
BigFix Version 10.0.1
Action Script Guide

Special notice

Before using this information and the product it supports, read the information in Notices

(on page 87).

Contents

Special notice.. 2

Chapter 1. The Action Script Language...1

Chapter 2. Guide... 2

Creating a Custom Action.. 2

Using Substitution Variables.. 3

The Prefetch Block Structure... 4

Static Download...5

Dynamic Download..6

Action Status Messages...11

Chapter 3. Action Script Language Reference... 16

Client Commands..16

Download Commands...26

Execution Commands... 38

Flow Control Commands..57

File Commands..67

Registry Commands..76

Site Commands... 83

Agent to Agent Communication...84

Chapter 4. Support..86

Notices... 87

Chapter 1. The Action Script Language

The scope of the Action Script language is to issue commands, named actions, from

within Fixlets and tasks on relevant clients to fix the problem identified by the Applicability

Relevance clause.

In a Fixlet or task message you can specify an action script including one or more actions.

These actions will be run in sequence on relevant clients when the console operator clicks

Take action in the Fixlet or in the task entry on the BigFix console. If an action fails running,

the subsequent actions will not run and the processing will stop. For this reason, it is very

important to use error prevention methods in action scripts.

One of the biggest strengths of the Action Script language is the ability to use relevance

language expressions to implement variables within actions. This ability, named

substitution, allows you to customize an action for each specific agent where the action

runs, for example, by resolving the local installation path of a proprietary application.

The information about the Action Script Language is divided into the following areas:

• Guide: Where you find the generic concepts that apply to the action script language.

• Reference: Which contains information about all the available statements.

Chapter 2. Guide

Here you find the main concepts to understand how to use the Action Script Language.

Creating a Custom Action

You can create custom actions to fix specific problems or address issues across your

network that are not covered by the standard content.

To create a custom action:

1. Log on to the BigFix Console as a Master Operator.

2. Select Tools > Take Custom action.

3. In the Take action dialog provide a Name for your custom action. The value in this field

can be sorted and filtered, keep it in mind when defining your naming convention.

4. The Preset pull-down menu allows you to choose a preset customized action. These

are the the operations that you can run against a preset action:

• Preset: Select a preset from the pull-down menu.

• Show only personal presets: Check this box to filter the list of presets to just your

personal ones.

• Save Preset: Save the current set of action options for later use. A check box

below that lets you save it as a public or private preset.

• Delete Preset: Removes this preset from the selectable list.

5. Clicking on the different tabs you can define and customize the preset action:

• Target: Select the targets from the provided list, or use properties or a specific list

of computers to target the action.

• Execution: Specify the deployment options and constraints, including repeated

application and failure recovery.

• Users: Determine how this action will respond to the presence or absence of users.

• Messages: Provide a message to precede and accompany the action.

• Offer: Create an action offering, allowing the user to choose whether or not to

apply the action.

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 3

• Post-action: Describe what actions need to be done to complete the action,

including restarts or shutdowns.

• Applicability: Allows you to override the original action relevance.

• Success Criteria: Create specific criteria that you can use to determine if your

action was successful.

• Action Script: This tab allows you to create or modify an action script.

6. When you finish customizing the custom action and you are ready to deploy it, click OK.

Your custom action will be distributed to all the computers that have been selected or

targeted. The actions will be applied using whatever constraints and schedules that you

have specified.

You can also create actions when you Create Tasks or Create Fixlets.

Note: The original action included in the Fixlet or in the task is not overwritten by your

custom action.

Using Substitution Variables

Substitution allows the Fixlet author to include relevance expressions in an action. This is

accomplished by placing the relevance expression in curly braces.

For example, this example runs a program without knowing where it is located. A relevance

expression evaluates the path name automatically using the ‘regapp’ inspector:

run "{pathname of regapp "excel.exe"}"

In this example, instead, the action pauses until a program finishes running:

pause while {exists running application "c:\updater.exe"}

BigFix expects to find a single expression inside the curly braces. If it sees another left

brace before it encounters a closing right brace, it treats it as an ordinary character. For

example, the output of the action:

echo {"a left brace: {"}

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 4

would be:

a left brace: {

This means that no special escape characters are necessary to represent a left brace.

To output a literal right brace without ending the substitution, use a double character, for

example:

echo {"{a string inside braces}}"}

would return:

{a string inside braces}

This is another example:

appendfile {{ name of operating system } {name of operating system}

When this example is parsed, the double left braces indicate that what follows is not a

relevance expression. Only a single right brace is necessary when it's outside of a relevance

expression (inside a relevance expression, a double right brace is necessary to specify a

literal one). This would output the following line to __appendfile:

{ name of operating system } WinXP

You can also use substitution with add prefetch item commands in prefetch blocks, for

example:

begin prefetch block

 parameter "manifest"="{pathname of file "manifest.spec" of client folder

 of site "AV"}"

 add prefetch item {concatenation " ; " of lines of file (parameter

 "manifest")}

end prefetch block

The Prefetch Block Structure

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 5

The prefetch block must be the first entry in the action script. It contains all the download

prefetch logic needed to prepare for subsequent action execution. The instructions

contained in the prefetch block must successfully complete before the rest of the action

can continue; in this way it is ensured that files are successfully downloaded before the

action script runs.

The prefetch block structure must satisfy the following criteria:

• Is located as first entry in the action script. Only blank lines and comments are allowed

to precede it.

• Starts with a begin prefetch block statement.

• Ends with the end prefetch block statement.

Note: Only one prefetch block is allowed per action.

Some of the methods that can be used in a prefetch block include:

Literal downloads : These are ordinary static downloads, which are still available.

Conditional downloads : Only those commands inside TRUE condition pathways are

performed.

Variable Substitution : This includes downloads that use relevance substitution to

determine which files to collect.

Custom logic : This takes advantage of a plug-in to create download manifests.

Static Download

Before it runs an action, the BigFix Client parses it, looking for download or prefetch

commands.

Static downloads include the URL, the SHA hash algorithm, and the size for each item as

literal values in the action script. The literal values allows an operator to see exactly what

the action script is going to do. These literals are used to construct a numbered list of

downloads associated with the action that is then stored on the BigFix Server. This stage of

action processing is called prefetch processing.

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 6

To easily create prefetch commands, you can use the utility:

make-prefetch

As a consequence of prefetch processing, the Client notifies the nearest Relay of the need

for downloads by requesting a URL ending in <actionid>/0, which in turn triggers the Relay

to download all the items corresponding to that specified action. When they are ready, the

Relay pings the clients back with the action ID. All the BigFix Clients running that action will

then collect the files by asking for them one at a time as <actionid>/1, <actionid>/2, and so

on.

However, because the download information is represented by literal expressions, only

those URLs already known when the action is authored can be represented. This means that

static downloads cannot be used for those instances where the downloads change, but the

action script remains the same.

Dynamic Download

Dynamic downloads add the ability to use relevance clauses to specify downloads. These

new commands must be embedded in a special segment of action code called a prefetch

block. The prefetch block structure ensures that the file is successfully downloaded before

the action script runs.

Note: Only one prefetch block is allowed per action.

The following examples show how to use the prefetch block to run dynamic downloads.

In this example, a file named download.spec, containing a named variable in its first line, is

created in the AV Fixlet site:

name=update.exe sha1=123 sha256=678 size=456 url=http://site.com/download/

patch.exe

You can access the patch referenced in the download.spec file by using the relevance

substitution in the prefetch block of the action script:

begin prefetch block

https://github.com/bigfix/make-prefetch

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 7

 // Creates a variable named downloadFile that points to a file in the AV

 site.

 parameter "downloadFile"="{pathname of file "download.spec" of client

 folder of site "AV"}"

 // Adds this file to the prefetch queue for subsequent downloading.

 add prefetch item {line 1 of file (parameter "downloadFile")}

end prefetch block

In this way, a Fixlet message in the AV site could offer to keep something automatically

updated and the download.spec file would be refreshed whenever a new version becomes

available.

Another popular technique is to use a data file, or manifest, containing a list of multiple

downloads, each with its own URL, SHA hash algorithm, and size. This is useful when the

files to download change often, as in updated spy ware or anti-virus definitions. This is an

example of a manifest file:

name=patch1.exe sha1=123 sha256=347 size=456 url=http://site.com/download/

patch1.exe

name=patch2.exe sha1=234 sha256=358 size=567 url=http://site.com/download/

patch2.exe

name=patch3.exe sha1=345 sha256=368 size=678 url=http://site.com/download/

patch3.exe

You can download these patches with a prefetch block that pulls these files from the

manifest, for example:

begin prefetch block

 parameter "manifest"="{pathname of file "manifest.spec" of client folder

 of site "AV"}"

 add prefetch item {concatenation " ; " of lines of file (parameter

 "manifest")}

end prefetch block

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 8

You can also use the execute prefetch plug-in command to use small executables to

process files into a fresh manifest, for example:

begin prefetch block

 // Adds the plugin to the prefetch queue

 add prefetch item name=myPlugIn.exe sha1=123 size=456 url=http://mysite/

plugin.exe sha2=347

 // Collects the plug-in before prefetch processing continues

 collect prefetch items

 parameter "ini"="{file "prepass.ini" of site (value of setting

 "CustomSite") of client}"

 // Runs the plug-in with its arguments including the path for the data

 // file and the manifest to be produced from it.

 execute prefetch plug-in "{download path "myPlugIn.exe"}" /downloads

 "{parameter "ini"}"

 "{download path "manifest"}"

 // Queues up the downloads specified in the freshly created manifest

 add prefetch item {concatenation " ; " of lines of download file

 "manifest"}

end prefetch block

A technique like this might also be used to decrypt a secure file into a plain-text manifest.

Dynamic downloads must specify files with the confirmation of a size or SHA hash

algorithm. The URL, size, and SHA hash algorithm can come from a source outside of the

action script. For dynamic downloading, BigFix uses a white-list of URLs to ensure that only

authorized URLs can download files. This is the path to the white list:

<BES Server Install Path>\Mirror Server\Config\DownloadWhitelist.txt.

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 9

This file contains a newline-separated list of regular expressions using a Perl regex format,

such as:

http://.*\.sitename\.com/.*

http://software\.sitename\.com/.*

http://download\.sitename\.com/patches/JustThisOneFile\.qfx

The first line is the least restrictive, allowing any file at the sitename domain to be

downloaded. The second line requires a specific domain host and the third line is the most

restrictive, limiting the URL to a single file named "JustThisOneFile.qfx".

An empty or non-existent white-list causes all dynamic downloads to fail. A white-list entry

of ".*" (dot star) allows any URL to be downloaded.

Prefetch blocks allow conditional statements:

begin prefetch block

 if {name of operating system = "Windows 2000"}

 add prefetch item name=up.exe sha1=123 size=456 url=http://site.com/

patch2k.exe sha2=567

 else

 add prefetch item name=up.exe sha1=123 size=456 url=http://site.com/

patch.exe sha2=567

 endif

end prefetch block

wait "{download path "up.exe"}"

This action script branches on the existence of Win2K, but the downloads in this example

are described statically (as literal text). Although the clients will only download the

particular items they need, all the static files are downloaded to servers and relays as soon

as they are requested.

Dynamic downloads can improve this situation because only those files actually needed

by clients are retrieved by to the server and relay in the first place. Here's an example using

dynamic downloading:

begin prefetch block

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 10

 if {name of operating system = "Windows 2000"}

 add prefetch item {"name=up.exe sha1=123 size=456 url=http://

site.com/patch2k.exe"} sha2=567

 else

 add prefetch item {"name=up.exe sha1=123 size=456 url=http://

site.com/patch.exe"} sha2=567

 endif

end prefetch block

wait "{download path "up.exe"}"

By using relevance substitution in the prefetch block, with a properly configured white-list

file on the server, this code only fetches the necessary file, potentially improving bandwidth

requirements and efficiency.

You can also branch execution based on the contents of a file, allowing you to automate

updates. This can be especially useful for dealing with changing version numbers. For

example, you could create a file named 'manifest.txt' containing two named variables, such

as:

version=1234

download=name=update.exe sha1=123 size=456

url=http://site.com/download/patch.exe sha2=567

Note that the download variable contains the name, sha1, sha2, size and URL of the patch

file.

You can then use relevance substitution to extract these variables with an expression, such

as:

parameter "ver"="{key "version" of file "{download path "manifest.txt"}"}"

parameter "filename"={key "download" of file "{download path

 "manifest.txt"}"}

By comparing the extracted version against some stored values, you can determine if

and when you need to download the specified file. This technique can be expanded to

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 11

include multiple versions and can even be used to distinguish between patches and full

replacement updates.

No matter which technique is used, after the files have been downloaded, they can be

examined with various Inspectors. Before the action runs, these files are collected in a

prefetch folder. While the action is running, they are located in the __Download folder.

These Inspectors can be used to locate the files before or while the action runs:

• download folder: During the prefetch parsing, this Inspector returns a folder object from

the __Global\<sitename>\<actionid>\named folder.

• download path "pathname": This Inspector returns a string containing the full pathname

to the specified file, whether it exists or not. The download filename is equivalent to

(pathname of download folder) & <pathseparator> & filename.

• download file "filename": This Inspector returns a file object from the download folder

or another named folder. The download filename is equivalent to file 'filename' of

download folder.

The action script author must protect users from these actions and ensure that downloads

and their checksums are not been compromised. An end-to-end authentication mechanism

resistant to man-in-the-middle attacks is the best defense. When authoring a dynamic

download action, it is critical to craft the action so that it authenticates information before

using it, typically by using a plug-in as described above. It is also a good practice to

explicitly identify those steps in the action script that perform this authentication so that

users of your action can audit the mechanism before deciding to trust it.

Action Status Messages

Actions might report the following statuses back to the BigFix Server while processing on

the client:

Not Reported

No report on this action yet. No report has yet been received from the

endpoint for the action taken. We cannot confirm if the action has been

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 12

propagated, mirrored, gathered, processed, or reported until this status

changes to something else.

Fixed

The action executed successfully. The BigFix Client has run the action and the

relevance is now false (meaning that the action ran and fixed the issue).

Running

The action is currently running.

Evaluating

Evaluating relevance and action constraints. The BigFix Client has received the

action targeted at it and will evaluate the action to see if it is time to run, the

issue is still relevant, and so on.

Completed

The action has completed and no other actions are required.

Failed

The action failed. The BigFix Client has run the action and the issue is still

relevant (even if the action ran successfully). Note that in the cases of

patches, 'Failed' usually means the patch file was run, but failed to actually

patch the computer.

Cancelled

The action was canceled by the user. The user clicked the "cancel" button

when prompted with a message box.

Download Failed

A required download failed.

Locked

This computer is locked. The BigFix Client is in the "Locked" state that

prevents it from running actions until unlocked.

Waiting

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 13

The BigFix Client is waiting for some condition to be able to run the action.

The waiting conditions include: waiting for user input, waiting to retry after

failure, waiting for a time/date range, waiting for a distribution time, waiting

for a user to log in, and waiting until the custom constraints property becomes

relevant.

• Action has failed and is waiting before trying again.

• Waiting on action dependency.

• Waiting to run in specified time range.

• Waiting until the action start time.

• This computer is not licensed.

• Waiting to satisfy temporal distribution time constraint.

• Waiting for active user condition.

Pending Downloads

Waiting for downloads to be mirrored. The BigFix Client is waiting to receive

the complete file. This state will persist until the download is available on the

BigFix Server -> BigFix Relay -> BigFix Client.

Pending Restart

Waiting for restart to complete action. The action was completed, but the

action status of 'Fixed' or 'Failed' cannot be assessed until the computer is

restarted.

Pending Message

Waiting for user to respond to message.

Pending Login

Waiting for user to log in.

Constrained

The computer doesn't meet the specified retrieved property constraint.

Postponed

The user postponed execution of this action.

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 14

Invalid Signature

The client was unable to verify the signature on this action.

Not Relevant

The Fixlet that this action addresses is not relevant on this machine. Before

running the action, the BigFix Client checked the relevance for the action and it

is no longer true.

Pending Offer Acceptance

Waiting for user to accept this offer.

Offers Disabled

No user is able to accept this offer.

Disk Limited

The download size exceeds the maximum value set in the client setting

_BESClient_Download_PreCacheStageDiskLimitMB, which can be modified

through the Edit Computer Settings dialog.

Disk Free Limited

The remaining disk space is smaller than the value set in the client setting

_BESClient_Download_MinimumDiskFreeMB. For the download to complete,

space must be cleared on the endpoint, or the client setting must be changed

using the Edit Computer Settings dialog.

Hash Mismatch

The download completed, but the file failed a hash comparison. To

troubleshoot, investigate the network between the agent and its parent to

eliminate network problems.

Transcoding Error

The action failed transcoding from the deployment codepage.

Pending Client Restart

Waiting for client restart to complete action.

BigFix Version 10.0.1 Action Script Guide | 2 - Guide | 15

error

• An unknown error occurred.

• The Fixlet context is missing or invalid.

• Invalid site context. The Fixlet site might no longer exist.

• Invalid action content: the action is empty.

• Invalid action content: the action type is invalid.

• Invalid action content: the action script contains a syntax error.

• This action contained invalid download syntax.

• The download manager encountered a configuration error.

• This action was not executed for unknown reasons.

• This action was run, but could not be restarted due to a client UI

translation error.

• This action was not executed due to an error encountered while

translating the client UI elements.

• This action was not executed due to an error showing the client UI.

• This action failed to complete because the Management Extender plug-in

reported an error.

• This action was not executed because the operator who created it is not

an administrator of this client.

Note: After an action expires, the action status is no longer updated.

Chapter 3. Action Script Language Reference

Client Commands

These commands can be used to control the behavior of the BigFix client.

action lock indefinite

This command locks the client starting on the effective date.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

action lock indefinite <date>

Example

Lock the client now.

action lock indefinite {now}

action lock until

This command locks the client starting on the effective date, and unlocks the client when

the expiration date occurs.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

action lock until <expire-date> <effective-date>

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 17

Examples

Lock the client immediately, unlocking in three days.

action lock until "{now + 3*days}" "{now}"

Lock the client for 10 minutes using the current apparent registration server time, which is

based on the last time the client registered with the server.

action lock until "{apparent registration server time + 10 * minutes}"

"{apparent registration server time}"

action log all
This command tells the client to log all commands along with their parameters. This is the

default behavior. This can be used to undo a previous action log command.

Version Platforms

8.2.474.0All

Syntax

action log all

Examples

Don't log the parameters of the first setting command, then restore the default logging

behavior.

action log command

setting "secret"="hodor" on "{now}" for client

action log all

setting "normal"="winterfell" on "{now}" for client

action log command

This command tells the client to only log the commands of the action. The parameters of

the commands in the action will not be logged.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 18

Ordinarily all aspects of an action are logged, including commands and parameters.

The parameters may contain information about establishing private keys or decrypting

passwords. This command can be used to avoid logging such sensitive information.

Version Platforms

8.2.474.0All

Syntax

action log command

Examples

Don't log the parameters of the setting command.

action log command

setting "name"="Bob" on "{now}" for client

action unlock

This command unlocks the client. The effective date field is used to ensure that locking and

unlocking actions take place in the order in which they were created.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

action unlock <date>

Examples

Unlocks the client immediately.

action unlock "{now}"

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 19

administrator add

This command lets you add a BigFix user as an administrator of the computer. This is

accomplished by using a BigFix client setting with an effective date passed as a parameter.

The date is not optional. The effective date tests are the same as for the setting command.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

administrator add <operator-name> on <date>

Examples

Add the BigFix operator named bob as an administrator of the client computer.

administrator add "bob" on "21 Aug 2002 17:39:14 gmt"

Notes: The operator-name that this command expects is the masthead user name of the

operator. To determine what the masthead user name is for an operator, you can use the

masthead operator name session inspector.

administrator delete

This command allows you to remove a BigFix user as an administrator of the computer.

This is accomplished by using a setting with an an effective date passed as a parameter.

The date is not optional. The effective date tests are the same as for the setting command.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

administrator delete <operator-name> on <date>

Examples

https://developer.bigfix.com/action-script/reference/client/setting.html

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 20

Remove the BigFix operator named bob as an administrator of the client computer.

administrator delete "bob" on "21 Aug 2002 17:39:14 gmt"

Notes: The operator-name that this command expects is the masthead user name of the

operator. To determine what the masthead user name is for an operator, you can use the

masthead operator name session inspector.

client restart

This command will restart the BES Client. It must be added as the last command in an

action script or the command will fail.

VersionPlatforms

9.0 Windows

Syntax

client restart

notify client

This command is equivalent to right clicking on a computer in the BigFix Console and

selecting Send Refresh. This command may be necessary if the client is unable to receive

notifications, which might happen if it can't receive UDP messages.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu.

Syntax

notify client ForceRefresh

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 21

plugin store

This command inserts, updates or deletes a BigFix cloud plugin setting. Plugin store

settings are named values that can be encrypted or otherwise. Each plugin store setting has

a timestamp associated with it.

Version Platforms

10.0.0.0Red Hat, Windows

Syntax

plugin store "<pluginName>" set "<pluginKey>" value "<value>" on "<date>"

plugin store "<pluginName>" set encrypted "<pluginKey>" value "<value>" on

 "<date>"

plugin store "<pluginName>" delete "<pluginKey>"

plugin store "<pluginName>" delete all

Where: pluginName describes the name of the plugin pluginKey describes the key name of

the plugin value is the value to set date is a timestamp

and

set is the command to insert or update a plugin key value set encrypted is the command

to insert or update a plugin key value in encrypted mode delete is the command to delete

plugin keys delete all is the command to delete all plugin keys

Examples

plugin store "AWSPlugin" set "UName" value "JUser" on "31 Jan 2007 21:09:36

 gmt"

plugin store "AWSPlugin" set encrypted "UPassword" value "W34dfT_ghy7" on

 "{now}"

plugin store "AWSPlugin" delete "UPassword"

plugin store "AWSPlugin" delete all

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 22

relay select

This command issues a request to the client to perform a relay selection at the next

opportunity. It always succeeds immediately, regardless of the success or failure of the

pending relay selection.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

relay select

Examples

Request a relay selection.

relay select

restart

This command will restart the computer. If the optional delay-seconds parameter is

provided, the shutdown will happen automatically after the specified delay.

If a user is logged in, a dialog will be displayed that shows the delay counting down. In this

case, the interface will have a Restart Now button instead of a Cancel button.

If the delay-seconds parameter is not specified, the user is prompted to press a button to

restart the computer.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

restart [delay-seconds]

Where delay-seconds is an optional parameter to provide a delay before restarting.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 23

Examples

Restart the computer in three minutes.

restart 180

Notes: The delayed restart is a forced restart. It will not prompt the user to save changes to

documents. The machine will restart without further prompting.

set clock

This command causes the client to re-register with the server, and to sets its clock to

the time received from the server during the interaction. This is useful when the client

computer's clock is out of sync.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

set clock

Examples

Sychronize the client computer's clock with the BigFix server.

set clock

Notes: This command is not available when the client is operating under an evaluation

license.

setting

This command sets a BigFix client setting.

Settings are named values that can be applied to individual sites or to client computers.

Each setting has a timestamp associated with it. This timestamp is used to establish

priority -- the latest setting will trump any earlier ones.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 24

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

setting "<name>"="value" on "<date>" for client

setting "<name>"="value" on "<date>" for current site

setting "<name>"="value" on "<date>" for site "<sitename>"

Where name=value describes the setting, and date is a timestamp used to establish priority

between conflicting setting commands.

Examples

Sets the setting name to Bob with an effective date of 31 Jan 2007 21:09:36 gmt. It will

supersede any other name setting with an earlier date.

setting "name"="Bob" on "31 Jan 2007 21:09:36 gmt" for client

Sets the preference setting to red for the site named color. There can be a different

preference setting on each site. This example uses the now inspector to set the effective

date to the time the action was evaluated.

setting "preference"="red" on "{now}" for site "color"

This sets the division setting to "design group". Note that the quotes are percent encoded.

setting "division"="%22design group%22" on "{now}" for current site

Notes:

When a client is reset, the effective dates of the settings are removed and any subsequent

setting commands will overwrite them. There are several ways that clients can be reset,

including computer-ID collisions (most often caused by accidentally including the computer

ID in an image that gets copied to multiple systems), changing the masthead to a new

server, or instructing the client to collect a new ID.

The actions that run next will establish a new effective date, but the setting values will be

the same as before the reset. The values are retained because they contain information

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 25

such as relay selections. That way, when a deployment reset occurs, you don’t have to issue

new actions to reset your network relay structure.

setting delete

This command deletes a named setting variable on the client computer. It includes

a timestamp which will be compared to the timestamp on the original setting. If the

delete date is later than the setting date, the setting will be deleted. Otherwise, the delete

command will be ignored.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

setting delete "<name>" on "<date>" for client

setting delete "<name>" on "<date>" for current site

setting delete "<name>" on "<date>" for site "<site_url>"

Examples

Deletes the name variable on the client machine.

setting delete "name" on "{now}" for client

shutdown

This command is similar to the restart command, but it simply shuts the computer down

and does not reboot.

If the optional delay-seconds parameter is provided, the shutdown will happen

automatically after the specified delay.

If a user is logged in, a UI will be displayed that shows the delay counting down. In this case,

the UI will have a Shutdown Now button instead of a Cancel button. If the delay parameter is

not specified, the user is prompted to press a button to shut down the computer

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 26

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

shutdown [delay-seconds]

Where delay-seconds is an optional parameter to provide a delay before shutting down.

Examples

This command will shut down the computer in three minutes.

shutdown 180

Notes: The delayed shutdown is a forced shutdown. It will not prompt the user to save

changes to documents, etc. The machine will shut down without further prompting.

Download Commands

These commands allow you to download files to the BigFix client system.

add nohash prefetch item

This command downloads a file without verifying the file's hash. This is insecure and

not recommended, but it might be necessary in some cases. It must be between a begin

prefetch block and an end prefetch block command. Unlike add prefetch item, it can only

specify one download and relevance substitution is not allowed within the arguments of this

command.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

add nohash prefetch item [name=<name>] [size=<size>] url=<url>

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 27

Where:

• name is an optional file name for the download. If no name is specified, it will be

automatically determined from the URL.

• size is an optional file size.

• url is the URL of the file.

The arguments may be in any order, but unrecognized arguments will generate a syntax

error.

Note: The downloaded file can be cached only once per action.

Examples

Download and run a file as insecure.exe without verifying its hash.

begin prefetch block

add nohash prefetch item name=insecure.exe url=http://example.com/some-file

end prefetch block

wait {download path "insecure.exe"}

add prefetch item

This command adds a download item to the prefetch queue. This command must reside

between a begin prefetch block and an end prefetch block command. This command can

specify multiple downloads separated by semicolons.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

add prefetch item [name=<name>] [sha1=<sha1>] [sha256=<sha256>]

size=<size> url=<url> [; ...]

Where:

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 28

• name is an optional file name for the download. If no name is specified, it will be

automatically determined from the URL.

• sha1 is an optional SHA-1 of the file.

• sha256 is an optional SHA-256 of the file.

• size is the size of the file in bytes.

• url is the URL of the file.

At least one of sha1 or sha256 must be present. To download a file without specifying a

hash, use the add nohash prefetch item command.

The arguments may be in any order, and unrecognized arguments will be ignored.

Examples

This example demonstrates a conditional download in a prefetch block. By checking the OS

first, only the proper file will be prefetched, potentially saving time and bandwidth.

begin prefetch block

if {name of operating system = "Windows 2000"}

add prefetch item {"name=up.exe sha1=12 size=45 url=http://ms.com/

hot2k.exe"}

else

add prefetch item {"name=up.exe sha1=12 size=45 url=http://ms.com/hot.exe"}

endif

end prefetch block

wait {download path "up.exe"}

Notes: Relevance substitution is allowed with the arguments of this command. However

when substitution is used, the BigFix Server can't cache the download item at action

creation time.

Instead of listing the download items in the command line, you can put them in a file (one

item per line) and then use a relevance substitution like the following:

begin prefetch block

add prefetch item {concatenation ";" of lines of file my-downloads.txt}

https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-2

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 29

end prefetch block

begin prefetch block

This command starts a set of commands to download files.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

begin prefetch block

Examples

Download the file myfile.txt.

begin prefetch block

add prefetch item name=myfile.txt

 sha1=09d24c690168f084287af838008cbceca8215425

size=234 url=http://example.com/myfile.txt

end prefetch block

Notes: Only one prefetch command block can be used in an action and it must be closed

with an end prefetch block command. Only comments or blank lines are allowed to precede

this command. When processing actions with prefetch blocks, download, download as and

prefetch are not allowed anywhere in the action script. The download now as command is

allowed, but it must be used after the prefetch block. These commands are allowed within

the prefetch block:

• if, elseif, else, endif

• parameter

• action parameter query

These commands are only allowed within the prefetch block. They are not allowed outside

of it:

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 30

• add prefetch item

• add nohash prefetch item

• collect prefetch items

• execute prefetch plug-in

collect prefetch items

After files have been added to the prefetch queue by commands such as add nohash

prefetch item and add prefetch item, this command tells the client to download those files

and to not continue running the action until the files have been downloaded. This command

is typically used to retrieve a download plug-in or a set of files that can be processed by a

plug-in. In this case, a file is first added to the prefetch list, collected, and then processed

by a subsequent execute prefetch plug-in command, which might create a file containing

additional downloads. Each collect prefetch items command is treated as a synchronization

point, causing the prefetch processing of the action to wait for the files to download before

proceeding. Once the files are available, the action is reprocessed from the beginning.

This allows the action to compensate for any files that may have changed due to altered

conditions on the machine. The next command in the action will be processed only after

the collect prefetch items command is executed and all files in the prefetch list have been

downloaded. The end prefetch block command does an automatic collection, ensuring that

subsequent action commands will have the necessary files available.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

collect prefetch items

Examples

Download the prefetch plugin myPlugIn.exe and run it to add more dynamic downloads to

be prefetched.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 31

begin prefetch block

parameter "ini"="{file "server_bf.ini" of site (value of setting

 "MyCustomSite") of client}"

add prefetch item name=myPlugIn.exe

 sha1=78ed0f73e7e34e0d0882dd453be0c5ac0f0913eb size=1240

url=http://mysite/plugin.exe

// collect the plug-in before continuing:

collect prefetch items

execute prefetch plug-in "{download path "myPlugIn.exe"}" /downloads

 "{parameter "ini"}"

"{download path "urllist"}"

add prefetch item {concatenation " ; " of lines of download file "urllist"}

end prefetch block

download

This command downloads a file from a URL. After downloading, the file is saved in a

folder named __Download relative to the local folder of the site that issued the download

command. The name of the file is derived from the part of the URL after the last slash. If the

download fails, the action script terminates.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

download <url>

Examples

Download bfxxxx.exe from the BigFix site, and save the downloaded file in the default site

__Download folder.

download http://download.bigfix.com/update/bfxxxx.exe

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 32

Notes: Relevance substitution is not performed on the download action command lines.

This is because these actions are scanned by other components that deliver the downloads,

and these other components run on different machines which do not share those client's

evaluation context. This restriction, however, allows BigFix to prefetch downloads through a

relay hierarchy to the clients.

download as

This command downloads a file from a URL and allows you to rename it. After downloading,

the file is saved in a folder named __Download relative to the local folder of the site that

issued the download as command.

For instance, consider the command:

download as intro.txt ftp://ftp.microsoft.com/deskapps/readme.txt

The example downloads the readme.txt file from the Microsoft site and saves it in the local

__Download folder as intro.txt. If the download fails, the action script terminates.

This command, when accompanied by a continue if with a sha1 value, allows the file to be

pre-fetched.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

download as <name> <url>

Where name is a simple filename, without special characters or path delimiters. If the name

violates any of the following rules, the download command will fail:

• Name must be 32 characters or less.

• Name must only be composed of ASCII characters a-z, A-Z, 0-9, -, _, and non-leading

periods.

Examples

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 33

Download the prog555.exe file from the specified folder on the web site, saves the

downloaded file to the action site __Download folder and renames it to myprog.exe.

download as myprog.exe http://www.website.com/update/prog555.exe

Downloads the specified file, renames it patch1 and continues only if the size and sha1 are

correct.

download as patch1 http://www.download.windowsupdate.com/some-update.exe

continue if {(size of it = 813160 and sha1 of it

 ="92c643875dda80022b3ce3f1ad580f62704b754f") of file

"patch1" of folder "__Download"}

Notes: Relevance substitution is not performed on the download action command lines.

This is because these actions are scanned by other components that deliver the downloads,

and these other components run on different machines which do not share those client's

evaluation context. This restriction, however, allows BigFix to prefetch downloads through a

relay hierarchy to the clients.

download now

This command downloads a file from a URL. It is simliar to the download command.

However, unlike that command, the client will download directly from the specified URL at

that point in the action script without using the relay hierarchy.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

download now <url>

Examples

Downloads bfxxxx.exe from the BigFix site as soon as the command is executed.

download now http://download.bigfix.com/update/bfxxxx.exe

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 34

Notes: Relevance substitution is not performed on the download action command lines.

This is because these actions are scanned by other components that deliver the downloads,

and these other components run on different machines which do not share those client's

evaluation context. This restriction, however, allows BigFix to prefetch downloads through a

relay hierarchy to the clients.

download open

This command downloads a file from a URL and then runs ShellExecute on the resulting file.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

download open <url>

Examples

Download and save bfxxxx.exe to the default site __Download folder and execute the

program once the download completes.

download open http://download.bigfix.com/update/bfxxxx.exe

Notes: Relevance substitution is not performed on the download action command lines.

This is because these actions are scanned by other components that deliver the downloads,

and these other components run on different machines which do not share those client's

evaluation context. This restriction, however, allows BigFix to prefetch downloads through a

relay hierarchy to the clients.

end prefetch block

This command marks the end of a prefetch block. This command must be present

whenever the begin prefetch block command is specified. This command automatically

performs a collect prefetch items command, meaning that all the files added to the prefetch

list will be available when the block is ended.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 35

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

end preftech block

Notes: See begin prefetch block for more information about prefetch blocks.

execute prefetch plug-in

This command runs an external binary in a prefetch block. This is most commonly used

to produce another file containing a set of URLs to be downloaded. This can be used to

authenticate or execute downloads. It can also be used to execute custom logic that can

create inspectable values for subsequent add prefetch item commands. It is not intended

for a lengthy executable and the client will only wait 60 seconds for its completion.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

execute prefetch plug-in <executable-path> [args]

Where:

• executable-path is the full pathname for the plug-in to execute.

• args are arguments passed to the executable

Examples

This example downloads a plug-in that processes the ini_file to produce a download

manifest.

begin prefetch block

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 36

parameter "ini_file"="{file "server_bf.ini" of site (value of setting

 "MyCustomSite") of client}"

add prefetch item name=plugin.exe

 sha1=321381802e1689728e63f25496f8feda98cb3c6e size=1573

url=http://mysite/myplugin.exe

collect prefetch items

// execute the plug-in to produce a manifest from the ini_file:

execute prefetch plug-in "{download path "plugin.exe"}" /downloads

 "{parameter "ini_file"}"

"{download path "manifest"}"

add prefetch item {concatentation " ; " of lines of download file

 "manifest"}

end prefetch block

Notes:

The exit code of the executable is important as it informs the client of failure or success,

where 0 indicates success and all other exit codes are treated as failures and result in a

failed action. For debugging purposes, the exit code is recorded in the client log.

This command is designed for executables that are fast to execute and return promptly.

The BigFix client will only wait 60 seconds for the plugin to complete. After 60 seconds, the

client will log a message and disable the command. When it is disabled, any actions that

use this command will not execute until after the client has been restarted.

In general it is expected that the command will complete much faster -- if it takes longer

than 2 seconds to execute, the client will log an appropriate message.

Relevance substitution can be used to specify the pathname.

prefetch

This command allows a file to be downloaded before the action begins. You do not need a

matching continue if statement for the file to be downloaded and checked in advance. This

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 37

command is preferred over the download command. To easily create prefetch commands,

the make-prefetch utility can be used.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

prefetch <name> sha1:<sha1> size:<size> <url> [sha256:<sha256>]

Where:

• name is the file name for the download.

• sha1 is the SHA-1 of the file.

• size is the size of the file in bytes.

• url is the url of the file.

• sha256 is an optional SHA-256 of the file.

The name must be a simple filename, without special characters or path delimiters. If the

name violates any of the following rules, the download command will fail:

• Name must be 32 characters or less.

• Name must only be composed of ASCII characters a-z, A-Z, 0-9, -, _, and non-leading

periods.

Examples

Prefetch a picture of Hodor.

prefetch hodor.jpg sha1:ce842e0af799f2ba476511c8fbfdc3bf89612dd0

size:57656 http://i.imgur.com/YAUeUOG.jpg sha256:74f69205a016a3896290eae0

3627e15e8dfeba812a631b5e0afca140722a322b

Prefetch and run a different patch depending on whether the operating system is Windows

XP.

https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-2

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 38

if {name of operating system = "WinXP"}

prefetch patch.exe sha1:92c643875dda80022b3ce3f1ad580f62704b754f

 size:813160

http://www.download.windowsupdate.com/msdownload

/update/v3-19990518/cabpool/

q307869_f323efa52f460ea1e5f4201b011c071ea5b95110.exe

else

prefetch patch.exe sha1:c964d4fd345b6e5fd73c2235ec75079b34e9b3d2

 size:845416

http://www.download.windowsupdate.com/msdownload/update/v3-19990518/

cabpool/q310507_2f3c5854999b7c58272a661d30743abca15caf5c.exe

endif

wait __Download\patch.exe

Execution Commands

These commands allow you to run external commands, and to change the behavior of how

those commands are run.

action launch preference low-priority

When this command is run, subsequent action commands that launch programs will do

so with lower priority than normal. This will help to mitigate the impact of large patches

or service pack upgrades. Low-priority preference only affects the launch priority of

applications launched from the current action. This preference is maintained until the action

completes or the client executes the action launch preference normal-priority command.

Version Platforms

8.0.584.0Windows

Syntax

action launch preference low-priority

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 39

Examples

This example lowers the launch priority before running background_app so that it will not

dominate the system when it executes. It then sets the priority level back to normal.

action launch preference low-priority

run "{pathname of regapp "background_app.exe"}"

action launch preference normal-priority

Notes: This command is Windows-only. It will cause an action script to terminate on a Unix

agent.

action launch preference normal-priority

When this command is executed, subsequent action commands that launch programs will

do so with normal-priority. This statement is only needed to return the priority to normal

after an action launch preference low-priority command.

Version Platforms

8.0.584.0Windows

Syntax

action launch preference normal-priority

Examples

This example lowers the launch priority before running background_app, then returns the

priority to normal for subsequent launch statements.

action launch preference low-priority

run "{pathname of regapp "background_app.exe"}"

action launch preference normal-priority

Notes: This command is Windows-only. It will cause an action script to terminate on a Unix

agent.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 40

action uses wow64 redirection

By default and for ensuring the backward compatibility with 32-bit systems, the BigFix Agent

operates in a 32-bit context for running actions. This means that the paths to your files are

automatically translated by Windows into the 32-bit equivalent paths. This is the so-called

wow64 redirection. You can prevent the wow64 redirection when running actions by using

the action uses wow64 redirection command with the false option. The to prevent wow64

redirection and . If you want the agent to run actions that avoid the wow64 redirection,

then you can run the command action uses wow64 redirection false, which will avoid

the redirection. The action uses wow64 redirection command affects the behavior of the

following action commands: dos, delete, copy, move, open, run, wait (and their variants such

as waithidden).

Version Platforms

8.0.584.0Windows

Syntax

action uses wow64 redirection <true|false>

Examples

To run the 64-bit version of notepad.exe in the system path, you can run the following

command:

action uses wow64 redirection {not x64 of operating system}

run notepad.exe

Notes: This command is Windows-only. It will cause an action script to terminate on a Unix

agent.

action uses file encoding

The action uses file encoding command affects the behavior of the appendfile and

createfile until commands. If you do not use the action uses file encoding command,

the appendfile and createfile until commands create files in the local client encoding.

The encoding might be any name that the International Components for Unicode (ICU)

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 41

can recognize, such as ISO-8859-1, Shift_JIS, and UTF-8. If any of UTF encodings (UTF-8,

UTF-16, or UTF-32) is specified as the value of encoding, the file to be created will have a

BOM (Byte Order Mark) at the head of it. But, in case that the client's local encoding is UTF-8

and no encoding is explicitly specified in an action, files to be created with the action will

be written in UTF-8 without BOM. This behavior is the same with the existing version of the

"appendfile" and "createfile until" commands, so we should keep the same behavior unless

any encoding is specified so that the existing actions will work as before. To suppress

adding any BOM, you can pass an optional suboption "NoBOM" (case-insensitive) following

the value of encoding. The "NoBOM" suboption is effective only with any UTF encodings

(UTF-8, UTF-16, and UTF-32), and it will be ignored if it is passed with any other encoding

name. After created, the file objects can be used as regular file objects and you can apply

any operations applicable to text files. To turn off the encoding change and reuse the local

encoding, you can set the encoding name to local.

VersionPlatforms

9.5.7 All

Syntax

action uses file encoding encoding [NoBOM]

Examples

To create a file using the UTF-8 encoding without a BOM, you can run the following

command:

action uses file encoding UTF-8 NoBOM

To revert using the local encoding, run the following command:

action uses file encoding local

On non-Windows platforms:

delete "{(client folder of current site as string) & "/__appendfile"}"

action uses file encoding UTF-8 noBOM

appendfile Hello world !!

delete /tmp/encode_test.txt

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 42

move __appendfile /tmp/encode_test.txt

dos

Runs a Windows command. If the command fails, the action script that contains it is

terminated.

Version Platforms

8.0.584.0Windows

Syntax

dos <command-line>

Examples

Delete an empty directory from a temporary folder in the windows directory:

dos rmdir /Q /S "{pathname of windows folder & "\temp"}"

Run scandisk.exe on the E: drive:

dos scandisk.exe e:

Notes: This command is Windows-only. It will cause an action script to terminate on a Unix

agent. On a Windows system, this has the same effect as issuing a system statement from

the Windows API. It is also the same as typing the command line to a command prompt.

The dos command uses the PATH environment variable to locate the command on the

user's hard drive. As with any other dos command, for other locations you must specify a

complete pathname. Be sure to use quotes if you have spaces in the filenames.

override

The override command provides the ability to customize certain commands and add

multiple variations to existing commands. This powerful compound command allows

you to create your own custom combination command similar to the existing commands

waitdetached or runhidden. To add constraints to an existing command, you add predefined

keyword/value pairs within the body of the command.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 43

Warning: Do not launch long run programs directly from the __Download folder using any of

the following commands: run, rundetached, runhidden, override with completion=none, or

override with timeout, disposition=abandon. Instead, add an action to copy the programs to

a location different from the __Download folder and launch the programs from there. This

is necessary because, if a file in the __Download folder is invoked from any of these action

script commands, the launched program locks the file until it ends and, if the launched

program runs for a very long time or hangs, the Agent cannot process the next action for the

same site context because it cannot clear the __Download folder.

Version Platforms

8.2.531.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows, Debian, Ubuntu

Syntax

override <cmd>

<keyword>=<value>

<keyword>=<value>

<cmd> <rest of command-line>

Keywords

The keywords may be specified in any order, but there must be only one per line. White-

space is not needed around the equal sign = and is ignored.

Keywords are case-insensitive, and the values can be enclosed in {curly brackets} for

Relevance substitution.

If duplicate keywords are listed, the last value will be used. The entire command fails if any

of the keywords or values are invalid. Platform-specific keywords that are not meaningful on

a given platform will be silently ignored.

The action command overrides timeout_seconds and disposition only modify the behavior

of the wait and waithidden action commands.

Completion

Default value: none for run, process for wait.

• Completion=none acts the same as the current run command variants.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 44

• Completion=process acts the same as the current wait command variants. When this

value is used for run, the command result it is not displayed.

• Completion=job on Windows makes use of Windows Job Objects which imposes

some limitations on the target process and some potential failure points for the

command.

Priority (Windows Only)

Default value: normal

• Priority=normal acts the same as the action launch preference normal-priority

command.

• Priority=low acts the same as the action launch preference low-priority command.

Hidden (Windows Only)

Default value: false

• Hidden=true applies the SW_HIDE attribute to the process as is done with the runhidden

and waithidden commands.

• Hidden=false removes the SW_HIDE attribute from the process.

Detached (Windows Only)

Default value: false

• Detached=true creates the process using the detach method as is done in the

rundetached and waitdetached commands.

• Detached=false creates the process using the normal method.

RunAs

Use this keyword to specify the user and the context to use when running the command

specified in the action. Default value: agent

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684161%28v=vs.85%29.aspx

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 45

• RunAs=agent applies the same process ownership characteristics as the current wait

and run commands. The user and the context are the same as those used to with the

current wait and run commands.

• RunAs=currentuser mimics RunAsCurrentUser.exe on Windows, using the same logic

to identify the current user and similar code to create the process with an environment

block sourced by the userToken. In case of multiple logged-on users, the BES agent

chooses the console session if active, or the first logged-on user returned from the

operating system.

Note: On UNIX and Linux the environment variables are not applied with the

exception of required Xauthority variables. On such platforms a call is made to

setuid to the id of the user identified as the current user for the XBESClientUI. This

is a very specific and platform dependent scenario which requires the user to be

logged on at the local console and running X Windows. In the case of an Offer, there

is no relationship between the user who has accepted the Offer and the current user

identified by the BES agent at the time of action execution.

• RunAs=localuser specifies a user who can be different from the logged on user.

Specify the mandatory option user in one of these two formats: user=<username>, or

user={relevance to describe the username} to allow a parametrized input.

This keyword requires the BigFix Agent to run successfully, for this reason it does not

work when run from the Fixlet Debugger.

On Windows systems you can specify any local or domain account. If you use the

keyword Completion=process or Completion=job, there is no need for the specified

user to be logged on the system in advance. If you use the keyword Completion=none,

the user must be logged on the system in advance and must have a registry hive.

On other operating systems, the specified user must be either local or listed in local

accounts, in other words:

◦ On Unix or Linux the user must be specified in the /etc/passwd file.

◦ On Mac the user must be one of the locally defined users.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 46

The following considerations about the RunAs=localuser keyword apply to users defined on

Windows systems only:

• You can specify a domain user by using one of the following formats:

◦ "user@domain" where domain is an active directory domain, for example

"john@tem.test.com".

◦ "domain\user" where domain is specified in the short domain name notation, for

example "TEM\john".

Note: The action runs even if the specified domain user has never logged on the

target system before then.

• You can specify the option password as follows:

◦ password=required if specified, a Take Action Dialog requiring to enter the user's

password is displayed on the Console. That password is then passed to the agent

as a SecureParameter.

Note: Only one password can be passed to the action using the override

command. An action with more than one override command, with different users

specified, fails unless the specified users use the same password. To bypass this

constraint, you might want to create different Fixlets or tasks, each one with an

action containing one of the override commands to run.

◦ password=impersonate if the agent must search for a session running with the

user specified in the user option, and run the command in that session.

◦ password=system to run the command the with the Local System account and

without an user context. The command requires the specified user to be logged on

when the override runs on the system. Any UI will be displayed in the session of

the specified user.

Note: Use the asadmin option if you want the command to write to

HKEY_CURRENT_USER registry hive.

Note: On other operating systems, the option password is ignored because the

agent runs with root authority.

You can use the option asadmin as follows:

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 47

• asadmin=true to run the specified command in the context of the specified user as if

user is a member of builtin Administrators group. In this case you must:

◦ Specify password=required.

◦ Omit the targetuser keyword.

• asadmin=interactive to run the specified command in the context of the user

specified in the user keyword as if that user were a member of builtin Administrators

group. The following rules apply if you use this value:

◦ If you use the targetuser keyword, the UI launched by the command is displayed

in the session of the user specified with targetuser. The command fails if the

user specified with the targetuser keyword is not logged on when the override

command runs.

◦ You must specify the keyword password=required, when using an existing

account, or the password="password" keyword, if you want to use a temporary

user and you have to specify the user's password in the action in clear text. If you

use the password="password" keyword, specify the actual password surrounded

with double quotes.

timeout_seconds

Default value: 0

• timeout_seconds=*positive integer* makes the client wait the specified number of

seconds during a wait or waithidden command before the action script continues

without waiting for the completion of the command's process. The supported values

for the timeout are all positive integers to the maximum supported by the computer

architecture.

• timeout_seconds=0 is the default value, and makes the wait or waithidden commands

act as if the timeout_seconds override were not set.

disposition

Default value: abandon

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 48

• disposition tells the client what to do with the process under the wait or waithidden

command once the timeout is finished.

• disposition=terminate tells the client to kill the wait and waithidden command's process

when the timeout is reached. Killing the process can have negative consequences, and

should be used with extreme caution.

• disposition=abandon is the default value, and tells the client to disassociate the wait or

waithidden command's process from the remainder of the actions.

Limitations on Completion=job

Windows

To exercise the most flexible job control over a process, the override command allows the

process to selectively break child processes away from the job. This allows the process to

do its own job control management, but removes any of its broken out children from the job

object.

In those limited cases where the launched process is responsible for its own job control,

it is assumed that a member of the job will remain running until all of its child processes

complete. This is not a guarantee, however, and there may be situations where this is not

the case. In those cases, the action completes even though the child processes are still

running.

UNIX/Linux

On UNIX/Linux platforms session IDs are used to manage job processes. Session IDs take

on the value of the process id of the session leader (the process you want to launch). The

client waits for the leader process to end, as in the Completion=process case, then begins a

cycle of a half-second of sleep followed by enumerating processes looking for anything with

a session id matching the job leader's process id. When no more of these processes exist,

the job is complete and the command finishes.

The exit code returned with the command is always that of the leader process, not the last

process to complete.

Examples

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 49

On Windows platforms

This example provides the same functionality as waithidden notepad.exe:

override wait

hidden=true

wait notepad.exe

This example shows how you might run a patch as a hidden process by the current user,

waiting for completion of the job before continuing the action script:

override wait

completion=job

hidden=true

runas=currentuser

wait __Download\patch.exe arg1 arg2 arg3

This example shows how you might run a maintenance application, but kill the maintenance

process if it isn't finished by the time 1 hour has passed:

override wait

timeout_seconds=3600

disposition=terminate

wait "__Example\maintenance.exe" arg1 arg2 arg3

This example shows how you might install a software application on a Windows machine

using the context of a domain user who doesn't belong to the Administraor group. A Take

Action Dialog, asking for the user's password, will appear on the console . The password will

be passed to the agent as a SecureParameter:

override wait

 runas=localuser

 asadmin=true

 user=TEM\User1

 password=required

wait c:\IMAGE\SWD\application.exe /SILENT

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 50

On non-Windows platforms

override wait

completion=job

wait tar --directory=/tmp -zxvf __Download/myFile.tgz

run

Executes the indicated program. If the process can't be created, the action script is

terminated. Run does not wait for the process to terminate before executing the next line

of the action script. The command line contains the name of the executable and may

optionally contain parameters.

If you wish to wait for one program to finish before starting another one, use the wait

command.

Warning: Do not launch long run programs directly from the __Download folder using

any of these commands: run, rundetached, runhidden, override with completion=none, or

override with timeout, disposition=abandon. Instead, add an action to copy the programs to

a location different from the __Download folder and launch the programs from there.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

run <command-line>

Examples

These examples show how you might run a script and pass it some arguments. Quotes

around the command line are recommended, and necessary if there are spaces in file

names.

On Windows platforms

run "{pathname of regapp "wordpad.exe"}"

run "c:\winnt\ftp.exe" ftp.mycorp.net

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 51

run wscript /e:vbs x.vbs arg1 arg2

On non-Windows platforms

run sudo touch "/tmp/example.txt"

Notes: On a Windows computer, this command has the same effect as calling the

CreateProcess function with <command-line>. This is also the same as using <command-

line> in the Windows Run dialog. See the Windows documentation on CreateProcess for a

discussion of the method used to locate the executable from a <command-line>.

rundetached

This command is used to prevent pop-up DOS windows when waiting for a program to

complete. It's the same as the run command, but the process created doesn't access

the parent's console, inhibiting the distracting DOS window. This command modifies the

run command by setting the DETACHED_PROCESS flag when calling CreateProcess on

Windows machines. By default, a created process inherits its parent's console. When

detached, this behavior is inhibited. This gives the new process some more control over

how it may interact with the user. This command should not be used for running interactive

programs. If this is done, the interactive program will not be able to show its user interface

and may appear to be hung. This command is provided strictly for running programs that do

not display a user interface.

Warning: Do not launch long run programs directly from the __Download folder using

any of these commands: run, rundetached, runhidden, override with completion=none, or

override with timeout, disposition=abandon. Instead, add an action to copy the programs to

a location different from the __Download folder and launch the programs from there.

Version Platforms

8.0.584.0Windows

Syntax

rundetached <command-line>

Examples

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 52

These examples show how you might run a program and pass it some arguments. Quotes

around the command line are recommended, and necessary if there are spaces in file

names.

rundetached "{pathname of regapp "background_app.exe"}"

rundetached "c:\winnt\ftp.exe" ftp.filesite.net

Notes: This command is Windows-only. It will cause an action script to terminate on a

Unix agent. On a Windows computer, this command has the same effect as calling the

CreateProcess function with <command-line>. This is also the same as using <command-

line> in the Windows Run dialog. See the Windows documentation on CreateProcess for a

discussion of the method used to locate the executable from a <command-line>.

runhidden

This command uses CreateProcess to launch a command in a hidden window. It hides

the window by setting the STARTUPINFO dwFlags to STARTF_USESHOWWINDOW and

setting wShowWindow to SW_HIDE. The process that is created may modify that flag to

subsequently show the window again. After launching, the following action command line is

immediately executed. To wait for the launch to complete before continuing the action, use

the waithidden command.

Warning: Do not launch long run programs directly from the __Download folder using

any of these commands: run, rundetached, runhidden, override with completion=none, or

override with timeout, disposition=abandon. Instead, add an action to copy the programs to

a location different from the __Download folder and launch the programs from there.

Version Platforms

8.0.584.0Windows

Syntax

runhidden <command-line>

Examples

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 53

These examples show how you might run a script in a hidden window and pass it some

arguments. Quotes around the command line are recommended, and necessary if there are

spaces in the file names.

runhidden "{pathname of regapp "wordpad.exe"}"

runhidden "c:\winnt\ftp.exe" ftp.mycorp.net

runhidden wscript /e:vbs x.vbs arg1 arg2

Notes: This command is Windows-only. It will cause an action script to terminate on a

Unix agent. If the launched process requires user input, it will wait for it with its window

hidden, unless the command explicitly shows its window. On a Windows computer, this

command has the same effect as calling the CreateProcess function with <command-

line>. This is also the same as using <command-line> in the Windows Run dialog. See the

Windows documentation on CreateProcess for a discussion of the method used to locate

the executable from a <command-line>.

script

This command executes an external script with the given name. This can be used to run a

script created for a scripting language like JavaScript or Visual Basic.

The action containing the script keyword will terminate if the appropriate scripting

engine is not installed or if the script cannot be executed. The next line of the action is not

executed until the specified script terminates.

Version Platforms

8.0.584.0Windows

Syntax

script <script-name>

Examples

Run the Visual Basic script attrib.vbs.

script attrib.vbs

https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Visual_Basic
https://en.wikipedia.org/wiki/Visual_Basic

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 54

Notes: This command is Windows-only. It will cause an action script to terminate on a Unix

agent. On a Windows computer, this command has the same effect as issuing a wscript

"scriptName" statement from Windows using wscript.exe, and then waiting for completion.

This is also the same as using scriptName from the Windows Run dialog. If you need to

pass parameters to your script, use the run command instead.

script64

This command uses the same syntax as the script command, but places a call to

Wow64DisableWow64FsRedirection before executing the script. This allows you to issue a

native 64-bit script command, bypassing Windows 32-bit environment built on top of 64-bit

processors.

This command executes an external script with the given name. This can be used to run a

script created for a scripting language like JavaScript or Visual Basic.

The action containing the script64 keyword will terminate if the appropriate scripting

engine is not installed or if the script cannot be executed. The next line of the action is not

executed until the specified script terminates.

Version Platforms

8.0.584.0Windows

Syntax

script64 <script-name>

Examples

Run the Visual Basic script attrib.vbs in native 64-bit mode.

script64 attrib.vbs

Notes: This command is Windows-only. It will cause an action script to terminate on

a Unix agent. On a Windows computer, this command has the same effect as calling

Wow64DisableWow64FsRedirection, then issuing a wscript "scriptName" statement from

Windows using wscript.exe, and then waiting for completion.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365743%28v=vs.85%29.aspx
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Visual_Basic
https://en.wikipedia.org/wiki/Visual_Basic

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 55

wait

This command behaves the same as the run command, except that it waits for the

completion of the process or program before continuing.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

wait <command-line>

Examples

Runs the scandskw.exe program and waits for the program to complete before continuing

with the action script. The use of quotes is recommended practice, and necessary if there

are spaces in the file name.

wait "scandskw.exe"

On non-Windows platforms:

wait chmod 555 inventory.sh

Notes: On a Windows computer, this command has the same effect as calling the

CreateProcess function with <command-line>. This is also the same as using <command-

line> in the Windows Run dialog. See the Windows documentation on CreateProcess for a

discussion of the method used to locate the executable from a <command-line>. The wait

command has two available override keywords: timeout_seconds, and disposition. See the

override documentation for details.

waitdetached

This command is used to prevent pop-up DOS windows when waiting for a program to

complete. It's the same as the wait command, but the process created doesn't access the

parent's console, inhibiting the distracting DOS window.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 56

This command modifies the wait command by setting the DETACHED_PROCESS flag when

calling CreateProcess on Windows machines. By default, a created process inherits its

parent's console. When detached, this behavior is inhibited. This gives the new process

some more control over how it may interact with the user.

This command should not be used for running interactive programs. If this is done, the

interactive program will not be able to show its user interface and may appear to be hung.

This command is provided strictly for running programs that do not display a user interface.

Version Platforms

8.0.584.0Windows

Syntax

waitdetached <command-line>

Examples

This example shows how you might run a script, pass it some arguments and then wait for

its completion before continuing the action script.

waitdetached "scandskw.exe"

waitdetached wscript /e:vbs x.vbs arg1 arg2

Notes: This command is Windows-only. It will cause an action script to terminate on a

Unix agent. On a Windows computer, this command has the same effect as calling the

CreateProcess function with <command-line>. This is also the same as using <command-

line> in the Windows Run dialog. See the Windows documentation on CreateProcess for a

discussion of the method used to locate the executable from a <command-line>.

waithidden

This command uses CreateProcess to launch a command in a hidden window. It hides

the window by setting the STARTUPINFOdwFlags to STARTF_USESHOWWINDOW and setting

wShowWindow to SW_HIDE. The process that is created may modify that flag to subsequently

show the window again.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684863%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686331%28v=vs.85%29.aspx

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 57

This command waits for the completion of the process before continuing with subsequent

action commands.

Version Platforms

8.0.584.0Windows

Syntax

waithidden <command-line>

Examples

These examples show how you might run a script in a hidden window and pass it some

arguments. Quotes around the command line are recommended, and necessary if there are

spaces in the file names.

waithidden "{pathname of regapp "notepad.exe"}"

waithidden "c:\winnt\ftp.exe" ftp.myurl.net

waithidden wscript /e:vbs x.vbs arg1 arg2

Notes: This command is Windows-only. It will cause an action script to terminate on a

Unix agent. If the launched process requires user input, it will wait for it with its window

hidden, unless the command explicitly shows its window. On a Windows computer, this

command has the same effect as calling the CreateProcess function with <command-

line>. This is also the same as using <command-line> in the Windows Run dialog. See the

Windows documentation on CreateProcess for a discussion of the method used to locate

the executable from a <command-line>. The waithidden command has override keywords.

See the override documentation for details.

Flow Control Commands

These commands allow you to add conditional logic to your action script.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 58

action may require restart

This command looks at the system for signs that a restart is needed. If it seems that a

restart is needed, the action completion status will be set to Pending Restart until a restart

occurs. If the optional name argument is given and a restart is needed, then the client will

mark name as needing a restart. The pending restart inspector can then be used to see

which actions require a restart.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

action may require restart [name]

Examples

This command is commonly used with patches from Windows Update that might require a

restart. For example:

prefetch WindowsXP-KB2914368-x86-ENU.exe

 sha1:1d9a306f9e5dd564c8ffdcdb8717c4ae2588db3d size:530672

http://download.microsoft.com/download/B/0/D/

B0D762B1-1CF4-4377-8149-0FB18167A023/WindowsXP-

KB2914368-x86-ENU.exe

 sha256:6a8e3034478704c7701e2e2279811e278eec45cc218f50c8ab0701a6b732afc4

waithidden __Download\WindowsXP-KB2914368-x86-ENU.exe /quiet /norestart

action may require restart "1d9a306f9e5dd564c8ffdcdb8717c4ae2588db3d"

If this action requires a restart, then this relevance will return True:

pending restart "1d9a306f9e5dd564c8ffdcdb8717c4ae2588db3d"

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 59

action parameter query

This command allows you to prompt the user that creates the action for the value of a

parameter. This is typically used to prompt for setting values, file locations, or service

names. Parameter names may include blanks, and are case sensitive. The parameter name,

description, and value must each be enclosed inside double quotation marks ".

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

action parameter query "<name>" [with description "<description>"] [and]

[with default [value] "<value>"]

Examples

Ask the user for the value of InstallationPoint when this action is taken. When the script

is run, use the value of InstallationPoint as an argument to MyTool.exe:

action parameter query "InstallationPoint" with description "Please enter

 the location of the

shared installation point:"

run MyTool.exe {parameter "InstallationPoint"}

Create a parameter that can turn 'Tips' on or off:

action parameter query "tips" with description "Enter 'on' or 'off' to

 control Fixlet tips." with

default "on"

regset "[HKEY_CURRENT_USER\Software\BigFix]" "tips"="{parameter "tips"}"

Notes: While the action is executing, you can retrieve the action parameter value entered by

the user with the parameter inspector. For example, in your action you could use relevance

substitution:

run "{parameter "parameter name"}"

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 60

Relevance substitution is not performed on the action parameter query command line itself.

This is because the command is interpreted in the BigFix Console before the action is sent

out.

action requires login

This command informs the client that the current action will not be completed until the

computer is restarted and an administrator logs in. Once this commnand runs, the pending

login inspector will return true.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

action requires login

Notes: This command is ignored by Unix clients.

action requires restart

This command will place the action in a Pending Restart state until the computer is

restarted. If the optional name is specified, then the pending restart inspector will report

that name requires a restart.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

action requires restart [name]

Examples

Require a restart before the action is reported as completed.

run patch.exe

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 61

action requires restart "my-awesome-patch"

After running this, the action will be in a Pending Restart state and the following relevance

will return True:

pending restart "my-awesome-patch"

continue if

This command stops running an action script if a relevance expression evaluates to False.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

continue if <condition>

Examples

Download the file dun40.exe if the operating system is Windows 2000.

continue if {name of operating system = "Win2k"}

download now http://www.example.com/downloads/win98/dun40.exe

exit

This command terminates the action and sets the action exit code. Relevance substitution

can be used to set the exit code.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

exit <code>

Examples

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 62

Exit the action early if foo.exe returns a non-zero exit code.

wait "foo.exe"

parameter "error" = "{exit code of action}"

if {parameter "error" != "0"}

 exit {parameter "error"}

endif

// continue processing

Notes: This is one of the four script commands that can change the action exit code. The

other commands that can change the exit code are:

• wait

• waithidden

• waitdetached

For actions of type sh the exit code of the script is collected into the inspector value when

the client finishes processing the shell script. Exit codes from Unix shell scripts are written

to the client log.

if, elseif, else, endif

The if, elseif, else, and endif commands allow conditional execution of commands.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

if {expression1}

 statement1

 statement2

 ...

elseif {expression2}

 statement3

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 63

 statement4

 ...

else

 statement5

 statement6

 ...

endif

Examples

Prefetch and run a different file depending on the operating system.

if {name of operating system = "WinME"}

prefetch patch1.exe sha1:e6dd60e1e2d4d25354b339ea893f6511581276fd

 size:4389760

http://example.com/winme.exe

wait __Download\patch1.exe

elseif {name of operating system = "WinXP"}

prefetch patch2.exe sha1:92c643875dda80022b3ce3f1ad580f62704b754f

 size:813160

http://example.com/winxp.exe

wait __Download\patch2.exe

else

prefetch patch3.exe sha1:c964d4fd345b6e5fd73c2235ec75079b34e9b3d2

 size:845416

http://example.com/win7.exe

wait __Download\patch3.exe

endif

Notes

The client parses actions before it actually executes them, looking for downloads to

prefetch.

If the prefetching process doesn't parse properly, an action syntax error will be returned

and the action will not run. This can be problematic if you are creating actions that work in

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 64

multiple environments where only one branch of an if statement may parse correctly. For

instance, you might want to load files that are unique to specific platforms. A script like this

would seem to do the trick:

if {not exists key "foo" of registry}

prefetch windows_file ...

else if {not exists package "bar" of rpm}

prefetch unix_file ...

endif

Here a Windows registry key triggers the first prefetch, while a Unix package triggers the

second. The problem is that the registry inspector will fail on Unix systems, and the package

inspector will fail on Windows, causing the prefetch parser to throw an error in both cases.

The answer here is to use cross-platform inspectors to make sure the wrong blocks are not

evaluated:

if {name of operating system starts with "Win"}

if {not exists key "foo" of registry}

prefetch windows_file ...

endif

else if {name of operating system starts with "Redhat"}

if {not exists package "bar" of rpm}

prefetch unix_file ...

endif

endif

By checking first for the proper operating system, you can avoid this type of prefetch parse

error.

However, sometimes there may be no way to avoid a potential error. For instance, an action

may create and access a file that doesn't yet exist in the prefetch phase:

wait chkntfs c: > c:\output.txt

if {line 2 of file "c:\output.txt" as lowercase contains "not dirty"}

regset "HKLM\Software\MyCompany\" "Last NTFS Check"="OK"

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 65

else

regset "HKLM\Software\MyCompany\" "Last NTFS Check"="FAIL"

endif

In this Windows example, the output file doesn't exist until the script is actually executed.

The prefetch parser will notice that the file doesn't exist when it checks for its contents. It

will then throw an error and terminate the action. However, you can adjust the if-condition to

allow the prefetch pass to succeed. One technique is to use the active of action expression

which always returns False during the prefetch pass. You can use this to avoid the

problematic block during the pre-parse:

wait chkntfs c: > c:\output.txt

if {not active of action OR (line 2 of file "c:\output.txt" as lowercase

 contains "not dirty")}

regset "HKLM\Software\MyCompany\" "Last NTFS Check"="OK"

else

regset "HKLM\Software\MyCompany\" "Last NTFS Check"="FAIL"

endif

By checking first to see whether the action is being pre-parsed or executed, you get a

successful prefetch pass and the desired behavior when the action is running.

parameter

This command can be used to create variables in the action script. After setting a variable,

the value can be accessed using the parameter inspector. A parameter can only have one

value. Trying to set an existing parameter to a different value will result in an error.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

parameter "<name>"="<value>"

Note that both the name and the value of the parameter must be inside quotes.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 66

Examples

Defines a parameter named loc that contains the pathname of the tmp folder, and uses it to

write configuration information to a file.

parameter "loc" = "{pathname of folder (value of variable "tmp" of

 environment)}"

createfile until end

Operating system = {name of operating system}

Processor count = {number of processors}

end

delete "{parameter "loc"}\config.txt"

copy __createfile "{parameter "loc"}\config.txt"

Notes: The saved parameter value is always a string. If there is any error in evaluating the

relevance expression to create the parameter, then the parameter will not be set. If the

relevance expression results in multiple values then, then the command fails.

pause while

This command pauses action script evalulation while a relevance expression is True. It will

continue and execute the next command as soon as the expression evaluates to False or

the expression fails to evaluate.

Use relevance substitution to define the condition.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

pause while <condition>

The condition should be a relevance expression.

Examples

Pause action script evaluation while updater.exe is running.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 67

pause while {exists running application "updater.exe"}

Pause action script evaluation while the file C:\result.txt does not exist.

pause while {not exists file "C:\result.txt"}

File Commands

These commands allow you to copy, move, and delete files.

appendfile

This command creates a text file named __appendfile in the site directory. Each time you

invoke the command, it appends the specified text to the end of the file. This command may

be useful for creating diagnostic files or scripts.

On a typical Windows install this file will be created in:

C:\Program Files (x86)\BigFix Enterprise\BES Client__BESData\<site>

The __appendfile is automatically deleted before the action script starts running.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

appendfile <text>

Examples

This example records information about the OS and moves that information to C:

\info.txt.

appendfile This file will contain details about your

 computer

appendfile Operating System={name of operating

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 68

 system}

appendfile Windows is installed on the {location of windows folder}

 drive

move __appendfile C:\info.txt

This example records the name and the free space available for all the drives on the client

computer.

appendfile {("Disk " & name of it & ", free space=" & free space of it as

 string) of drives}

Notes

Use the appendfile command as part of an action that builds a script which is

subsequently passed to a script interpreter. For example, you can use the following syntax

to create an .ini file:

appendfile [HKR]

appendfile HostBasedModemData\Parameters\Driver,ModemOn,1,00,00

delete {location of system folder}\smcfg.ini

copy __appendfile {location of system folder}\smcfg.ini

run smcfg

This same technique can be used to build .bat files, .cmd files, Visual Basic scripts, bash

shell scripts, etc.

archive now
This command invokes the Archive Manager. If the Archive Operating Mode is set to

manual, this command will trigger archiving and uploading of the configured set of files. To

set the appropriate archive mode to manual, use this setting:

_BESClient_ArchiveManager_OperatingMode = 2

The archive now command will fail if the operating mode is not set to manual. It will also

fail if an existing archive is currently being uploaded.

https://en.wikipedia.org/wiki/Visual_Basic
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 69

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

archive now

Examples

This command initiates archiving and uploading of the configured set of files.

archive now

copy

This command copies the source file to the named destination file. The copy command fails

if the destination already exists or if the copy fails for any other reason such as when the

destination file is busy.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

copy <source> <destination>

Examples

This command copies the win.com file to the bigsoftware folder.

copy "{name of drive of windows folder}\win.com" "{name of drive of windows

folder}\bigsoftware\win.com"

This pair of commmands deletes the target file if it exists before it performs the copy

action.

delete "c:\windows\system\windir.dll"

copy " __Download\windir.dll" "c:\windows\system\windir.dll"

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 70

This command copies the file /test/my-file.txt to a file named /temp/### in UTF-8

encoding under the site context.

binary name copy {"/test/my-file.txt" as binary_string as hexadecimal}

{("/temp/" as binary_string as hexadecimal) & "e3838fe383ade383bc"}

This command copies the file /test/my-file.txt into /var/opt/BESClient/__BESData/

CustomSite_Fabio/### in UTF-8 encoding.

binary name copy {"/test/my-file.txt" as binary_string as hexadecimal}

 e3838fe383ade383bc

Notes: It’s good practice to enclose file paths in quotes to preserve spaces. Without quotes,

the file system will not be able to access files with spaces in the path or file name.

createfile until

This command creates a text file named __createfile in the site directory. It allows you

to fill a file with a series of statements up to a terminating string. This is similar to the

appendfile command and it works like a here document.

This command is typically used to create a config file or a script.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

createfile until delimiter

line 1

line 2

...

delimiter

Examples

This example copies some system information to the file C:\info.txt:

https://en.wikipedia.org/wiki/Here_document

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 71

createfile until end

Operating system = {name of operating system}

Processor count = {number of processors}

end

delete C:\info.txt

copy __createfile C:\info.txt

delete

This command deletes a file. Any script with the delete command will terminate if the

file exists but cannot be deleted. This can happen due to write protection or an attempt to

delete from a CD-ROM, for instance. If the file does not exist at all, however, the action script

will continue to execute.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

delete <filename>

Examples

Delete the module.dll file.

delete "c:\program files\bigsoftware\module.dll"

Delete the win.com file.

delete "{name of drive of windows folder}\win.com"

Delete file /temp/### in UTF-8 encoding.

binary name delete {("/temp/" as binary_string as hexadecimal) &

 "e3838fe383ade383bc"}

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 72

Notes: It’s good practice to enclose file paths in quotes to preserve spaces. Without quotes,

the file system will not be able to access files with spaces in the path or file name.

extract

This command extracts files from the specified archive in the download folder __Download

and leaves the results in the same folder.

An archive file is similar to a compressed tar file. BigFix uses a tool called BFArchive to

construct the archive.

This can be useful for copying an entire directory to a computer, which is often required by

installers that contain multiple files along with a setup executable.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

extract <archive-file>

Examples

Extract files of InstallMyApp in the __Download folder, places the results back in the

__Download folder and deletes the original InstallMyApp file.

extract InstallMyApp

folder create

This command creates a directory. It will fail if the folder cannot be created.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

folder create <path>

https://en.wikipedia.org/wiki/Tar_%28computing%29

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 73

Examples

Create the C:\test folder.

folder create "C:\test"

Under the current folder create folder "ハロ" in UTF-8 encoding.

binary name folder create e3838fe383ad

Under /tmp/ folder create folder "ハロー" in UTF-8 encoding.

binary name folder create {("/temp/" as binary_string as hexadecimal) &

 "e3838fe383ade383bc"}

Notes: It’s good practice to enclose file paths in quotes to preserve spaces. Without quotes,

the file system will not be able to access files with spaces in the path or file name.

folder delete

This command deletes a directory. It will recursively delete all contained files and folders.

The command fails if the directory cannot be deleted. However, if the directory does not

exist, the command succeeds.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

folder delete <path>

Examples

Delete the directory C:\test.

folder delete "C:\test"

Remove the folder /temp/### in UTF-8 encoding.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 74

binary name folder delete {("/temp/" as binary_string as hexadecimal) &

 "e3838fe383ade383bc"}

Notes: It’s good practice to enclose file paths in quotes to preserve spaces. Without quotes,

the file system will not be able to access files with spaces in the path or file name.

move

This command moves the source file to the named destination file. This command can be

used to rename a file. The move command fails if the destination already exists, if the source

file doesn’t exist, or if the move fails for any other reason.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

move <source> <destination>

Examples

This command moves and renames the mod.dll file. Note that quotes are necessary for file

names and folder names with spaces in them.

move "c:\program files\bigsoftware\module.dll" "c:\temp\mod.dll"

This script first deletes the file, then moves it back in place from another location.

delete "c:\updates\q312456.exe"

move "__Download\q312456.exe" "c:\updates\q312456.exe"

This command moves the file /test/my-file.txt into the file /temp/### in UTF-8 encoding.

binary name move {"/test/my-file.txt" as binary_string as hexadecimal}

{("/temp/" as binary_string as hexadecimal) & "e3838fe383ade383bc"}

Notes: It’s good practice to enclose file paths in quotes to preserve spaces. Without quotes,

the file system will not be able to access files with spaces in the path or file name.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 75

utility

This command can be used to place commonly used programs into a special cache.

The client maintains two disk caches: one for utility programs and another for action

payloads. Files arriving in the action payload cache will not push files out of the utilities

cache and vice versa.

The client uses the sha1 value of an action download to locate any matching utility that

already exists on the client.

An action-specific folder is created to contain downloads as they are pre- fetched. Existing

files that match the sha1 values don't need to be downloaded again. Any other files will be

prefetched from the parent relay. When all the downloads are available on the client, the

files will be moved from the action- specific folder to the __Download folder of the action

site and the action will be started.

When the action completes, any files left in the __Download folder that were pre-fetched

with sha1 will be candidates for utility caching. These files will have their sha1 values re-

computed and any files with matching sha1 values can be moved into the utility cache.

A least-recently used scheme is used to keep the cache within its size limits. For short

intervals only, the cache limit may be exceeded by single files.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubuntu

Syntax

utility <pathname>

Examples

This places the RunQuiet.exe program into the utility cache to avoid downloading it

multiple times.

utility __Download/RunQuiet.exe

https://en.wikipedia.org/wiki/SHA-1

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 76

Prefetch a file, save the file to the utility cache as patch.exe, and run the command

patch.exe.

prefetch patch.exe sha1:92c643875dda80022b3ce3f1ad580f62704b754f

 size:813160

http://example.com/foo.exe

utility __Download\patch.exe

wait __Download\patch.exe

Registry Commands

These commands allow you to edit the Windows Registry.

regdelete

Deletes a registry key value of the given name, regardless of whether it currently exists or

not.

Version Platforms

8.0.584.0Windows

Syntax

regdelete <key> <value-name>

Where key is the name of the key and value-name is the name of the value in the registry

key you wish to delete.

Examples

Deletes the NeverShowExt value from the ShellScrap registry key.

regdelete "[HKEY_CLASSES_ROOT\ShellScrap]" "NeverShowExt"

Notes:

This command is Windows-only. It will cause an action script to terminate on a Unix agent.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 77

In order to delete a non-empty registry key and all its sub-keys, you need to create a file, say

del.reg, that looks like this:

REGEDIT4

[-HKEY_CURRENT_USER\keep\removethisandbelow]

There should be three lines in this file: the last line must be a blank. Note the dash - in front

of the registry path. Now you can execute an action like this:

regedit /s del.reg

When this action is executed, the key named removethisandbelow, along with all its sub-

keys, is deleted. You can use the appendfile or createfile until commands to build this .reg

file. If the specified key doesn't already exist, it will be created by this command.

regdelete64

This command uses the same syntax as the regdelete command, but places a call to

Wow64DisableWow64FsRedirection before launching the 64-bit version of regedit to

edit the registry, allowing you to use the 64-bit registry available on 64-bit machines. This

command deletes a registry key value of the given name. If the value doesn’t already exist,

this command will fail and all subsequent commands will not be executed.

Version Platforms

8.0.584.0Windows

Syntax

regdelete64 <key> <value-name>

Where key is the name of the key and value-name is the name of the value in the registry

key you wish to delete.

Examples

Deletes the NeverShowExt value from the ShellScrap registry key.

regdelete64 "[HKEY_CLASSES_ROOT\ShellScrap]" "NeverShowExt"

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 78

Notes: This command is Windows-only. It will cause an action script to terminate on a Unix

agent. If the specified key doesn't already exist, it will be created by this command.

regset

Sets a registry key to the given name and value. If the key doesn’t already exist, this

command creates the key with this starting value.

Version Platforms

8.0.584.0Windows

Syntax

regset <key> <name>=<value>

Where key is the registry key of interest and name is the key value to set to value. These

values are entered just as they are in a REGEDIT4 registry file, in keeping with the rules for

regedit.exe, the Windows program that edits the registry. String values are delimited by

quotes, and the standard 4-byte integer DWORD is identified using dword: followed by the

numeric value entered in hexadecimal with leading zeroes as shown below.

Examples

Set the Level value of the specified registry key to the DWORD 2.

regset "[HKCU\Software\Microsoft\Office\9.0\Word\Security]"

 "Level"=dword:00000002

Set the testString value of the specified registry key to bob.

regset "[HKEY_CURRENT_USER\Software\BigFix Inc.]" "testString"="bob"

Clear the data of the specified registry value.

regset "[HKEY_CLASSES_ROOT\ShellScrap]" "AlwaysShowExt"=""

Notes

This command is Windows-only. It will cause an action script to terminate on a Unix agent.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 79

Notice in these examples that square brackets [] are used to enclose the name of the

registry key. Again, this is in keeping with the rules for REGEDIT4 registry files.

When you use the regset command, keep in mind that the BigFix client dynamically builds

the .reg file that you would have had to create manually to update the registry and then it

executes that resulting .reg file for you. One of the rules of the .reg file is that any back

slashes \ in the value field need to appear as double slashes \\.

For example, if you were trying to assign the value SourcePath2 of the registry key

HKEY_LOCAL_MACHINE\Example to C:\I386, the command that you would define would look

like this:

regset "[HKEY_LOCAL_MACHINE\Example]" "SourcePath2"="C:\\I386"

Alternatively, you could use the escape relevance inspector:

regset "[HKEY_LOCAL_MACHINE\Example]" "SourcePath2"={escape of "c:\I386"}

In situations where you need to issue many regset commands, you might consider using the

appendfile or createfile until commands to build a properly formatted regedit file, and then

run regedit silently:

createfile until end-reg-edit-commands

REGEDIT4

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion]

"SourcePath1"="c:\\I386"

"SourcePath2"="{escapes of pathname of windows folder}"

end-reg-edit-commands

move __createfile setup.reg

wait regedit /s setup.reg

If the specified key doesn't already exist, it will be created by this command.

regset64

This command uses the same syntax as the regset command, but places a call to

Wow64DisableWow64FsRedirection before launching the 64-bit version of regedit.exe to

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 80

edit the registry. This allows you to use the native 64-bit registry to set a registry key to the

given name and value. If the key doesn't already exist, this command creates the key with

this initial value.

Version Platforms

8.0.584.0Windows

Syntax

regset64 <key> <name>=<value>

Examples

Set the Level value of the specified registry key to the DWORD 2:

regset64 "[HKCU\Software\Microsoft\Office\9.0\Word\Security]"

 "Level"=dword:00000002

Set the testString value of the specified registry key to bob.

regset64 "[HKEY_CURRENT_USER\Software\BigFix Inc.]" "testString"="bob"

Clear the data of the specified registry value.

regset64 "[HKEY_CLASSES_ROOT\ShellScrap]" "AlwaysShowExt"=""

Notes

This command is Windows-only. It will cause an action script to terminate on a Unix agent.

Notice in these examples that square brackets [] are used to enclose the name of the

registry key. Again, this is in keeping with the rules for REGEDIT4 registry files.

When you use the regset64 command, keep in mind that the BigFix client dynamically

builds the .reg file that you would have had to create manually to update the registry and

then it executes that resulting .reg file for you. One of the rules of the .reg file is that any

back slashes \ in the value field need to appear as double slashes \\.

For example, if you were trying to assign the value SourcePath2 of the registry key

HKEY_LOCAL_MACHINE\Example to C:\I386, the command that you would define would look

like this:

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 81

regset64 "[HKEY_LOCAL_MACHINE\Example]" "SourcePath2"="C:\\I386"

Alternatively, you could use the escape relevance inspector:

regset64 "[HKEY_LOCAL_MACHINE\Example]" "SourcePath2"={escape of "c:\I386"}

In situations where you need to issue many regset64 commands, you might consider using

the appendfile or createfile until commands to build a properly formatted regedit file, and

then run regedit silently:

createfile until end-reg-edit-commands

REGEDIT4

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion]

"SourcePath1"="c:\\I386"

"SourcePath2"="{escapes of pathname of windows folder}"

end-reg-edit-commands

move __createfile setup.reg

wait regedit /s setup.reg

If the specified key doesn't already exist, it will be created by this command.

regkeydelete

Deletes a registry key and all of its contents.

Version Platforms

9.5.13.130Windows

Syntax

regkeydelete <key>

where key is the name of the registry key you wish to delete.

Examples

Deletes the MyKey registry key that is at [HKEY_LOCAL_MACHINE

\SOFTWARE*WOW6432Node*].

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 82

regkeydelete "[HKEY_LOCAL_MACHINE\SOFTWARE\MyKey]"

Notes:

• This command is Windows-only. It will cause an action script to terminate on a Unix

agent.

• Both your BigFix client and console should be at version 9.5.13 or later for the

command to work.

• You cannot delete root keys (for example, HKEY_LOCAL_MACHINE).

regkeydelete64

This command uses the same syntax as the regkeydelete command, but places a call

to Wow64DisableWow64FsRedirection before launching the 64-bit version of regedit to

edit the registry, allowing you to use the 64-bit registry available on 64-bit machines. This

command deletes a registry key and all of its contents. If the value doesn’t already exist, this

command fails and all subsequent commands are not run.

Version Platforms

9.5.13.130Windows

Syntax

regkeydelete64 <key>

Where key is the name of the key you wish to delete.

Examples

Deletes the MyKey registry key.

regkeydelete64 "[HKEY_LOCAL_MACHINE\SOFTWARE\MyKey]"

Notes:

• This command is Windows-only. It will cause an action script to terminate on a Unix

agent.

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 83

• Both your BigFix client and console should be at version 9.5.13 or later for the

command to work.

• If the specified key doesn't already exist, it will be created by this command.

• You cannot delete root keys (for example, HKEY_LOCAL_MACHINE).

Site Commands

These commands control site subscription and evaluation. They should not be used directly.

Instead, use the console to manage site subscriptions.

site force evaluation

This command causes the client to re-evaluate all content in the site.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubunt

Syntax

site force evaluation

Examples

Force all content in the site to be re-evaluated.

site force evaluation

Notes: This command can place more load on the client machine, and should probably not

be used.

subscribe

This command subscribes the client to the site identified in the masthead file.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 84

Version Platforms

8.1.535.0Debian, Ubunt

Syntax

subscribe <masthead-file-name>

Examples

Subscribe the client computer to the site with the masthead cool-site.fxm.

subscribe "__Download\cool-site.fxm"

Notes: The command should not be used directly. Instead, use the BigFix Console to

manage site subscriptions. This command returns an error unless it is executed in the

master action site.

unsubscribe

This command unsubscribes from the current site. This command should not be used.

Instead, manage site subscriptions from the BigFix Console.

Version Platforms

8.0.584.0AIX, HP-UX, Mac, Red Hat, SUSE, Solaris, Windows

8.1.535.0Debian, Ubunt

Syntax

unsubscribe

Notes: The command should not be used directly. Instead, use the BigFix Console to

manage site subscriptions.

Agent to Agent Communication

These commands can be used to pass instructions to a specific agent installed on the

same endpoint as the BigFix agent. The Agent to Agent Communication channel (also

BigFix Version 10.0.1 Action Script Guide | 3 - Action Script Language Reference | 85

known as BigFix A2A) is implemented by DLL files put in place by the "Install BigFix A2A"

Fixlet.

agent interface

This command allows to pass instructions to the other end of the Agent to Agent

communication channel, addressing a specific agent.

VersionPlatforms

9.5.5.0 All

Syntax

agent interface "ProductID" command

Examples

These are examples using the ProductID "My_Prod":

agent interface "My_Prod" quarantine file -filepath "C:\myfolder

\myfile.exe"

agent interface "My_Prod" kill 10567

Chapter 4. Support

For more information about this product, see the following resources:

• BigFix Support Portal

• BigFix Developer

• BigFix playlist on YouTube

• BigFix Tech Advisors channel on YouTube

• BigFix Forum

https://support.hcltechsw.com/csm?id=bigfix_support
https://developer.bigfix.com/
https://www.youtube.com/playlist?list=PL2tETTrnR4wtneQ2IxSIiDFljzQDuZNBQ
https://www.youtube.com/channel/UCtoLTyln5per0JYzw1phGiQ
https://forum.bigfix.com

Notices

This information was developed for products and services offered in the US.

HCL may not offer the products, services, or features discussed in this document in other

countries. Consult your local HCL representative for information on the products and

services currently available in your area. Any reference to an HCL product, program, or

service is not intended to state or imply that only that HCL product, program, or service may

be used. Any functionally equivalent product, program, or service that does not infringe any

HCL intellectual property right may be used instead. However, it is the user's responsibility

to evaluate and verify the operation of any non-HCL product, program, or service.

HCL may have patents or pending patent applications covering subject matter described

in this document. The furnishing of this document does not grant you any license to these

patents. You can send license inquiries, in writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

For license inquiries regarding double-byte character set (DBCS) information, contact the

HCL Intellectual Property Department in your country or send inquiries, in writing, to:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

HCL TECHNOLOGIES LTD. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied

warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated in new

editions of the publication. HCL may make improvements and/or changes in the product(s)

and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-HCL websites are provided for convenience only

and do not in any manner serve as an endorsement of those websites. The materials at

those websites are not part of the materials for this HCL product and use of those websites

is at your own risk.

HCL may use or distribute any of the information you provide in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs and

other programs (including this one) and (ii) the mutual use of the information which has

been exchanged, should contact:

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

Attention: Office of the General Counsel

Such information may be available, subject to appropriate terms and conditions, including in

some cases, payment of a fee.

The licensed program described in this document and all licensed material available for

it are provided by HCL under terms of the HCL Customer Agreement, HCL International

Program License Agreement or any equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating

conditions. Actual results may vary.

Information concerning non-HCL products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. HCL has not

tested those products and cannot confirm the accuracy of performance, compatibility or

any other claims related to non-HCL products. Questions on the capabilities of non-HCL

products should be addressed to the suppliers of those products.

Statements regarding HCL's future direction or intent are subject to change or withdrawal

without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any similarity to

actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate

programming techniques on various operating platforms. You may copy, modify, and

distribute these sample programs in any form without payment to HCL, for the purposes

of developing, using, marketing or distributing application programs conforming to the

application programming interface for the operating platform for which the sample

programs are written. These examples have not been thoroughly tested under all conditions.

HCL, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. The sample programs are provided "AS IS," without warranty of any kind. HCL

shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a

copyright notice as follows:

© (your company name) (year).

Portions of this code are derived from HCL Ltd. Sample Programs.

Trademarks
HCL Technologies Ltd. and HCL Technologies Ltd. logo, and hcl.com are trademarks or

registered trademarks of HCL Technologies Ltd., registered in many jurisdictions worldwide.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks

or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of

Oracle and/or its affiliates.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft

Corporation in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and service names might be trademarks of HCL or other companies.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and

conditions.

Applicability

These terms and conditions are in addition to any terms of use for the HCL website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative work

of these publications, or any portion thereof, without the express consent of HCL.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise

provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion

thereof outside your enterprise, without the express consent of HCL.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are

granted, either express or implied, to the publications or any information, data, software or

other intellectual property contained therein.

HCL reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the publications is detrimental to its interest or, as determined by HCL,

the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with

all applicable laws and regulations, including all United States export laws and regulations.

HCL MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

	Action Script Guide
	Special notice
	Contents
	Chapter 1. The Action Script Language
	Chapter 2. Guide
	Creating a Custom Action
	Using Substitution Variables
	The Prefetch Block Structure
	Static Download
	Dynamic Download
	Action Status Messages

	Chapter 3. Action Script Language Reference
	Client Commands
	action lock indefinite
	action lock until
	action log all
	action log command
	action unlock
	administrator add
	administrator delete
	client restart
	notify client
	plugin store
	relay select
	restart
	set clock
	setting
	setting delete
	shutdown

	Download Commands
	add nohash prefetch item
	add prefetch item
	begin prefetch block
	collect prefetch items
	download
	download as
	download now
	download open
	end prefetch block
	execute prefetch plug-in
	prefetch

	Execution Commands
	action launch preference low-priority
	action launch preference normal-priority
	action uses wow64 redirection
	action uses file encoding
	dos
	override
	run
	rundetached
	runhidden
	script
	script64
	wait
	waitdetached
	waithidden

	Flow Control Commands
	action may require restart
	action parameter query
	action requires login
	action requires restart
	continue if
	exit
	if, elseif, else, endif
	parameter
	pause while

	File Commands
	appendfile
	archive now
	copy
	createfile until
	delete
	extract
	folder create
	folder delete
	move
	utility

	Registry Commands
	regdelete
	regdelete64
	regset
	regset64
	regkeydelete
	regkeydelete64

	Site Commands
	site force evaluation
	subscribe
	unsubscribe

	Agent to Agent Communication
	agent interface

	Chapter 4. Support
	Notices
	Trademarks
	Terms and conditions for product documentation
	Applicability
	Personal use
	Commercial use
	Rights

