 693
remote locations

configuring differing ports for tests 797
declaring 705
memory allocation increases 827
running user groups 709
setting IP aliases 743

remote WSDL files
synchronization 692

replace
preferences 1400

replacing text
searches 568

1458

reports 1403
.view format exports 998
changing colors 1402
changing default 988
Citrix

performance report 1036
types 1036

comparisons 966, 966
counters

CSV format automatic exports 800
customizing graphs 987
displaying 1002
extending (SDK)

counters 958
default 962
evaluation results 957
RPTReport extension point 962

extending menus (SDK) 958
filtering results 978
functional test 968
HTML format exports 991
HTTP 1017
migration 157
page elements 1028
performance (SAP) 1033
performance test percentile
preferences 1404
performance test preferences 1403
performance testing percentiles 1031,
1040
preferences 1402
reports

HTTP performance report 1017
response time breakdown

filtering 771
SAP Performance 1033
service

performance report 1041
socket performance 1050
socket performance tests 1050
synchronization point 1009
Transaction 1011, 1013
Transaction Net Server Time 1014
verification points

citrix 1039
HTTP 1032
SAP 1036
web service 1047

web service
types 1041

Request Time verification point (SAP) 1422
requests

adding authentication folders 456
adding headers 353
disabling HTTP 474
editing header contents 355
enabling HTTP 474
primary 1408

requirements
customizing percentiles 1404
software installation 81

resource monitoring
adding data sources 751
Apache HTTP Server 752
Apache Tomcat 753
data sources 1381
enabling 750
IBM DB2 754
IBM Tivoli Monitoring 756
IBM WebSphere Performance
Monitoring Infrastructure 757

Java Virtual Machine 758
JBoss Application Server 758
Microsoft Windows Performance
Monitor 759
Oracle Database 762
Oracle WebLogic Server 762
overview 743
SAP NetWeaver 764
Simple Network Management
Protocol 765
UNIX rstatd 765

resources
monitoring 743
organizing 444

response codes
specifying expected 462

response size
specifying 463

response time
adjustments 1005

disabling 1005
Citrix 1429

response time breakdown
configuring 160
data sources 1382
enabling in tests 768
enabling on Windows 7 768
enabling on Windows Server 2008 768
enabling on Windows Vista 768
filtering 771
logging levels 769
overview 767
page element data 770

response time breakdown data
instrumenting application servers 161,
164

response times
measuring in Citrix tests 502
reports 1014
verifying (SAP) 489

responses
adding headers 353
adding to service tests 523
editing header contents 355
searching tests 568
skipping binary responses 1384

results
APIs for results evaluation (SDK) 964
CSV format exports 992
deleting 577
extending (SDK) 957
filtering 978
organizing 444
renaming 576

results evaluation
extending (SDK) 957
public APIs (SDK) 964

RPT Protocol Extensibility Tester SDK
test recorder 883

RPT SDK
defining captured data 885

RPT software development kit
defining recorder abilities 888

rstatd
resource monitoring 765

rule sets
data correlation 613

rules
data correlation 613, 1378

run counters
types 1063

run-time environments
detecting blocked actions (SDK) 949
extending (SDK) 949
extending initialization and finalization
(SDK) 954
public APIs (SDK) 955

runs
displaying reports after 1002
setting durations 700
stopping 832

S
SAP

adding elements to tests 490
adding sequence elements 491
batch connection details 1423
batch input transaction details 1424
batch input transactions

adding to tests 493
call details 1421
configuration 158, 362
configuring environment 159
connection details 1417
get details 1420
GUI data 497
Performance reports 1033
performance testing 46
recording tests

batch input 374
inserting sequences 370
performance tests 365
SAP Portal 371

screen counters 1070, 1070
set details 1419
set events

adding to tests 490
test details 1417
test editing overview 484
test editor

preferences 1389
test editor overview 484
test generation preferences 377, 1390,
1390
tests

splitting 496
verification points

adding 488
overview 487
screen title 489

SAP NetWeaver
resource monitoring 764

schedule runs
changing stage duration 830
configuring differing ports for tests 797
launch configurations 783
out-of-memory errors 827
overview 783
problem determination levels 779, 831
random order test elements 574
random order tests 738
statistics display settings 772
test log level settings 774

schedules
adding

loops 733
transactions 740

adding delays 710
adding tests 729
adding user groups 705
adjusting user groups 707
command-line starts 823

1459

creating 696
deleting 577
disabling portions of 573
extending (SDK) 940
extension points (SDK) 941
keyboard shortcuts 1376
launch configuration settings for
tests 795
long run mode 785
migration 157
modeling workloads over time 700
organizing 444
overview 695
properties 1436
public APIs (SDK) 941
remote locations 705, 707
renaming 576
resizing 695
run configurations 797
setting line speeds 708
setting run durations 700
setting user loads 700
synchronization points 711

screen captures
Citrix

details 1432
recording preferences 1392
test editor preferences 1393

screen counters
SAP 1070

script classes
generating code (SDK) 945

scripts
extending (SDK) 945

SDK
HCL
OneTest
Performance
Protocol Extensibility SDK
 937
see
HCL
OneTest
Performance
Protocol Extensibility SDK
 934, 934, 935, 936, 938, 939
see software development kit 895, 901

extending the test recorder 902
See software development kit 883, 885,
886, 887, 888, 889, 890, 892, 896, 897,
899, 900, 903, 904, 904

extending the test recorder 902
search

preferences 1400
Secure Sockets Layer

enabling 1416
security

converting tests 479
keystores 1443
services 1443
stacks 1443
Web Service Description Language
editor 1443

security alerts
suppressing 336

see software development kit
extending test generation 895

See software development kit
defining packet converters 897
defining test generation 896
test generation without a UI 899

selectors
adding to schedules 738
adding to tests 574

send elements
merging 426
socket 547

sending
service request with a WSDL file 680
WebSphere MQ service request 684

sequence elements
adding (SAP) 491

server request details 1422
service calls 50
service requests

viewing content 691
service responses

adding to service tests 522
services

configuring environment 397, 671
counters

call 1087
overview 1087
verification points 1098

file attachments 694
HTTP call 682
HTTP transport configuration 667
invoking calls 667
JMS call 683
JMS transport configuration 671
Microsoft .NET transport
configuration 675
recording tests

generated clients 400
security editor reference 1443
WebSphere MQ request 684
WSDL file 680, 690

session details
Citrix 1426

set events
SAP 490

SetCookieFixedValue class 861
share agent 726
shared assets

testing 224
shared resources directories

installation locations 83
shortcuts

keyboard
testing 1376

Siebel
tests

HTTP testing comparison 483
overview 482
prerequisites 482
request value correlations 484
support settings 1385

Simple Network Management Protocol
resource monitoring 765

simulating
services 663

SNMP
see: Simple Network Management
Protocol 765

SOAP security
creating configurations 526

socket
configuration 419
recording tests

performance tests 424
socket API

counters 1108

performance testing 52
screen counters 1108
test editor overview 545
tests

splitting 553
socket API tests

performance reports 1050
socket close elements

adding to tests 546
socket receive elements

adding to tests 547
socket send elements

adding to tests 547
socket tests

generation preferences 1397
recording

performance tests 421
verification points

checking received data 548, 550
checking received data size 550

software development kit
advanced annotation concepts 904
defining a new client 887
defining a new recorder 886
defining new types of captured data 885
defining recorder abilities 888
defining recorder wizards 890
defining test-generation wizards 900
extending RPT 883
extending the annotation toolbar 903
generating elements from
annotations 904
migrating recorder implementations 892
migrating test generation 901
recording without a UI 889

software installation
requirements 81

split points
inserting during recording 347, 357, 443

splitting
tests

SAP 496
socket API 553

SSL
see Secure Sockets Layer 1416

SSL authentication
configuration 678

stage duration
changing during a run 830

stages 966
statements

conditional
adding to tests 557

IF-THEN (SDK) 913
statistical data

aggregating (SDK) 957
statistics

CSV format exports 992
statistics log level

setting 772
statistics sample interval 394

long performance test settings
(SAP) 362
long socket performance test
settings 419
TN3270 performance test settings 420

StatType (test execution services) 849
stress testing 561, 711
strings

extracting from input arguments 865
stub servers

1460

logging activity 666
stubbing

services 663
substitution links

data correlation rules 619, 620
substitutions

creating with data correlation rules 616
data correlation 627

subsystem management
extending (SDK) 950

synchronization
Citrix

overview 498
states 1428

Synchronization Point report
performance testing 1009

synchronization points
coordinating virtual users in
schedules 711
coordinating virtual users in tests 561

synchronization points in schedules 711,
711
synchronization points in tests 561, 561
synchronizing

remote WSDL files 692

T
templates

code generation (SDK) 947
creating empty tests 350
new elements 351

terminology
product installation 82

test assets
importing into Rational Quality
Manager 223
organizing 444

test counters
types 1066

test data
recorrelating 620, 644
sources 624

test editor
generating data correlation rules 622

test editors
common editor framework (SDK) 927
contributing actions (SDK) 931
creating actions (SDK) 932
extending (SDK) 931

API classes 934
overview 921

extension points (SDK)
editor layer 933

migrating extensibility (SDK) 922
modelObjectDescriptor extension
point 928
structure (SDK) 926
testoptions extension points (SDK) 930

test elements
running in random order 574
selecting multiple types 567

test execution services
code execution counts 859
custom counters 869
determining where a test is running 862,
863
extracting strings 865
interfaces and classes 849
migrating Java code 881
overview 847, 847
printing input arguments to a file 858

retrieving the maximum JVM heap
size 866
retrieving virtual user IP address 858
running a program with a test 867
setting and clearing cookies for virtual
users 861
statistics 871
transactions 871
verification points 873

test generation
changing preferences

web service 418
extending (SDK) 895
Kerberos 441
preferences 426

test generator
generating test code (SDK) 944

test recorder
defining (SDK) 886
defining clients (SDK) 887
extending (SDK) 883, 902, 902

test runs
extending subsystem management
(SDK) 950

testing
keyboard shortcuts 1376
overview 540
services

guidelines 394
tests 835, 839

adding
comments 557
elements 557
elements (Citrix) 503
loops 561
mouse actions (Citrix) 503
templates 351
transactions 557

adding custom Java code 847
adding headers 353
adding to schedules 729
annotating during recording 441
annotations

adding during recording 441
automating 798, 798
binary data 645
browser settings for recording 335
changing displays 1384
Citrix

image synchronization 506
input details 1431
options 1425

Citrix preference settings 1394
client delays 793
conditional statements 557
configuring different ports for 797
connection settings 1416
connection timeout 794
converting to SSL 479
creating transformations 653
customizing 849
dataset column associations 591
dataset references 589
datasets 599, 600, 600

SAP options 1417
debugging 833, 835, 839

HTTP overview 833
declaring variables 605
delays 792
deleting 577
disabling HTTP requests 474

disabling portions of 573
editing 453

Citrix 497
Citrix overview 497
HTTP overview 445, 447
overview 445
SAP 484
service overview 511
socket API 545
web service 511
web service security 525

editing header contents 355
editing Kerberos tests 556
editor

preference settings (Citrix) 1393
enabling HTTP requests 474
exporting HTTP data 842
extending

controlling loops 853
custom Java code 847

failures
cookie caches 468
virtural user memory allocation 827

forcing logons 456
generating

preference settings (Citrix) 391
preference settings (SAP) 1390, 1390
preferences (SAP) 377

HTTP redirect support 445
inserting new recordings

Citrix 389
keyboard shortcuts 1376
logs 394

exporting 1004
long performance test settings
(SAP) 362
settings 774
socket performance test settings 419
TN3270 performance test
settings 420
viewing 1001

loops
iteration rates 737

manual data correlation 626
merging pages 473
migrating custom Java code 881
migration 157
modular 469
mySAP 1385
options (HTTP) 1404
organizing 444
overview 833
page searches 568
protocol data 839
receive elements

adding 547
recording Citrix 384
recording Citrix tests 381
recording HTTP traffic 336
recording in SAP 365
recording SAP batch input 374
recording SAP Portal sessions 371
recording socket transactions 421, 424
regenerating from recordings 444
renaming 576
results

settings 795
running in random order 738
running locally 783
SAP

adding batch input transactions 493

1461

adding elements 490
adding sequence elements 491
adding set events 490
batch connection details 1423
batch input transaction details 1424
call details 1421
editing overview 484
get details 1420
inserting new recordings 370
server request details 1422
set details 1419

scaling HTTP playback rate 794
searching overview 567
services

recording with generated clients 400
setting up efficiently 333
Siebel 483, 1385
socket

adding close elements 546
adding send 547

splitting
HTTP 469

splitting during recording 347, 357, 443
splitting pages 472
synchronization points 561
templates 350
test execution services

code execution counts 859
custom counters 869
determining where a test is
running 862, 863
extracting strings 865
printing input arguments to a file 858
retrieving the maximum JVM heap
size 866
retrieving virtual user IP address 858
running a program with a test 867
setting and clearing cookies for
virtual users 861
statistics 871
transactions 871

test generation preferences (HTTP) 358
transforming binary data 649, 650, 650
using custom transformations 655
using on multiple hosts 478
variables 602
verifying HTTP data 841
viewing errors 1002
viewing HTTP data 480
watching virtual user actions 836
web service

adding calls 521
adding responses 523
creating manually 413
recording 411

web services
adding asynchronous calls 544
adding asynchronous requests 542
adding callbacks 543
adding responses 522
recording with HTTP proxies 398

WebSphere MQ
creating manually 414

XML call
creating manually 417

text inputs
editing Citrix 506

think time
Citrix

action details 1429
input details 1431

SAP 1421
get details 1420
set details 1419

think times
overview 723
setting maximum values 724, 724
settings

behavior 723
page details 1408

time offset
correcting 990

timer
configuring for high resolution 729

timer counters
Citrix 1083

Tivoli Composite Application Manager
response time breakdown 1382

Tivoli Monitoring for Transaction
Performance

response time breakdown 1382
TN3270

configuration 420
TN3270 applications

performance testing 53
tokens

extracting from input arguments 865
transaction counters

types 1067
Transaction Net Server Time Percentile
report

performance testing 1014
Transaction Percentile report

performance testing 1013
Transaction report

performance testing 1011
TransactionException

test execution services 849
transactions

adding to schedules 740
adding to tests 557
preferences 1400
searching tests 568

transformations
binary data in requests 650
binary data in tests 649
creating 653
transforming binary data
automatically 650
using 655

troubleshooting
data correlation 643
performance testing 1112

U
updating packages

Installation Manager 82
URLs

displaying decoded URLs 1384
performance test generation
preferences 1385

user behavior
emulating 696

user groups
adding to schedules 705
adjusting 707
locations 1442
overview 703
properties 1442

V
variable

initialize variable from XML 607

variables
assigning 605
in tests 602
initializing 605

verification point counters
services 1098

verification points
Citrix

details 1427
enabling globally 500, 501
overview 500
reports 1039
window titles 501

counters in socket API tests 1108
expected response codes 462
HTTP

reports 1032
packages (SDK) 917
page title test specifications 461
page titles 1408
performance test generation
preferences 1385
performance testing

global enablement 461
specifications for expected
contents 465
specifying expected contents 465

response size specifications 463
SAP

adding 488
adding screen titles 489
counters 1070
enabling 1420
overview 487
reports 1036
request time 1422

searching tests 568
socket tests

checking received data 548, 550
checking received data size 550

web service
adding attachment verification
points 517, 520
adding Xpath query 516
checking returned messages 512,
513
overview 512
reports 1047

view file
exporting reports 998
importing reports 998

virtual users 561, 711
counting code runs 859
datasets 589
emulating different IP addresses
(AIX) 742
emulating different IP addresses
(Linux) 741
emulating different IP addresses
(Windows) 741
memory allocation problems 468
retrieving IP addresses 858
setting and clearing cookies 861
supplying different IP addresses 740
user groups 703
watching in real time 836

W
WCF transport

services 675
Web reports

1462

access remotely 1003
web service

adding calls to tests 521
attachment verification points 517, 520
configuration 394
creating tests manually 413
Custom security algorithms 537
performance testing 49, 662
reports 1041
security configurations 525
security editor overview 525
SOAP security configurations 526
test editor overview 511
verification points

checking returned messages 512,
513
overview 512

Xpath query verification points 516
web Service

WSDL syntax compliance 396
Web Service Description Language

security editor 1443
syntax compliance for JMS web
services 396

Web Service Performance Report 1041
web service responses 516
web services

asynchronous service testing 540
recording tests

HTTP proxies 398
WS-Addressing 539
WS-Policy 528

WebSphere Application Server
data collection infrastructure 164

WebSphere MQ
creating tests manually 414

WebSphere MQ endpoint
service request 684

WebSphere MQ transport
services 672

WebSphere Performance Monitoring
Infrastructure

resource monitoring 757
weighted blocks

renaming 576
window counters

Citrix 1085
window details

Citrix 1427
window event details

Citrix 1428
window event synchronization

Citrix 498
window synchronization

counters 1078
window title verification points

specifying 501
window titles

expected criteria in Citrix performance
tests 501

Windows
configuring IP aliases 741
default browser 1384

Windows 7
enabling response time breakdown 768

Windows Performance Monitor
resource monitoring 759

Windows Server 2008
enabling response time breakdown 768

Windows Vista
enabling response time breakdown 768

workbench
efficient heap size 333

workloads
emulating 694

workspaces
copying projects 571
copying test assets 570

WS-Addressing 693
creating configurations 539

WS-Coordination 693
WS-Policy

creating configurations 528
WS-RM 693
WSDL

sending a service request 680
WSDL files

remote WSDL files 692
WSDLfile

invoking a service call 690

X
XML call

creating tests manually 417
XML headers 693
Xpath query verification points 516

1463

	HCL OneTest Performance
	Special notice
	Contents
	Chapter 1. Release Notes
	Contents
	Product description
	What's new
	Deprecated capabilities
	Capabilities removed

	Installing the product
	Known issues
	Contacting HCL support

	Chapter 2. System Requirements
	Contents
	Disclaimers
	Hardware
	Linux
	Mac
	Windows

	Operating systems
	Linux
	Mac
	Windows

	Host prerequisites
	Licensing
	Terminal services
	Virtualization Management
	Web Browsers

	Recording support
	Web browsers

	Supported software
	Application servers
	Business process management
	Development tools
	DevOps tools
	Eclipse Runtime Environment
	Message Oriented Middleware

	Chapter 3. Getting Started
	Task flows for performance testing
	Task flow: HTTP record
	Task flow: Generating workload
	Task flow: Recording a SAP test
	Task flow: Recording a service test to test an SOA application
	Task flow: Recording a SAP batch input test
	Task flow Integrating HCL OneTest™ Performance and HCL OneTest™ API
	Task flow: Response time breakdown
	Task flow: Rate Scheduler

	Product overview
	HTTP performance testing overview
	SAP performance testing overview
	Citrix performance testing overview
	Prerequisites
	Limitations

	Service testing overview
	Service testing tools

	Generic service client overview
	Supported services
	Encryption and security
	SSL Authentication
	NTLM and Kerberos Authentication
	Digital certificates
	Limitations

	Socket API performance testing overview
	TN3270 performance testing overview
	IBM® Engineering Test Management overview
	Comprehensive test planning
	Test script construction, execution, and reuse
	Test analysis and reporting
	Team collaboration
	Lab management
	Web application security
	Governance

	Streamlined Eclipse and full Eclipse overview
	Starting the product in full Eclipse mode
	Starting the product in streamlined Eclipse mode

	Chapter 4. Tutorials
	Performance test a Web application
	Learning objectives
	Time required
	Introduction: Test a Web application
	Learning objectives
	Time required
	Skill level
	Prerequisites

	Module 1: Creating projects and recording user actions
	Learning objectives
	Time required
	Lesson 1.1: Recording a test
	Lesson 1.2: Understanding a recorded test
	Module 1 summary
	Lessons learned

	Module 2: Editing a test
	Learning objectives
	Time required
	Lesson 2.1: Enabling a verification point
	Lesson 2.2: Creating a dataset
	Lesson 2.3: Using a dataset in a test
	Module 2 summary
	Lessons learned

	Module 3: Validating a test with a single user
	Learning objectives
	Time required
	Lesson 3.1: Running a test with a single user
	Lesson 3.2: Viewing the test log
	Module 3 summary
	Lessons learned

	Module 4: Representing workloads
	Learning objectives
	Time required
	Lesson 4.1: Controlling test execution with a schedule
	Lesson 4.2: Enabling resource monitoring
	Module 4 summary
	Lessons learned

	Module 5: Running the test
	Learning objectives
	Time required
	Lesson 5.1: Configuring the schedule
	Lesson 5.2: Running the schedule and viewing the reports
	Lesson 5.3: Adding virtual users during a run
	Module 5 summary
	Lessons learned

	Module 6: Evaluating results
	Learning objectives
	Time required
	Lesson 6.1: Viewing verification point status
	Lesson 6.2: Customizing and comparing reports
	Module 6 summary
	Lessons learned

	Summary
	Lessons learned

	Performance test an SAP application
	Learning objectives
	Introduction: Performance test SAP solutions
	Learning objectives
	Skill level
	Prerequisites

	Module 1: Creating projects and recording user actions
	Learning objectives
	Lesson 1.1: Recording an SAP test
	Lesson 1.2: Understanding a recorded test
	Lesson 1.3: Creating an SAP batch input test
	Module 1 summary
	Lessons learned

	Module 2: Editing an SAP test
	Learning objectives
	Lesson 2.1: Adding verification points
	Lesson 2.2: Creating and using datasets
	Module 2 summary
	Lessons learned

	Module 3: Running tests
	Learning objectives
	Lesson 3.1: Running a single test and viewing the test log
	Lesson 3.2: Creating a schedule and adding user groups
	Lesson 3.3: Running the schedule and viewing the performance report
	Module 3 summary
	Lessons learned

	Summary
	Lessons learned

	Performance test a Citrix application
	Learning objectives
	Introduction: Performance test Citrix applications
	Learning objectives
	Skill level
	Prerequisites

	Module 1: Creating projects and recording user actions
	Learning objectives
	Lesson 1.1: Recording a Citrix performance test
	Lesson 1.2: Understanding a recorded test
	Module 1 summary
	Lessons learned

	Module 2: Editing a Citrix performance test
	Learning objectives
	Lesson 2.1: Enabling verification points
	Lesson 2.2: Creating a response time measurement
	Module 2 summary
	Lessons learned

	Module 3: Representing workloads
	Learning objectives
	Lesson 3.1: Running a single test and viewing the test log
	Lesson 3.2: Creating a schedule and adding user groups
	Lesson 3.3: Running the schedule and viewing the performance report
	Module 3 summary
	Lessons learned

	Summary
	Lessons learned

	Chapter 5. Samples
	Installation tuning tests for WebSphere® Application Server
	Installing the assets for tuning tests
	Testing with the Snoop test
	Testing the PlantsByWebSphere application
	Testing the Daytrader application

	Chapter 6. Administrator Guide
	Installation of HCL OneTest™ Performance
	Installation requirements
	Hardware and Software requirements
	User privileges requirements

	Installation conventions and terminology
	Installation Manager overview
	Installation locations
	Package groups
	Shared resources directory

	Offering coexistence considerations
	Eclipse instance overview
	Increasing the number of file handles on Linux™ workstations
	Installation of the product by using IBM® Installation Manager
	Installing HCL OneTest™ Performance
	Installing HCL OneTest™ Performance Agent

	Uninstalling the product by using IBM® Installation Manager
	Installation of the product by using the stand-alone installer
	Installation of the product on Windows systems
	Installing the product in the GUI mode on Windows systems
	Creating a properties file on Windows systems
	Installing the product in the silent mode on Windows systems
	Changing the language of the product on Windows systems

	Installation of the product software on Linux
	Installing the product in the GUI mode on Linux
	Installing the product in the console mode on Linux
	Creating a properties file on Linux
	Installing the product in the silent mode on Linux
	Increasing the number of file handles on Linux™ workstations
	Changing the language of the product on Linux

	Installation of the product software on macOS
	Installing the product in the GUI mode on macOS
	Creating a properties file on macOS
	Installing the product in the silent mode on macOS
	Changing the language of the product on macOS

	Installation of HCL OneTest™ Performance Agent by using the stand-alone installer
	Installation of the Agent on Windows systems
	Installing Agent in the GUI mode on Windows systems
	Creating the properties file on Windows systems for HCL OneTest™ Performance Agent
	Installing Agent in the silent mode on Windows systems

	Installation of the Agent on Linux
	Installing Agent in the GUI mode on Linux
	Installing Agent in the console mode on Linux
	Creating the properties file on Linux for HCL OneTest™ Performance Agent
	Installing Agent in the silent mode on Linux

	Installation of the Agent on macOS
	Installing Agent in the GUI mode on macOS
	Creating the properties file on macOS for HCL OneTest™ Performance Agent
	Installing Agent in the silent mode on macOS

	Uninstallation of the product by using the stand-alone installer
	Uninstalling the product on Windows systems
	Uninstalling the product in the GUI mode on Windows systems
	Uninstalling the product in the silent mode on Windows systems
	Uninstalling Agent in the GUI mode on Windows systems
	Uninstalling Agent in the silent mode on Windows systems

	Uninstalling the product on Linux
	Uninstalling the product in the GUI mode on Linux
	Uninstalling the product in the console mode on Linux
	Uninstalling the product in the silent mode on Linux
	Uninstalling Agent in the GUI mode on Linux
	Uninstalling Agent in the console mode on Linux
	Uninstalling Agent in the silent mode on Linux

	Uninstalling the product on macOS
	Uninstalling the product in the GUI mode on macOS
	Uninstalling the product in the silent mode on macOS
	Uninstalling Agent in the GUI mode on macOS
	Uninstalling Agent in the silent mode on macOS

	License management
	License descriptions
	License configuration
	Configuring licenses by using a cloud-based License Server
	Configuring licenses by using a Local License Server
	Configuring licenses by using a Proxy Server

	Collecting usage metrics data

	Product upgrade and migration
	Migrating test assets to new version of the product

	Configuration of the product
	Configuring the environment for SAP tests
	Configuring SAP for performance testing
	Configuring an environment for batch input tests

	Configuring the data collection infrastructure
	Data collection infrastructure overview
	Instrumenting local servers
	Tips for instrumenting Oracle WebLogic Application Server
	Tips for instrumenting WebSphere® Application Server

	Instrumenting servers by using the command prompt
	Removing instrumentation
	Removing instrumentation using the command prompt

	Configuring Docker containers

	Integration with other products
	Integration plugin compatibility matrix
	Running tests by using Ant
	Integration with Azure DevOps
	Installing the HCL OneTest Studio extension
	Running tests from Azure DevOps as a Pipeline job

	Integration with Apache JMeter
	JMeter installtion
	Importing a JMeter test to a project
	Adding a JMeter test to an existing VU schedule
	Converting JMeter tests to VU schedule
	JMeter Performance report
	Overall page
	Summary page
	JMeter Samples page
	JMeter Transaction page
	Samples versus Time Summary page
	Samples versus Time Detail page
	Sample Throughput page
	Server Throughput page
	Server Health Summary page
	Server Health Detail page

	EGit integration
	Importing test assets from the remote Git repository
	Pulling the changes from the remote Git repository
	Publishing test assets to the remote Git repository
	Techniques for troubleshooting issues in EGit
	Error: Missing library files in the project
	Git merge conflicts
	Best practices to minimize the merge conflicts

	Conflict management: errors in assets.xml
	Conflict management: errors in test assets

	Integration with Engineering Test Management
	Engineering Test Management reports
	Known limitations
	Configuring the Engineering Test Management adapter
	Configuring the workspace directory of the adapter
	Connecting and disconnecting the ETM adapter from the GUI mode
	Starting and stopping the ETM adapter from the command line
	Starting and stopping the ETM adapter as a Windows service
	Importing test assets
	Testing shared assets

	Integration with IBM® Engineering Workflow Management
	Configuring the URL of Engineering Workflow Management
	Creating defects in Engineering Workflow Management

	Integration with HCL® Launch
	Installing the plugin on HCL® Launch
	Creating a component in HCL® Launch
	Creating a process in HCL® Launch
	Configuring the process
	Creating a resource in HCL® Launch
	Configuring the resource
	Creating an application in HCL® Launch
	Configuring the application
	Running tests from HCL® Launch

	Integration with HCL OneTest™ API
	Before you begin
	Setting environment variable
	Connecting to an existing API project
	Setting HCL OneTest™ API preferences
	Opening HCL OneTest™ API resources from the Test Navigator
	Importing HCL OneTest™ API project
	Modifying HCL OneTest™ API environments in HCL OneTest™ Performance
	Running HCL OneTest™ API tests
	Running the compound test or schedule
	API Performance Report

	Integration with IBM® UrbanCode™ Deploy
	Installing the plugin on UrbanCode™ Deploy
	Creating a component in UrbanCode™ Deploy
	Creating a process in UrbanCode™ Deploy
	Configuring the process
	Creating a resource in UrbanCode™ Deploy
	Configuring the resource
	Creating an application in UrbanCode™ Deploy
	Configuring the application
	Running tests from UrbanCode™ Deploy

	Integration of Jaeger with the product
	Viewing test logs in Jaeger

	Integration with Jenkins
	Environment variables for Jenkins
	Task flows for running test assets from Jenkins
	Installing the plugin on the Jenkins primary server
	Configuring the Freestyle project
	Creating a pipeline script from Jenkins
	Configuring the Pipeline project by using the sample script
	Configuring the Pipeline project by using the script from SCM
	Running tests from Jenkins

	Testing with Maven
	Before you begin
	Introduction
	Method 1
	Method 2

	Integration with Micro Focus ALM
	Creating a test script in Micro Focus ALM
	Configuring test scripts in Micro Focus ALM
	Running tests from Micro Focus ALM

	Chapter 7. Test Author Guide
	Creating tests
	Performance testing tips
	Creating a project
	Recording HTTP tests
	Recording reliable HTTP tests
	Remove temporary files
	Allow recorded pages to load completely
	Recording with IP addresses

	Configuring Internet Explorer for recording from a secure web site
	Recording an HTTP test
	Recording a WebSocket test
	Recording an HTTP test for mobile applications
	Generating HTTP tests from a Web UI test
	Preparing to record a test for the HTTP/2 protocol
	Splitting an HTTP test during recording
	Returning a browser to its initial state if recording is interrupted
	Creating HTTP tests manually
	Creating an empty test
	Adding templates for new elements
	Adding a header
	Editing header contents

	Creating tests from HTTP Archive files
	Recording Adobe™ Flex content
	Recording Microsoft Silverlight applications
	Changing HTTP test generation preferences

	Recording SAP tests
	SAP performance testing guidelines
	SAP configuration
	Limitations
	Batch input tests
	Performance tests
	Long duration test runs
	Cleaning the SAP work directory

	Recording an SAP test
	Recording a specific SAP transaction from a running SAP session
	Inserting a new recording into a SAP test
	Recording a session with HTTP SAP Portal
	Recording a SAP batch input test
	Changing SAP test generation preferences

	Recording Citrix tests
	Citrix performance testing guidelines
	HCL OneTest™ Performance Agent requirements
	Optical Character Recognition
	Long duration test runs

	Recording a Citrix test
	Recording a test with the Citrix Web Interface
	Inserting a new recording into a Citrix test
	Changing Citrix recording preferences
	Changing Citrix test generation preferences

	Recording service tests
	Service testing guidelines
	Test prerequisites
	Test generation
	Encryption and security
	SSL Authentication
	NTLM and Kerberos Authentication
	Digital certificates
	Limitations
	Performance

	Verifying WSDL syntax compliance for JMS services
	Configuring the environment for SOAP security
	Recording a service test with the generic service client
	Recording a service test through a client program
	Preparing to record a test for the HTTP/2 service
	Optimizing HTTP/2 tests for SOA
	CPU Usage
	Memory usage and garbage collection
	Thread Usage
	Platform tuning

	Creating a service test from a BPEL model
	Creating a service test manually
	Creating a service test for WebSphere® MQ
	Creating a service test for WebSphere Java MQ
	Creating an XML call test manually
	Changing service test generation preferences

	Recording socket and TN3270 tests
	Socket performance testing guidelines
	Limitations
	Performance
	SSL/TLS Authentication

	TN3270 performance testing guidelines
	Limitations
	Performance

	Recording a socket API performance test
	Recording a TN3270 performance test
	Changing test generation preferences

	Digital certificates overview
	Digital certificate creation overview
	Creating a digital certificate with OpenSSL
	Creating a digital certificate store
	Playing back a test with a digital certificate
	Entrust TruePass authentication overview

	Kerberos overview
	Introduction
	Supported environments
	Tips
	Troubleshooting
	Terms
	Recording Kerberos applications with Internet Explorer
	Recording Kerberos applications with Mozilla Firefox
	Generating tests that use Kerberos

	Annotating a test during recording
	Recording sensitive session data
	Splitting a test during recording
	Generating a new test from a recorded session
	Organizing test assets by type

	Editing tests
	Editing HTTP tests
	Redirection support for HTTP tests
	Creating secondary HTTP requests
	HTTP test editor overview
	Specifying the number of allowable URL redirects during test runs
	Cutting and pasting in tests
	Defining requirements in tests
	Adding an authentication folder
	Adding or removing header in batches
	Adding HTTP header to multiple HTTP requests
	Removing HTTP header from multiple HTTP requests

	Verifying expected behavior
	Specifying the expected page title
	Specifying the expected response code
	Specifying the expected response size
	Specifying the expected content
	Specifying the expected content for multiple requests

	Specifying error-handling behavior
	How loops affect the state of virtual users
	Splitting a test
	Splitting a test page
	Merging test pages
	Disabling and enabling secondary HTTP requests
	Adding custom actions to requests
	Reusing tests on different hosts: Server connection variables
	Converting tests to use SSL connections
	Working with Server Name Indication (SNI) recordings
	Viewing a test in the Protocol Data view
	Testing Siebel applications
	Prerequisites for Siebel testing
	Differences between Siebel tests and HTTP tests
	Correlating a request value with a built-in Siebel variable

	Editing SAP tests
	SAP test editor overview
	Verifying expected behavior
	Adding an SAP verification point
	Specifying an expected screen title
	Verifying response times

	Adding elements to an SAP test
	Adding an SAP set, SAP get, or SAP call element
	Adding an SAP sequence element
	Adding a batch input transaction
	Adding a verification point to an SAP GUI Grid View object

	Splitting an SAP test
	Viewing GUI data in the SAP Protocol Data view

	Editing Citrix tests
	Citrix test editor overview
	Citrix synchronization overview
	Verifying application behavior
	Enabling Citrix window verification points
	Enabling Citrix image synchronization verification points
	Specifying window verification point criteria
	Measuring response times

	Adding elements to a Citrix test
	Editing a mouse action
	Viewing a mouse sequence
	Editing a keyboard action
	Editing a text input
	Synchronizing tests with screen areas
	Manually adding an image synchronization
	Adding values to an image synchronization
	Using custom code with a Citrix test

	Editing service tests
	Web service test editor overview
	Verifying application behavior
	Adding equal verification points
	Adding contain verification points
	Adding Xpath query verification points
	Adding attachment verification points
	Adding Text verification points
	Adding properties verification points
	Adding XSD verification points

	Working with Server Name Indication (SNI) recordings
	Adding elements to a socket test
	Adding a service request
	Updating a service response from the service
	Manually adding a response element

	Managing JMS/MQ connections in a service test
	Editing WSDL security profiles
	WSDL security editor overview
	Algorithm stacks
	Raw transaction data view
	Digital certificate keystores
	Associating stacks with WSDL operations

	Creating security profiles for WSDL files
	Using a security policy
	Adding security stacks
	Implementing a custom security algorithm
	Adding WS-Addressing to a security configuration

	Testing asynchronous services
	Asynchronous service testing overview
	WS-Notification services
	Proprietary asynchronous services
	Callback structure

	Creating an asynchronous request structure
	Adding an asynchronous callback to a service request

	Creating a reliable messaging call structure

	Editing Socket tests
	Socket API test editor overview
	Displaying binary data
	Manipulating elements in the socket test editor

	Adding elements to a socket test
	Adding a socket close
	Adding a socket send
	Adding a socket receive element

	Verifying application behavior
	Verifying received content
	Verifying received message size
	Verifying received data with custom Java™ code

	Merging socket send and receive elements
	Changing multiple socket send and receive elements
	Splitting a socket test
	Using custom code to specify an end policy
	Using custom code to manipulate data

	Editing Kerberos tests
	Adding test elements
	Adding a comment
	Adding a transaction to a test
	Adding conditional logic
	Synchronizing users in tests
	Adding a loop to a test
	Adding Dataset Mapper
	Adding data source controller
	Controlling the flow of test

	Searching within tests
	Locating specific types of test elements
	Searching and replacing text in tests

	Exporting a test
	Copying test assets with dependencies
	Copying projects

	Disabling portions of a test
	Running test elements in random order
	Renaming test assets
	Deleting test assets
	Debugging custom code for tests and compound tests
	Providing tests with variable data (datasets)
	Dataset overview
	Creating a dataset associated with a test
	Creating a dataset in a workspace
	Converting an existing datapool to a dataset
	Creating datasets with multiple substitutions
	How dataset options affect values that a virtual user retrieves
	Enabling a test to use a dataset
	Associating a test value with a dataset column
	Viewing dataset candidates when you open a test
	Editing datasets
	Encrypted datasets overview
	Encrypting a dataset column
	Decrypting a dataset column

	Using a digital certificate store with a dataset
	Navigating between a dataset and a test

	Test variables
	Sharing variables among tests
	Using variables to access datasets
	Array variables
	Declaring and assigning test variables
	Initializing variables from the command line
	Initializing variables from Engineering Test Management

	Correlating response and request data
	Data correlation overview
	Viewing data correlation
	Data correlation rules overview
	Creating data correlation rule sets
	Creating a reference using data correlation rules
	Creating a substitution with data correlation rules
	Example: Linking references to substitutions with rules
	Example: Linking substitutions to references with rules
	Example: Linking substitutions to built-in data sources with rules
	Recorrelating data with rules
	Recording tests with data correlation rules
	Generate data correlation rules in the test editor
	Generating rules while you edit
	Saving manual data correlation in a rule set file

	Viewing data correlation rule usage

	Test data sources overview
	Detaching the Test Data Sources window
	Correlating a request value with test data
	Substituting request content with file contents
	Built-in Datasources
	Creating a Random Number datasource
	Assigning random numbers to virtual users
	Creating a Sequential Number datasource

	Reference or Field Reference overview
	Creating a Reference or a Field Reference
	Selecting a Reference in a response
	Viewing references

	Correlating multiple fields in a test
	Guidelines for adjusting data correlation
	Insufficient correlation: Parameters have different names or occur in unexpected locations
	Insufficient correlation: One parameter is unnamed
	Superfluous correlation
	Incorrect correlation

	Finding data correlation errors
	Disabling data correlation
	Recorrelating test data

	Data transformation
	Viewing binary data
	Transforming binary data in tests
	Transforming binary data in specific requests
	Transforming binary data automatically

	Viewing JSON data
	Viewing or transforming GWT encoded data
	Transforming GraniteDS or BlazeDS data
	Transforming SAP Web DynPro XML to ASCII
	Creating custom data transformations
	Using custom data transformations

	Compound tests
	Creating a compound test
	Viewing compound tests
	Adding tests into a compound test
	Modifying a compound test
	Running compound tests
	Generating compound test result reports
	Exporting the Test Log
	Generating a functional test report
	Creating an executive summary

	Adding a compound test to a Test Workbench project
	Creating a compound test in a test workbench project
	Importing a compound test into a Test Workbench project

	Adding compound tests to schedule

	Simulating services with stubs
	Service stub overview
	Use case examples
	Service stub architecture

	Creating a service stub
	Editing a service stub
	Deploying service stubs
	Recording service stub activity in a log file
	Setting log level for service stubs

	Sending service requests with the generic service client
	Creating transport protocol configurations
	Creating an HTTP transport configuration
	Configuring the workbench for NTLMv2 authentication
	Creating a JMS transport configuration
	Creating a WebSphere® MQ protocol configuration
	Creating a WebSphere® Java MQ transport configuration
	Creating Microsoft™ .NET transport configurations
	Creating SSL configurations

	Sending service requests with WSDL files
	Sending HTTP endpoint requests
	Sending a JMS endpoint request
	Sending a WebSphere® MQ endpoint request
	Sending OData endpoint batch requests
	Sending WebSphere Java MQ endpoint requests
	Testing all operations in a WSDL file
	Viewing message content
	Synchronizing a remote WSDL file
	Synchronizing a local WSDL file with GSC
	Adding static XML headers to a service request
	Opening file attachments

	Emulating workloads
	Schedule overview
	Creating a VU Schedule
	Setting user loads
	User group overview
	Adding a user group to VU Schedule
	Adjusting user groups
	Emulating slower network traffic
	Running a user group at a remote location
	Delaying virtual users or actions
	Synchronizing users

	Creating a Rate Schedule
	Setting rate load
	Rate Runner group overview
	Adding Rate Runner Groups
	Run a Rate Runner group at a remote location

	Using Application Performance Management in a schedule
	Think time overview
	Setting think time behavior in schedules
	Limiting think times in schedules
	Limiting think times in tests

	Working with agents
	Checking the status of agents
	Configuring port numbers for agents
	Managing the deployment directory for agents
	Configuring the high-resolution timer

	Adding a test to a schedule
	Adding must run tests
	Assigning variables
	Defining requirements in schedules
	Repeating tests in a schedule
	Creating rate generators in user groups
	Running tests at a set rate
	Running tests in random order
	Adding a transaction to a schedule
	Emulating network traffic from multiple hosts
	Configuring IP aliases for a remote Windows™ location
	Configuring IP aliases for a remote Linux™ location
	Configuring IP aliases for a remote AIX® location
	Enabling virtual users to use IP aliases

	Monitoring resource data while running a performance test schedule
	Enablement of Resource Monitoring services for a schedule
	Adding Resource Monitoring sources to a performance schedule
	Adding Resource Monitoring sources to a performance schedule by using labels

	Enabling Resource Monitoring from the workbench
	Adding sources for resource monitoring data
	Adding Apache HTTP Server sources
	Adding Apache Tomcat sources
	Adding IBM® DB2® sources
	Adding IBM® Tivoli® Monitoring sources
	Adding IBM® WebSphere® Performance Monitoring Infrastructure sources
	Adding Java™ Virtual Machine sources
	Adding JBoss Application Server sources
	Adding Microsoft™ Windows™ Performance Monitor sources
	Adding Oracle Database sources
	Adding Oracle WebLogic Server sources
	Adding SAP NetWeaver sources
	Adding Simple Network Management Protocol sources
	Adding UNIX™ rstatd sources

	Resource Monitoring Service
	Starting Resource Monitoring Service

	Monitoring response time breakdown
	Enabling response time breakdown collection
	Enabling response time breakdown collection on Windows™ Vista, Windows™ 7, and Windows™ Server 2008
	Setting logging levels
	Enabling response time breakdown collection for specific page elements
	Filtering POJO packages, methods, and classes

	Setting log and statistic levels
	Setting the statistics displayed during a run
	Setting the data that the test log collects
	Setting the problem determination level for schedules
	Setting problem determination level for tests

	Chapter 8. Test Execution Specialist Guide
	Running schedules with performance testing
	Running a local schedule or test
	Running a long run mode SAP GUI test
	Running long duration Citrix tests
	Testing with Docker images
	Running tests with containerized agents
	Running automated tests with containerized workbench and agents from Docker

	Adjusting delays in HTTP tests
	Configuring HTTP client delays
	Adjusting client delays for all tests
	Overriding the HTTP connection timeout value
	Overriding WebSocket response timeout value
	Playing back HTTP tests faster than the recorded rate

	Setting a launch configuration
	Running a configured schedule
	Configuring multiple host names for a location
	Automating tests
	Creating a command-line config file
	Activating secure storage of dataset passwords
	Configuring to export report counters automatically
	Command-line parameters
	Running a test or schedule from a command line
	Stopping the test run from a command line

	Controlling cache sizes
	Increasing memory allocation
	Controlling the test runs from web analytics report
	Changing the number of virtual users during a run
	Changing the rate during a run
	Releasing virtual users from synchronization points
	Changing the stage duration during a run
	Changing the log level during a run
	Stopping test runs

	Debugging HTTP tests
	HTTP debugging overview
	Debugging HTTP Data Correlation Errors
	Watching a virtual user during a test run
	Watching a virtual user during a schedule run
	Replaying a virtual user after a run completes
	Viewing the playback summary of a virtual user
	Inspecting HTTP test logs in the Protocol Data view
	Managing HTTP information in the Protocol Data view

	Debugging Citrix tests
	Enabling and disabling the Citrix monitoring panel
	Debugging tests with the Citrix monitoring panel
	Setting Citrix breakpoints

	Extending test execution with custom code
	Creating custom Java™ code
	Test execution services interfaces and classes
	Reducing the performance impact of custom code
	Custom code examples
	Controlling loops
	Retrieving the IP address of a virtual user
	Printing input arguments to a file
	Counting the number of times that code is executed
	Setting and clearing cookies for a virtual user
	Determining where a test is running
	Determining where a test is running
	Extracting a string or token from its input argument
	Retrieving the maximum JVM heap size
	Running an external program from a test
	Adding custom counters to reports
	Using transactions and statistics
	Reporting custom verification point failures
	Debugging custom code
	Accessing the actual schedule name from the custom code
	Reading and writing data from a dataset
	Getting the properties of a dataset

	Migrating custom code from previous versions

	Extending HCL OneTest™ Performance to support other protocols
	Protocol extension structure
	Extending the test recorder
	Defining a new type of captured data
	Defining a new recorder
	Defining a new client
	Defining how a recorder can record a client
	Running recorders and clients without a UI
	Defining wizards for recorders and clients
	Migrating recorder implementations from previous versions

	Extending the test generation framework
	Defining a new test generator
	Defining a new packet converter
	Generating tests without a UI
	Defining a test-generation wizard
	Migrating test generator implementations from previous versions

	Contributing annotations
	Defining a new annotation type
	Contributing new actions to the annotation toolbar
	Generating a test-model element from a new annotation type
	Advanced annotation concepts
	Sending annotations from a recorder or a client
	Modifying the available annotation actions for a specific recorder or client
	Managing a state for a annotation types

	Extending the load test behavior model
	Updates to the load test behavior model
	com.ibm.rational.test.common.models.behavior.CBAssetMigration
	com.ibm.rational.test.common.models.behavior.CBElementHost
	com.ibm.rational.test.lt.models.behavior.common.LTAnnotation com.ibm.rational.test.lt.models.behavior.common.impl.LTAnnotationImpl
	com.ibm.rational.test.lt.models.behavior.common.LTArmEnabled
	Extensibility using RSA/EMF modeling

	Extension points for LTBM
	Registering a model element
	Sample

	Required attributes in a model class
	Registration examples
	Registering strings for content verification
	Registering built-in data sources

	Creating protocol constructs
	Modeling the behavior of a protocol extension

	Extending the classes in LTBM
	Public APIs for LTBM
	com.ibm.rational.test.lt.models.behavior.lttest package
	com.ibm.rational.test.lt.models.behavior.common package
	com.ibm.rational.test.lt.models.behavior.data package
	Data sources
	Substituters

	com.ibm.rational.test.lt.models.behavior.vps package

	Extending data correlation
	Implementing data correlation for test generation
	Implementing data correlation for execution

	Extending the test editor
	Migrating test editor extensibility
	Details area contents and layout (attribute field support)
	Behavior
	Classes
	Porting code from layoutProvider

	Test editor structure
	Common editor framework
	The modelObjectDescriptor extension point
	The testOptions extension point

	Contributing actions to the menu
	Test editor menus
	Creating actions

	Editor layer extension points
	API classes

	Contributing error handlers
	Defining the user interface for an error handler
	Controlling how available error handlers are displayed
	Controlling how error handlers for specific elements are displayed
	Creating an error type
	Implementing code generation for error handling
	Implementing execution for error handling

	Extending the schedule component
	Extension points for extending schedules
	Public APIs for extending schedules

	Extending code generation
	Code generation
	Extension points for code generation
	Generating test code
	Creating the script class
	Code generation templates
	New protocol extensions
	Public APIs of codegen.core

	Extending the run-time environment
	Blocked Action detection
	Extending subsystem management during a test run
	Informing the test engine that the subsystem exists
	Creating a simple test and VU Schedule
	Adding SampleAction and SampleSubsystem to the project
	Running the schedule with SampleAction using SampleSubsystem
	SampleAction.java code sample
	SampleAction.java

	SampleSubsystem.java code sample
	SampleSubsystem.java

	Extending initialization and finalization during a test run
	Public APIs for run time

	Extending the test log viewer
	Extending evaluation results
	Aggregation of statistical data
	Extending report counters
	The ReportAction extension point

	Extending default reports
	The RPTReport extension point

	Public APIs for evaluate results

	Chapter 9. Test Manager Guide
	Evaluating results in web analytic reports
	Comparing results among runs
	Comparing schedule stages
	Comparing results from various regions or agent locations
	Generating functional reports
	Publishing functional reports to the server
	Publishing test results to the server
	Publishing specific results to the server
	Customizing reports
	Creating custom reports
	Viewing trending reports
	Filtering data in test results
	Adding additional counters on a separate page
	Displaying counter data in tables or as graphs

	Customizing the appearance of graphs in a report
	Changing the report displayed during a run
	Modifying counters in a graph
	Correcting time offset

	Export test results
	Creating an executive summary from the workbench
	Creating an executive summary from the Web Analytics report
	Exporting reports to HTML format
	Exporting results to a CSV file
	Methods to export test results into a JSON file
	Exporting results to a JSON file by using the product
	Exporting results to a JSON file by using a web analytic report

	Sharing URL of test run
	Exporting report metadata

	Viewing response time breakdown
	Viewing page element responses
	Viewing page response time contributions
	Viewing response time breakdown data

	Logs overview
	Test logs
	Problem determination logs
	Agent logs
	Error logs
	Viewing test logs
	Viewing errors while running tests
	Viewing reports after a run
	Accessing reports remotely
	Exporting test logs
	Exporting event log
	Exporting event console output
	Viewing adjustments to page response times
	Disabling adjustments to page response times

	Viewing resource monitoring data
	Adding resource counters to reports
	Filtering resource counters

	Reports and counters
	Requirements report
	Status Summary page
	Overall Summary page
	Details page
	Supplemental Details page

	Synchronization Point report
	Loops report
	Loop Invocation Details
	Loop Iteration Details
	Loop Iteration Health

	Agents Health Report
	Report

	Rate Runner report
	Rate Runners
	Health
	Throughput

	Transaction report
	Overall page
	Elapsed Time vs. Time
	Net End-to-End time vs. Time
	Net Server Time vs. Time
	Transaction Throughput
	Transaction Throughput Details
	Transaction Health
	Transaction Details

	Transaction Percentile report
	Transaction Net Server Time Percentile report
	Rate Generator report
	Rate Generators
	Health
	Throughput

	HTTP performance test reports
	Performance report
	Contents
	Overall page
	Summary page
	Page Performance page
	Response vs. Time Summary page
	Response vs. Time Detail page
	Page Throughput page
	Server Throughput page
	Server Health Summary page
	Server Health Detail page
	Caching Details page
	Resources page
	Page Element Responses
	Page Response Time Contributions
	Page Size
	Errors
	Page Health

	Page Element report
	Overall page
	Response vs. Time Summary page
	Response vs. Time Detail page
	Page Element Throughput page
	Server Health Detail page
	Caching Details page

	Why response time of a page does not equal the sum of its requests
	Page Percentile report
	Verification Points report

	SAP performance test reports
	SAP Performance report
	Summary page
	Screen Performance page
	Response vs. Time Summary page
	Response vs. Time Detail page
	Screen Throughput page
	Server Health page
	Batch Input Transaction Rate page

	SAP Verification Points report
	Summary page
	Screen Verification Points page

	Citrix performance test reports
	Citrix Performance report
	Citrix Overall page
	Performance Summary page
	Server Performance Summary page
	Response vs. Time Summary page
	Response vs. Time Details page
	User Action Throughput page
	Server Health Summary page
	Server Timeout page
	Resources page

	Citrix Verification Points report
	Summary page
	Citrix Verification Points page

	Citrix response time percentile report

	Web service performance test reports
	Service Performance report
	Overall page
	Summary page
	Response Time Results page
	Response Time vs. Time Summary page
	Response Time vs. Time Details page
	Data Volume page
	Call Throughput page
	Resources page

	Web Service Verification Points report
	Summary page
	Verification Points Detail page
	Response Contain Verification Points page
	Response Equal Verification Points page
	Response Properties Verification Points page
	Response Query Verification Points page
	Response XSD Verification Points
	Response Attachment Verification Points page
	Response Text Verification Points
	Callback Verification Points

	WSDL Coverage report
	Global Summary
	WSDL Coverage Summary
	WSDL Coverage Details

	Socket performance test reports
	Socket Performance report
	Overall page
	Connect Performance page
	Send/Receive Performance page
	Byte Performance page

	HTTP counters
	Byte counters
	Page counters
	Adjustment counters
	Attempt counters
	Hit counters
	Response Time counters
	Status Code Success counters
	Verification Point counters

	Run counters
	Test counters
	Transaction counters

	SAP counters
	SAP screen counters
	SAP Screen Request Response Time counters
	SAP Screen Request Interpretation Time counters
	SAP Screens Started counters
	SAP Screens Completed counters
	Verification Point counters
	SAP Elements Attempted counters
	SAP Elements Completed counters

	Citrix counters
	Citrix window synchronization counters
	Citrix image synchronization counters
	Citrix timer counters
	Citrix user action counters
	Citrix window counters

	Service counters
	Service call counters
	Service verification point counters

	Socket counters
	Socket counters
	Bytes Received counters
	Bytes Sent counters
	Connect Attempts counters
	Connect Times counters
	Connects counters
	Receive Attempts counters
	Receives counters
	Send Attempts counters
	Sends counters

	Chapter 10. Troubleshooting Guide
	Troubleshooting performance testing
	Connectivity problems between workbench and agent computers
	Recording configuration problems
	Problems running large tests or long-run tests
	Data correlation errors
	Common errors integrating with IBM® Rational® Quality Manager

	Performance testing error messages
	PRXE0101W
	PRXE4943W
	PRXE4951I
	RMSE0003W
	RMSE0004W
	RMSE0005W
	RMSE0006W
	RPAC0001W
	RPHD1032E
	RPHD1034E
	RPHE0001E
	RPHE0010W
	RPHE0011W
	RPHE0012W
	RPHE0013W
	RPHE0014W
	RPHE0100W
	RPHE0101W
	RPHE0102W
	RPHE0103W
	RPHE0104W
	RPHE0105W
	RPHE0106W
	RPHE0107W
	RPHE0108W
	RPHE0109W
	RPHE0110W
	RPHE0111W
	RPHE0112W
	RPHE0113E
	RPHE0113W
	RPHE0114E
	RPHE0114W
	RPHE0115E
	RPHE0115W
	RPHE0117W
	RPHE0118W
	RPHE0119E
	RPHE0120E
	RPHE0121E
	RPHE0122W
	RPHE0123W
	RPHE0124W
	RPHE0125W
	RPIB0007E
	RPKG0090E
	RPKG0100E
	RPKG0101E
	RPKG0110E
	RPSE0014W
	RPSF0114E
	RPSF0172E
	RPSF0195E
	RPTA0000W
	RPTA0001I
	RPTA0002E
	RPTA0003E
	RPTA0004E
	RPTA0009E
	RPTA0010E
	RPTA0011E
	RPTA0012E
	RPTA0013E
	RPTA0014E
	RPTA0015E
	RPTA0016E
	RPTA0017E
	RPTA0018E
	RPTA0019E
	RPTA0020E
	RPTA0021E
	RPTA0023E
	RPTA0024E
	RPTA0025E
	RPTA0026E
	RPTA0025I
	RPTA0026I
	RPTA0027I
	RPTA0031E
	RPTA0032I
	RPTA0033I
	RPTA0034E
	RPTA0035E
	RPTA0036E
	RPTA0037E
	RPTA0038E
	RPTA0039E
	RPTA0040E
	RPTA0041E
	RPTA0042E
	RPTA0043E
	RPTA0100W
	RPTA0518E
	RPTC0003E
	RPTC0004E
	RPTC0005E
	RPTC0006E
	RPTC0008I
	RPTC00020E
	RPTC1001W
	RPTC1002W
	RPTC1009I
	RPTC1011I
	RPTC1012I
	RPTC1013I
	RPTC1014I
	RPTC1015I
	RPTC1016I
	RPTC1017I
	RPTC1018I
	RPTC1019I
	RPTC1020I
	RPTC1021I
	RPTC1030E
	RPTC1031E
	RPTC1032E
	RPTD0011W
	RPTE0005W
	RPTE0011W
	RPTE0147E
	RPTE0150E
	RPTH0130I
	RPTH049E
	RPTI0069E
	RPTI0070E
	RPTI0071I
	RPTI0072E
	RPTI0072I
	RPTI0073E
	RPTI0074E
	RPTI0075E
	RPTI0110I
	RPTI0111I
	RPTI0112I
	RPTI0113I
	RPTI0141E
	RPTI0142E
	RPTI0143E
	RPTI0144W
	RPTI0145E
	RPTI0146E
	RPTJ0063E
	RPTJ0075E
	RPTJ1002E
	RPTJ1003E
	RPTJ1004E
	RPTJ1005E
	RPTJ1006E
	RPTJ1007E
	RPTJ1008E
	RPTJ1009E
	RPTJ1010E
	RPTJ1011E
	RPTJ1012E
	RPTJ1013E
	RPTJ1015E
	RPTJ1016E
	RPTJ1017E
	RPTJ1018E
	RPTJ1019E
	RPTJ1020E
	RPTJ1021E
	RPTJ0121I
	RPTJ1022E
	RPTJ1023E
	RPTJ1024E
	RPTJ1025I
	RPTJ1026I
	RPTJ1030E
	RPTJ1041E
	RPTJ1042E
	RPTJ1043E
	RPTJ1044E
	RPTJ1100I
	RPTJ1101E
	RPTJ1102W
	RPTJ1103W
	RPTJ1104E
	RPTJ1141E
	RPTJ1142E
	RPTJ1200W
	RPTJ1220E
	RPTJ1221E
	RPTJ1240E
	RPTJ1241E
	RPTJ1242E
	RPTJ1244E
	RPTJ1245E
	RPTJ1261E
	RPTJ1270E
	RPTJ1271E
	RPTJ1280E
	RPTJ1400I
	RPTK0000I
	RPTK1001E
	RPTK1016E
	RPTK1019E
	RPTK1020E
	RPTK1021E
	RPTK1022E
	RPTK1023E
	RPTL0001W
	RPTL0002W
	RPTL0003W
	RPTL0004W
	RPTL0005W
	RPTL0006W
	RPTL0007W
	RPTL0008E
	RPTL0009I
	RPTL0010E
	RPTL0011E
	RPTR0000W
	RPTR0001W
	RPTR0002W
	RPTR0003W
	RPTR0004W
	RPTR2001E
	RPTR2003W
	RPTS1000E
	RPTS1002E
	RPTS1510E
	RPTS1001I
	RPTS1004I
	RPTX0001E
	RPTX0002E
	RPTX0003E
	RPTX0004E
	RPTX0005E
	RPTX0006E
	RPTX0007E
	RPTX0008E
	RPTX0009E
	RPTX0010E
	RPXD0022W
	RPXE0061I
	RPXE5502E
	RPTX1010I
	RPTX1011I
	RPTX1012I
	RPTX1017I
	RPTX1018I
	RPTX1019I
	RPTX1081E
	RPTX1082E
	RPTX2001E
	RPTX2002E
	RPTX2003E
	RPTX2004E
	RPTX2005E
	RPTX2006W
	RPTX2007I
	RPTX2008I
	RPTX2009I
	RPTX2010I
	RPTX2011E
	RPTX2012E
	RPTX2013E
	RPTX2014E
	RPTX2015E
	RPTX2016I
	RPTX2017E
	RPTX2018W
	RPTX2019I
	RPTX2020I
	RPTX2021E
	RPTX2022E
	RPTX2023W
	RPTX2024E
	RPTX2025E
	RPTX2026E
	RPTX2027W
	RPTX2029W
	RPTX2030I
	RPTX2031I
	RPTX2032I
	RPTX2033E
	RPTX2034E
	RPTX2035E
	RPTX2036E
	RPTX2037E
	RPTX2050E
	RPTX2051E
	RPTX2055E
	RPTX2056E
	RPTX2057E
	RPTX2058E
	RPTX2060E
	RPTX2061W
	RPTX2062W
	RPTX2063W
	RPTX2070E
	RPTX2071E
	RPTX2072E
	RPTX2073E
	RPTX2074E
	RPTX2075E
	RPTX2077E
	RPWF0011E
	RPWF0012E
	RPWF0021E
	RPWF0032E
	RPWF0051E
	RPWF0052E
	RPWF0056E
	RPWF0066E
	RPWF0071E
	RPWF0072E
	RPWF0074E
	RPWF0075E
	RPWF0076W
	RPWF0081W
	RPWF0082W
	RPWF0083E
	RPWF0084E
	RPWF0085E
	RPWF0101E
	RPWF0102E
	RPWF0103E
	RPWF0104E
	RPWF0111E
	RPWF0112E
	RPWF0121W
	RPWF0122W
	RPWF0123W
	RPWF0124W
	RPWF0130W
	RPWF0131W
	RPWF0132E
	RPWF0140E
	RPWH0007W
	RPWH0009W
	RPWH0010W
	RPWH0012E
	RPWH0014E
	RPWH0015E
	RPWH0016E
	RPWH0017E
	RPWS0001E
	RPWS0002E
	RPWS0003E
	RPWS0004E
	RPWS0005E
	RPWS0006E
	RPWS0007E
	RPWS0008E
	RPWY0002E
	RPWY0003I
	RPWY0004W
	RPWY0005E
	RPWY0006E
	RPWY0007E
	RPWZI0002E
	RPXD0001E
	RPXD0002E
	RPXD0003E
	RPXD0004E
	RPXD0005E
	RPXD0006E
	RPXD0007F
	RPXD0017W
	RPXD0018E
	RPXD0019E
	RPXD0020E
	RPXD0021E
	RPXD0021W
	RPXE0001W
	RPXE0010W
	RPXE0011W
	RPXE0012W
	RPXE0013W
	RPXE0014W
	RPXE0015W
	RPXE0016W
	RPXE0017W
	RPXE0018W
	RPXE0019W
	RPXE0021W
	RPXE0023W
	RPXE0024W
	RPXE0025W
	RPXE0027W
	RPXE0028W
	RPXE0029W
	RPXE0030W
	RPXE0031W
	RPXE0033W
	RPXE0035W
	RPXE0036W
	RPXE0037W
	RPXE0038W
	RPXE0039W
	RPXE0040W
	RPXE0041W
	RPXE0042I
	RPXE0043I
	RPXE0044W
	RPXE0045W
	RPXE0046W
	RPXE0047E
	RPXE0048W
	RPXE0049W
	RPXE0050W
	RPXE0051W
	RPXE0052W
	RPXE0053W
	RPXE0054W
	RPXE0055W
	RPXE0056W
	RPXE0057E
	RPXE0058E
	RPXE0059E
	RPXE0060E
	RPXE0100W
	RPXE0102W
	RPXE0103W
	RPXE0104W
	RPXE2501E
	RPXE2550E
	RPXE2552I
	RPXE2900E
	RPXE2901W
	RPXE4000W
	RPXE4001E
	RPXE4002E
	RPXE4003E
	RPXE4004E
	RPXE4005E
	RPXE4006E
	RPXE4007E
	RPXE4008E
	RPXE4008I
	RPXE4009I
	RPXE4010I
	RPXE4011E
	RPXE4013I
	RPXE4014E
	RPXE4015E
	RPXE4016E
	RPXE4017I
	RPXE4018E
	RPXE4019E
	RPXE4020E
	RPXE4021E
	RPXE4022E
	RPXE4023E
	RPXE4024E
	RPXE4025E
	RPXE4026E
	RPXE4027E
	RPXE4028E
	RPXE4029E
	RPXE4050I
	RPXE4100W
	RPXE4101E
	RPXE4102E
	RPXE4103E
	RPXE4104E
	RPXE4105E
	RPXE4106E
	RPXE4107E
	RPXE4108E
	RPXE4109E
	RPXE4110E
	RPXE4111W
	RPXE4112W
	RPXE4120E
	RPXE4150E
	RPXE4151E
	RPXE4152E
	RPXE4153E
	RPXE4200W
	RPXE4201W
	RPXE4202E
	RPXE4203E
	RPXE4204W
	RPXE4205E
	RPXE4208E
	RPXE4209I
	RPXE4210E
	RPXE4211E
	RPXE4212E
	RPXE4213E
	RPXE4214W
	RPXE4215E
	RPXE4215I
	RPXE4216E
	RPXE4217E
	RPXE4218E
	RPXE4219E
	RPXE4220E
	RPXE4221E
	RPXE4900I
	RPXE4901I
	RPXE4902I
	RPXE4903I
	RPXE4904I
	RPXE4905I
	RPXE4906I
	RPXE4907I
	RPXE4908I
	RPXE4909I
	RPXE4910I
	RPXE4911I
	RPXE4912I
	RPXE4913I
	RPXE4914I
	RPXE4915I
	RPXE4916I
	RPXE4917I
	RPXE4918I
	RPXE4920I
	RPXE4921I
	RPXE4930I
	RPXE4931I
	RPXE4932I
	RPXE4940I
	RPXE4941I
	RPXE4942I
	RPXE4944W
	RPXE4945W
	RPXE4948W
	RPXE4950I
	RPXE4952E
	RPXE5301E
	RPXE5305E
	RPXE5330E
	RPXE5500W
	RPXE5501W
	RRIT0001E
	RRIT0002E
	RRIT0003E
	RRIT0004E
	RRIT0005E
	RRITUI1002W
	DCRC0001E
	DCRC0002E
	DCRC0003E
	DCRC0008W
	DCRC0009W
	DCRC0010E
	DCUI0001E
	DCUI0003E
	DCUI0004E
	DCUI0006E
	DCUI0007W
	DCUI0008W
	DCUI0009E
	DCUI0010E
	DCUI0011E
	DCUI0012E
	DCUI0013E
	DCUI0014E
	DCUI0015E
	DCUI0016E
	DCUI0017E
	DCUI0998E

	Additional error messages
	Address already in use
	Browser profile in use
	Cannot open test
	Connection closed
	Dataset accessed using different modes
	Error binding to port
	Error connecting to license server
	No local agent controller
	Performance Test Errors were found in the project
	Test run aborted
	Test run aborted due to error
	Testgen completed with warnings
	Variable not initialized

	Chapter 11. Reference Guide
	Accessibility features
	Accessibility compliance
	Accessing UI elements
	Keyboard shortcuts for performance and service testing

	General reference for performance testing
	Data correlation rules
	Rules that create elements
	Rules that change elements
	Rules that find elements
	Rules that remove elements

	Error conditions
	Page Title Verification Point Failure [HTTP]
	Response Code Verification Failure [HTTP]
	Response Size Verification Failure [HTTP]
	Content Verification Point Failure
	Connection Failure
	Authentication Failure
	End of Dataset reached
	Reference Extraction Failure
	Substitution Failure
	Server Timeout
	Custom Verification Point Failure
	Custom Code Alert
	Custom Code Exception

	Resource monitoring data sources
	IBM® Tivoli® Monitoring
	IBM® DB2® Monitoring
	IBM® WebSphere® Performance Monitoring Infrastructure
	Java™ Management Extensions
	Oracle Database Metrics
	UNIX™ rstatd
	Simple Network Management Protocol (SNMP) agents
	Windows™ Performance Monitor

	Response time breakdown data sources
	IBM® Tivoli® Composite Application Manager for Application Diagnostics
	IBM® Tivoli® Composite Application Manager for Response Time Tracking
	IBM® Tivoli® Composite Application Manager for WebSphere®
	IBM® Tivoli® Monitoring for Transaction Performance

	UI preferences
	HTTP preferences
	HTTP protocol data view preferences
	HTTP recorder preferences
	HTTP test editor preferences
	HTTP test generation preferences
	Test generation options
	Data correlation
	Data correlation types

	SAP test preferences
	SAP test editor preferences
	SAP recording preferences
	SAP test generation preferences

	Citrix recorder preferences
	Citrix test editor preferences
	Citrix test generation preferences

	Socket Test Generation preferences
	Socket Strategy Settings Editor

	Citrix monitoring panel reference
	Proxy recording preferences
	Test editor preferences
	General
	Colors and Fonts
	Search and Replace

	Report preferences
	Test report preferences
	Default report preferences
	Export report preferences
	Web report preferences
	Percentile analysis preferences

	Test editor references
	HTTP test editor reference
	HTTP test details
	Common options
	Security
	Performance Requirements
	HTTP options

	HTTP page details
	HTTP request details
	HTTP response data details
	HTTP server access configuration details

	SAP test editor reference
	SAP test details
	SAP options
	Common options

	SAP connection details
	SAP screen details
	Screen Title Verification Point

	SAP set details
	SAP Set
	SAP GUI Object Information

	SAP get details
	SAP Get
	Verification Point
	SAP GUI Object Information

	SAP call details
	SAP Call
	Verification Point
	SAP GUI Object Information

	SAP server request details
	SAP Screen
	Request Time Verification Point
	Request Timeout

	SAP batch connection details
	SAP Batch Input Connection

	SAP batch input transaction details
	SAP Batch Input Transaction

	Citrix test editor reference
	Citrix test details
	Citrix options
	Common options

	Citrix session details
	Session Attributes
	Response Time Definitions

	Citrix window details
	Styles
	Verification Point

	Citrix window event details
	Response Time

	Citrix key action details
	Think Time
	Character edition
	Response Time

	Citrix mouse action details
	Think Time
	Response Time

	Citrix text input details
	Think Time
	Response Time

	Citrix mouse sequence details
	Citrix screen capture details
	Session Attributes
	Screen Capture Preview

	Citrix image synchronization details
	Image synchronization attributes
	Synchronization
	Verification Point
	Response Time

	Citrix logoff details
	Session Logoff Attributes
	Think Time

	VU Schedule editor reference
	Schedule properties
	User Load page
	Think Time page
	Resource Monitoring page
	Statistics page
	Variable Initialization
	Performance Requirements page
	Test Log page
	Response Time Breakdown page
	Problem Determination page

	User group properties
	Locations
	Options
	Variable Initialization

	WSDL security editor reference
	Keystores
	Security Stacks

	Security Considerations
	Enabling secure communication between multiple applications
	Ports, protocols, and services
	Customizing your security settings
	Privacy policy considerations
	Security limitations

	Notices
	Trademarks
	Terms and conditions for product documentation
	Applicability
	Personal use
	Commercial use
	Rights

	Index

