
Getting started with DevOps
Test Embedded for Eclipse IDE

ii

Special notice

Before using this information and the product it supports, read the information in Notices on page xxxii.

Contents
Chapter 1. Overview.. 4
Chapter 2. Importing the project in DevOps Test
Embedded for Eclipse IDE... 5
Chapter 3. Building and running the application........... 9
Chapter 4. Creating a test case................................. 18
Notices.. xxxii
Index...

iii

d130e118
d130e118
d130e118
d130e118

4

Chapter 1. Overview
HCL DevOps Test Embedded (Test Embedded) is delivered with some examples. For the HCL DevOps Test Embedded

for Eclipse IDE (Test Embedded for Eclipse IDE), they are in the <installation folder>/examplesEclipse.

The following guide uses the example MUIproj to display various features. The guide covers the following features:

• The application build

• Code coverage

• MISRA rules review

• The call graph visualization

• The test generation

• The stub creation

• The execution of the test

Chapter 2. Importing the project in DevOps Test Embedded
for Eclipse IDE
You can either create a new project or you can import your existing Eclipse projects in your HCL DevOps Test

Embedded (Test Embedded) workspace.

Starting Test Embedded for Eclipse IDE

On Windows:

• Before stating, set the environment variables HCL_LICENSING_URL and HCL_LICENSING_ID with the

information provided by HCL.

• Open the Windows start menu and select from the menu HCL DevOps Test Embedded for Eclipse IDE in the

group DevOps Test Embedded

On Linux

• In the installation folder, edit the file testrtinit.sh and update the following environment variables:

◦ TESTRTDIR with the correct installation folder

◦ HCL_LICENSING_URL and HCL_LICENSING_ID with the information provided by HCL

• Run the command: .testrtinit.sh

• Then run the command: .start_visualtest.sh &

5

Getting started with DevOps Test Embedded for Eclipse IDE

6

Create your own workspace. Alternatively you can select an existing workspace.

Importing the project MUIproj

1. Select the menu File > Import.

2. Select General > Existing Projects into Workspace in the opened wizard, and then click Next.

Chapter 2. Importing the project in DevOps Test Embedded for Eclipse IDE

3. Click Select archive file, and then click Browse… on the same line and select the file MUIproj.zip in the

folder <installation folder>/examplesEclipse.

4. Click Finish.

7

Getting started with DevOps Test Embedded for Eclipse IDE

8

A new project MUIproj is created. You can see it in the project explorer (if this view is not already open, you

can open it by selecting the menu Window > Show View > Project Explorer.

Chapter 3. Building and running the application
DevOps Test Embedded comes with many Target Deployment Port (TDP) for different compilers. For more

information about Target Deployment Port, see Target deployment port overview.

This project was initially designed for C Visual Studio 2019. If you do not have this compiler installed or if you are on

Linux, you need to modify the Target Deployment Port accordingly.

When you install DevOps Test Embeddedon your computer, the installer checks your compilers installation and create

the following TDP for you:

• C GNU if it finds a gcc native compiler (Cygwin or MinGW)

• C Visual if it finds a Microsoft Visual compilers

You can update this project with any one of them.

Modifying the TDP in the settings

1. Right click the project MUIproj and select from the menu Properties in the Project Explorer.

2. Select C/C++ Build > Settings from the left menu tree in the wizard.

3. Alternatively, you can click the settings icon on the toolbar (make sure that you are in the perspective C/C+

+ or DevOps Test Embedded). This open the Properties settings directly.

4. In the right panel of the wizard, select the tab Build TDP (if this tab is not displayed, increase the width of the

wizard or use the right arrow to make it appear).

9

https://help.hcltechsw.com/devops/test/embedded/9.0.0/docs/topics/ctdpovw.html

Getting started with DevOps Test Embedded for Eclipse IDE

10

5. In the Target Deployment Port property, click C Visual Studio 2019 and select C GNU from the drop-down list

(or C Visual depending on the compiler you have on your computer).

6. Click Apply, and then Close.

Building the project

Now this project can be built by using this TDP. The default configuration involves performing the build with both

Coverage and MISRA Code Review options enabled.

Chapter 3. Building and running the application

1. Right click the project MUIproj and select the option Build Project from the menu in the Project Explorer.

The console view displays the build log. The build must successfully complete up to the linking phase.

Note: It can take some minutes to complete.

Running the application

This application contains a simple main that can be run.

11

Getting started with DevOps Test Embedded for Eclipse IDE

12

1. Open the node Binaries in the MUIproj project In the project explorer.

2. Right-click MUIproj.exe and from the menu select Run As > Instrumented Application.

Chapter 3. Building and running the application

This Instrumented Application option runs the just-compiled application and then launch different tools to

generate reports depending on the settings.

Note: If Eclipse prompts you in case of errors in the project, ignore it and click Yes.

Viewing code coverage report

After the test run, all the reports are collected in a single file that you can find under the virtual node Test.

1. In the Project Explorer, expand the node Test > Application Result in the MUIproj project.

There is a new file called MUIproj.exe with the date of the test run and a status.

2. Right-click the file and from the menu, select the option Open With > Coverage.

13

Getting started with DevOps Test Embedded for Eclipse IDE

14

The Coverage viewer is opened and displays a graph with the different coverage level percentages. For more

information, see Code coverage overview and Coverage levels.

The Outline option on the Coverage viewer allows you to navigate on the source code for each compilation

unit.

3. Click on any one of them. A copy of the source code is now displayed with different colors:

https://help.hcltechsw.com/devops/test/embedded/9.0.0/docs/topics/ccovovw.html
https://help.hcltechsw.com/devops/test/embedded/9.0.0/docs/topics/ccovlevels.html

Chapter 3. Building and running the application

◦ Green: the code is covered

◦ Red: the code is not covered

◦ Orange: the code is partially covered

◦ Black: no code

For more information, see Using the Code Coverage Viewer to view reports. A similar report exists in

HTML format. You can open it in a browser:

4. Right click on the same file and from the menu, select the option Open With > HTML Reports > Coverage.

Viewing MISRA code review report

DevOps Test Embedded supports MISRA C 2004 rule, see Code review MISRA 2004, and MISRA C 2012, see Code

review MISRA 2012 rules. You can open the report generated by this feature in the following way.

15

https://helphttps//help.hcltechsw.com/devops/test/embedded/9.0.0/docs/topics/tcovview_eclipse
https://help.hcltechsw.com/devops/test/embedded/9.0.0/docs/topics/r_misra_rules
https://help.hcltechsw.com/devops/test/embedded/9.0.0/docs/topics/r_misra_2012
https://help.hcltechsw.com/devops/test/embedded/9.0.0/docs/topics/r_misra_2012

Getting started with DevOps Test Embedded for Eclipse IDE

16

1. Right click the node MUIproj.exe in the Application Result node, and then select from the menu Open With >

Code Review .

The code review viewer is opened. The outline view allows you to navigate to the different files of the

application (.h and .c). The central panel displays the rules that is raised during the analysis for the selected

file. If you click on a rule, the source code editor opens in the selected file, at the line where the error was

found.

A similar report exists in HTML format. You can open it in a browser:

2. Right click on the same file and select from the menu Open With > HTML Reports > Code Review .

Chapter 3. Building and running the application

Exporting the HTML reports

All the reports, including the HTML reports, are stored in a single zip file. You can easily extract only the HTML reports

in a folder with an index that lists all the exported files.

1. Right click on the result file and select the option from the menu Open With > HTML Reports > Export Reports

2. Select a folder on your disk, or create a new one and click OK. A browser opens with the following index:

17

18

Chapter 4. Creating a test case
You can create a test case from the project by selecting a source file or a function. Each test case focuses on a

particular function.

The following sections display how to create, update and run a test case with DevOps Test Embedded

Opening the call graph

You have various ways to create a test case, and one method involves using the call graph that you can explore.

1. Right click the project MUIproj and from the menu, select Open Call Graph.

This action opens a new view that contains the call graph of the application:

Chapter 4. Creating a test case

The nodes in this graph represent the functions of the application. Nodes with dotted lines correspond to

functions without available source code (in this example, these are functions in libc). The lines between two

nodes are the calls between functions. The top level function is at the left of the graph (in this example it is the

function main) and low level functions on the right.

2. Click a node inside the call graph (in the following example, the node MUIpsCompute is selected.

Now the call graph highlights the following:

◦ The grey node is the selected function

◦ The blue lines on the right of this node calls to other functions

◦ The blue lines on the left of this node are links to caller functions

◦ The blue nodes are functions that are in the same compilation unit

3. Double click on a node, the corresponding source code opens in the editor.

Creating a test

You can now create a test for the function div. DevOps Test Embedded, a test is composed of two parts:

• A test case, is the test itself. The test contains the following:

◦ The call of the function under test.

◦ A table with the initial values and the expected values of the parameters, the global variables and local

variables that you can add in this test case.

◦ The stub behaviors relative to this test case.

◦ Optionally, code that is added in the beginning (#include for example) and one or several

requirements.

• A test harness is the container for test cases. One test harness can contain multiple test cases, defining how

the test is built to become an executable program. A test harness:

19

Getting started with DevOps Test Embedded for Eclipse IDE

20

◦ The list of the files under test.

◦ Additional source files that can be added to the test harness when linking. This option is useful for

software integration test. It is also possible to add object files and libraries.

◦ The build settings.

◦ Optionally, code that is be added in the beginning (#include for example) and one or several

requirements in such case, these requirements cover all the test cases of the test harness.

In DevOps Test Embedded, test cases and test harnesses are files with the extensions .test_case and

.test_harness. There are compressed XML files.

1. Right-click the node div and select from the menu. the option New test harness

A new panel appears on the call graph, called Test Creation Activity:

This is a wizard that helps to create a first test case.

2. Click Next. This is the second page of the wizard. Now the call graph is reduced only to the functions

that are in the same compilation unit (in blue) and the functions that are called by previous one.

The objective of this step is to take into account only the functions that are required in your test

harness to link properly with your compilation unit without error. By default, the test harness is linked

only with the compilation unit of the function under test. So, all the referenced functions (nodes in

yellow) generates an error at the link phase as they are missing. The way to avoid that is to stub them.

3. Click the node MUILogInformation.

Chapter 4. Creating a test case

This node is now displayed as a stub, and the node MUILogClear disappears from the call graph

because its caller will be stubbed.

4. Continue the sub selection by clicking the nodes MUIsetTimer, MUIresetTimer, MUILogError and

MUIcheckTimer.

In the end, all the yellow nodes are suppressed, leaving only the blue ones.

5. Click Next. The next page is the test case name. By default, it is the name of the function under test.

You can go with the default.

6. Click Next.The next page is the test harness name. By default, it is the name of the function under test

with the suffix th_. You can go with the default.

7. Click Finish.

21

Getting started with DevOps Test Embedded for Eclipse IDE

22

Editing a test

At the end of the wizard, a test harness that includes one test case is created. This test harness must be open. The

test harness contains two parts:

• On the left panel, an activity diagram that allows to chain the test cases that is run.

• On the right panel, the configuration of the test harness.

You can go through on the following

• Context definition: Only one file is added as files under test, because you have stubbed all the external calls.

Chapter 4. Creating a test case

Note: This icon indicates that the files under test is included in the code generated for the test

harness. This helps you to have the visibility on static variables and static functions that are hidden

from external compilation units.

• Stubs: You can see here the five selected stubbed functions.

23

Getting started with DevOps Test Embedded for Eclipse IDE

24

1. Double click the div icon in the activity diagram to open the test case. The activity contains two parts:

◦ On the left panel, an activity diagram that display the different phases of the test case

◦ On the right panel, the configuration of the phase that is selected on the activity diagram (the default

one when opening the test case is its general description, that you can open when clicking on the

background of the activity diagram)

2. Click the Code box in the activity diagram: this shows you the generated code for calling the function under

test. You can edit the generated code.

The variables retValue, a and b are created locally in the test harness and used as parameters.

3. Click the Check box in the activity diagram,

Chapter 4. Creating a test case

This table displays all the variables used for the test (parameters and global variables) with:

◦ Their type

◦ Their initial expression that represents the value before calling the function under test. No Change

means that this variable is not initialized before calling the function under test.

◦ Their expected expression that represents the expected value after calling the function under test.

Same as Init mean that the expected value is the same as the initialized value.

◦ Their obtained expression (i.e. the actual value after calling the function under test). This column is

empty for now. It will be automatically filled after an execution.

Be default, the wizard generates a test case with all the parameters to 0 or null in case of pointers. You can

modify this test case for having the following division 50/7 that should give 7 as result.

4. Click the cell Initial expression of the variable a and enter the value 50.

5. Press enter to validate this value, or click the icon .

6. Click the cell Initial expression of the variable b, enter the value 7 and validate it. Do not modify the expected

result of retValue for now.

Running a test

You can run test harnesses or test scripts in a single step. You can update the list of test harnesses and test scripts

to be run.

1. Go back to the test harness by clicking on the tab th_div in the editor panel.

2. Click the run icon on the details panel. The console view should display build log… This should take less

than one minute.

25

Getting started with DevOps Test Embedded for Eclipse IDE

26

Viewing a test result

After the test run is completed, the test harness editor is updated to display the following result:

• The Available runs field is updated with the last test result and its status is displayed (Failed in this case).

• The activity diagram is updated with the status of each test case (Failed in this case).

• A coverage summary is displayed on the panel.

1. You can hover over this coverage summary that displays a detailed information of the test result.

2. Click the link Open full coverage report to open the coverage viewer with the information related to the

file under test only.

3. Double click the test case div inside the activity diagram to go to the test case editor that display

additional information related to the last runs:

Chapter 4. Creating a test case

▪ The field Available runs is updated with the last execution result and the status of the test run

is displayed (Failed in this case).

▪ The activity diagram is updated with the status Failed on the Check box

▪ A coverage summary is displayed on the panel.

▪ The column Obtained value is updated with the true values read during the execution and their

status.

Fixing the test case

When you see the value of retvalue is wrong, you can perform the following:

1. Fix the expected value of retvalue to 7.

2. Save the test case div .

3. Go to the test harness and re-run the test.

27

Getting started with DevOps Test Embedded for Eclipse IDE

28

The test is passed.

Updating the test case with multiple input values

DevOps Test Embedded allows you to define not only a single value but multiple values for an input variable, and also

for the expected values of an output parameter. For multiple input values, you can:

1. Give a list of values from a minimum value to a maximum value with a defined step,

2. Give a list of values as a list,

3. Give a list of values that come from a datapool.

In the second case, illustrated here is with multiple values on parameter a that should modify the output value of

retvalue.

Chapter 4. Creating a test case

1. Click the input Expression of the variable a and select the option Multiple.

2. A Multiple Variable Initialization dialog box is opened.

3. Select the option Multiple option, and then select 3 in the Values number.

4. Click OK.

29

Getting started with DevOps Test Embedded for Eclipse IDE

30

A new bar appears on the table. Enter the values 10, 20 and 30 in the three available fields.

5. Press enter to validate these values, or click the icon .

6. Click the Expected Expression of the variable retvalue and select Synchonized from the menu.

7. A new bar appears on the table. Enter the values 1, 2 and 4 in the three available fields.

8. Press enter to validate these values, or click the icon .

Chapter 4. Creating a test case

9. Run this test case. Go to the previous test harness and click the run icon on the details panel.

10. After the test run is completed, the test case is updated with the obtained values. You can navigate to the

three iterations using the breadcrumb bar available on the test case:

31

xxxii

Notices
This document provides information about copyright, trademarks, terms and conditions for the product

documentation.

© Copyright IBM Corporation 2000, 2016 / © Copyright HCL Technologies Limited 2016, 2021

This information was developed for products and services offered in the US.

HCL® may not offer the products, services, or features discussed in this document in other countries. Consult your

local HCL® representative for information on the products and services currently available in your area. Any reference

to an HCL® product, program, or service is not intended to state or imply that only that HCL® product, program,

or service may be used. Any functionally equivalent product, program, or service that does not infringe any HCL®

intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the

operation of any non-HCL® product, program, or service.

HCL® may have patents or pending patent applications covering subject matter described in this document. The

furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing,

to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

For license inquiries regarding double-byte character set (DBCS) information, contact the HCL® Intellectual Property

Department in your country or send inquiries, in writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to

the information herein; these changes will be incorporated in new editions of the publication. HCL® may make

improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time

without notice.

xxxiii

Any references in this information to non-HCL® websites are provided for convenience only and do not in any manner

serve as an endorsement of those websites. The materials at those websites are not part of the materials for this

HCL® product and use of those websites is at your own risk.

HCL® may use or distribute any of the information you provide in any way it believes appropriate without incurring

any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs (including this one) and (ii) the mutual use

of the information which has been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of

a fee.

The licensed program described in this document and all licensed material available for it are provided by HCL®

under terms of the HCL® Customer Agreement, HCL® International Program License Agreement or any equivalent

agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results

may vary.

Information concerning non-HCL® products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. HCL® has not tested those products and cannot confirm

the accuracy of performance, compatibility or any other claims related to non-HCL® products. Questions on the

capabilities of non-HCL® products should be addressed to the suppliers of those products.

Statements regarding HCL®'s future direction or intent are subject to change or withdrawal without notice, and

represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques

on various operating platforms. You may copy, modify, and distribute these sample programs in any form without

payment to HCL®, for the purposes of developing, using, marketing or distributing application programs conforming

to the application programming interface for the operating platform for which the sample programs are written. These

examples have not been thoroughly tested under all conditions. HCL®, therefore, cannot guarantee or imply reliability,

xxxiv

serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind.

HCL® shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as

follows:

© (your company name) (year).

Portions of this code are derived from HCL Ltd. Sample Programs.

© Copyright HCL Ltd. 2000, 2022.

Trademarks
HCL®, the HCL® logo, and ibm.com® are trademarks or registered trademarks of HCL Technologies Ltd., registered

in many jurisdictions worldwide. Other product and service names might be trademarks of HCL® or other companies.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the HCL® website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices

are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof,

without the express consent of HCL®.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary

notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display

these publications or any portion thereof outside your enterprise, without the express consent of HCL®.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or

implied, to the publications or any information, data, software or other intellectual property contained therein.

HCL® reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the

publications is detrimental to its interest or, as determined by HCL®, the above instructions are not being properly

followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and

regulations, including all United States export laws and regulations.

xxxv

HCL® MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT

LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR

PURPOSE.

	Getting started with DevOps Test Embedded for Eclipse IDE
	Contents
	Chapter 1. Overview
	Chapter 2. Importing the project in DevOps Test Embedded for Eclipse IDE
	Starting Test Embedded for Eclipse IDE
	Importing the project MUIproj

	Chapter 3. Building and running the application
	Modifying the TDP in the settings
	Building the project
	Running the application
	Viewing code coverage report
	Viewing MISRA code review report
	Exporting the HTML reports

	Chapter 4. Creating a test case
	Opening the call graph
	Creating a test
	Editing a test
	Running a test
	Viewing a test result
	Fixing the test case
	Updating the test case with multiple input values

	Notices
	Trademarks
	Terms and conditions for product documentation
	Applicability
	Personal use
	Commercial use
	Rights

